2018晋中市中考数学预测试卷1附详细解析冲刺初中毕业考试

合集下载

2018-年-山西省中考数学-试-卷(解析版)

2018-年-山西省中考数学-试-卷(解析版)

2018-年-山西省中考数学-试-卷(解析版)2018 年 山西省中考数学 试 卷(解析版)第 I 卷 选 择 题 ( 共 30 分)一 、选 择 题( 本 大 题 共 10 个 小 题 ,每 小 题 3 分 ,共 30 分 ,在 每 个 小 题 给 出 的 四 个 选 项 中 ,只 有 一项符合题目要求 , 请选出并在答题卡 上 将该项涂黑) 1.下 面 有 理 数 比 较 大 小 , 正 确 的 是 ( ) A. 0< -2 B. -5< 3 C. -2< -3 D. 1< -4 【答案】 B 【考点】 有 理 数 比 较 大 小 2. “算经十书”是指 汉唐一千多年间的 十 部著名数学著作,它 们曾经是隋唐时期 国 子监算学科 的 教 科 书 , 这 些 流 传 下 来 的 古 算 书 中 凝 聚 着 历 代 数 学 家 的 劳 动 成 果 .下 列 四 部 著 作 中 , 不 属 于 我 国古代数学著作的 是 ()A.《九章算术》B. 《几何原本》C. 《 海 岛 算 经 》D. 《 周 髀 算 经 》 【答案】 B 【考点】 数学文化 【解析 】《 几 何 原 本 》 的 作 者 是 欧 几 里 得 3. 下 列 运 算 正 确 的 是 ( )A. (- a 3 2= -a 6 B. 2a 2 + 3a 2 = 6a 2 C. 2a 2 ⋅ a 3 = 2a 6D.2633()b b -=-【答案】D【考点】整式运算【解析】A. (-a3 )2 =a6 B2a2 + 3a2 = 5a2 C. 2a2 ⋅a3 =2a54. 下列一元二次方程中,没有实数根的是()A. x2 - 2x =0B. x2 + 4x -1 =0C. 2x2 - 4x + 3 =0D. 3x2 = 5x -2【答案】C【考点】一元二次方程根的判别式【解析】△>0,有两个不相等的实数根,△=0,有两个相等的实数根,△<0,没有实数根.A.△=4B.△=20C. △=-8D. △=15. 近年来快递业发展迅速,下表是 2018 年 1-3 月份我省部分地市邮政快递业务量的统计结果(单位:万件)【解析】由表格可知,共有 9 种等可能结果,其中两次都摸到黄球的结果有 4 种,∴P(两次都摸到黄球)=498. 如图,在 Rt△ABC 中,∠ACB=90°,∠A=60°,AC=6,将△ABC 绕点 C 按逆时针方向旋转得到△A’B’C,此时点 A’恰好在 AB 边上,则点 B’与点 B 之间的距离是()A. 12B. 6 2 D.3【答案】D【考点】旋转,等边三角形性质【解析】连接 BB’,由旋转可知 AC=A’C,BC=B’C,∵∠A=60°,∴△ACA’为等边三角形,∴∠ACA’=60°,∴∠BCB’=60°∴△BCB’为等边三角形,∴BB’=BC= 6 3 .9. 用配方法将二次函数y=x2-8x-9化为y=a(x-h)2+k的形式为()A. y =(x -4)2 +7B. y =(x -4)2 -25C. y =(x +4)2 +7D. y =(x +4)2 -25【答案】B【考点】二次函数的顶点式【解析】y =x2 -8x -9 =x2 -8x +16 -16 -9 =(x -4)2 -2510. 如图,正方形 ABCD 内接于⊙O,⊙O 的半径为 2,以点 A 为圆心,以 AC 为半径画弧交 AB 的延长线于点 E,交 AD 的延长线于点 F,则图中阴影部分的面积是()A.4π-4B. 4π-8C. 8π-4D.8π-8【答案】A【考点】扇形面积,正方形性质【解析】∵四边形 ABCD 为正方形,∴∠BAD=90°,可知圆和正方形是中心对称图形,第I卷非选择题(共90分)二、填空题(本大题共 5 个小题,每小题 3 分,共 15 分)11.计算:22-1) = .【答案】17【考点】平方差公式【解析】∵(a +b)(a -b) =a2 -b2 ∴2+2-1) =2)2-1 =18-1=1712. 图 1 是我国古代建筑中的一种窗格.其中冰裂纹图案象征着坚冰出现裂纹并开始清溶,形状无一定规则,代表一种自然和谐美.图 2 是从图 1 冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2 +∠3 +∠4 +∠5 = 度.【答案】360【考点】多边形外角和【解析】∵任意 n 边形的外角和为360°,图中五条线段组成五边形∴∠1+∠2 +∠3 +∠4 +∠5 = 360︒.13.2018 年国内航空公司规定:旅客乘机时,免费携带行李箱的长、宽、高之和不超过 115cm. 某厂家生产符合该规定的行李箱,已知行李箱的宽为20cm,长与高的比为 8:11,则符合此规定的行李箱的高的最大值为_____cm.【答案】 55 【考点】 一 元 一 次 不 等 式 的 实 际 应 用 【解析】 解 : 设 行 李 箱 的 长 为 8xcm , 宽 为 11xcm 20 + 8x +11x ≤ 115解得x ≤ 5∴高的最大值为 11⨯ 5 = 55 cm14.如 图 ,直 线 MN ∥ PQ ,直 线 AB 分别与 MN ,PQ 相交于点 A ,B.小宇同学利用尺规 按 以下步骤 作 图: ①以点 A 为 圆 心 , 以 任 意 长 为 半 径 作 弧 交 AN 于点 C ,交 AB 于点 D ;②分别以 C , D 为 圆 心 ,以大于12 CD 长 为 半 径 作 弧 ,两 弧 在 ∠ NAB 内 交 于 点 E ;③ 作 射 线 AE 交 PQ 于点 F.若 AB=2,∠ ABP=600, 则线段 AF 的长为 ______. 【答案】 3【考点】 角 平 分 线 尺 规 作 图 , 平 行 线 性 质 , 等 腰 三 角 形 三 线 合 一 【解析】 过点 B 作 BG ⊥ AF 交 AF 于点 G由尺规作图可知, AF 平分∠ NAB ∴∠ NAF=∠ BAF ∵ MN ∥ PQ∴∠ NAF=∠ BFA ∴∠ BAF=∠ BFA ∴ BA=BF=2 ∵ BG ⊥ AF ∴ AG=FG ∵ ∠ ABP=60∴∠ BAF=∠ BFA=30Rt △ BFG 中,FG = BF⋅ c o s ∠BFA = 2⨯2 =∴ AF = 2FG =15.如图,在 Rt△ABC 中,∠ACB=900 ,AC=6,BC=8,点 D 是 AB 的中点,以 CD 为直径作⊙O,⊙O 分别与 AC,BC 交于点 E,F,过点 F 作⊙O 的切线FG,交 AB 于点 G,则 FG 的长为_____.【答案】125【考点】直角三角形斜中线,切线性质,平行线分线段成比例,三角函数【解析】连接 OF∵FG 为⊙0 的切线∴OF⊥FG∵Rt△ABC 中,D 为 AB 中点∴CD=BD∴∠DCB=∠B∵OC=OF∴∠OCF=∠OFC∴∠CFO=∠B∴OF∥BD∵O 为 CD 中点∴F 为 BC 中点∴CF =BF=1BC = 4Rt △ ABC 中, s i n ∠B = 35Rt △ BGF 中, FG = BF sin ∠B = 4 ⨯35 =125三 、 解 答 题 ( 本 大 题 共 8 个 小 题 , 共 75 分 .解 答 应 写 出 文 字 说 明 , 证 明 过 程 或 演 算 步 骤 ) 16.(本题共 2 个 小 题 , 每 小 题 5 分,共 10 分)计 算 :( 1)21(22)4362---+⨯+ 【考点】 实 数 的 计 算 【解析】 解:原式 =8-4+2+1=7( 2)222111442x x x x x x --⋅---+-【考点】 分式化简【解析】 解:原式 =222111442x x x x x x --⋅---+-=+1122x x x ---=2x x -17.(本题 8 分 )如 图 ,一 次 函 数 y 1= k 1x + b (k 1≠ 0) 的 图 象 分 别 与 x 轴,y 轴 相 交 于 点 A ,B ,与 反 比例函数 y 2=(k ≠ 0) 的 图 象 相 交 于 点 C ( -4, -2), D ( 2, 4) . ( 1) 求 一 次 函 数 和 反 比 例 函 数 的 表 达 式 ; ( 2)当 x 为 何 值 时 ,y 1 > 0 ;( 3)当 x 为 何 值 时 ,y 1< y 2,请直接写出 x 的 取 值 范 围 .【考点】 反 比 例 函 数 与 一 次 函 数 【解析】( 1)解: 一次函数 y 1= k 1x + b 的 图 象 经 过 点 C( -4, -2), D ( 2, 4),(3)解:x <-4 或0 <x <2.18.(本题 9 分)在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了 100 名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).请解答下列问题 : ( 1) 请 补 全 条 形 统 计 图 和 扇 形 统 计 图 ; ( 2) 在 参 加 “ 剪 纸 ” 活 动 项 目 的 学 生 中 , 男 生 所 占 的 百 分 比 是 多 少 ? ( 3) 若 该 校 七 年 级 学 生 共 有 500 人 , 请 估 计 其 中 参 加 “ 书 法 ” 项 目 活 动 的 有 多 少 人 ? ( 4)学 校 教 务 处 要 从 这 些 被 调 查 的 女 生 中 ,随 机 抽 取 一 人 了 解 具 体 情 况 ,那 么 正 好 抽 到 参 加“ 器 乐”活动项目的女 生 的概率是多少? 【考点】 条 形 统 计 图 , 扇 形 统 计 图 【解析 】( 1)解:( 2)解:1010+15⨯100% = 40%.答:男生所占的百 分 比为 40%. ( 3)解: 500 ⨯ 21%=105(人) . 答:估计其中参加 “ 书法”项目活动的 有 105 人 .( 4)解:15155==15+10+8+1548165答:正好抽到参加 “ 器乐”活动项目的 女 生的概率为516 .19.(本题 8 分 )祥 云 桥 位 于 省 城 太 原南 部 , 该 桥 塔 主 体 由 三 根 曲 线 塔 柱组合而成,全桥共设 13 对直线型斜拉索,造型新颖,是“三晋大地”的一种象征.某数学“综合与实践”小组的同学把“测量斜拉索顶端到桥面的距离”作为一项课题活动,他们制订了测量方案,并利用课余时间借助该桥斜拉索完成了实地测量.测量结果如下表.∠A 的度数38°到AB 的距离(参考数据sin 38︒≈ 0.6 ,cos 38︒≈ 0.8 ,tan 38︒≈ 0.8 ,sin 28︒≈ 0.5 ,cos 28︒≈ 0.9 ,tan 28︒≈ 0.5 );(2) 该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可).【考点】三角函数的应用【解析】(1)解:过点 C 作 CD ⊥AB 于点 D.设 CD= x 米,在 Rt ∆ADC 中,∠ADC=90°,∠A=38°.AD +BD =AB = 234 . ∴54x + 2x = 234.解得x = 72 .答:斜拉索顶端点 C 到 AB 的距离为 72 米.(2)解:答案不唯一,还需要补充的项目可为:测量工具,计算过程,人员分工,指导教师,活动感受等.20.(本题 7 分)2018 年 1 月 20 日,山西迎来了“复兴号”列车,与“和谐号”相比,“复兴号”列车时速更快,安全性更好.已知“太原南-北京西” 全程大约500 千米,“复兴号”G92 次列车平均每小时比某列“和谐号”列车多行驶40 千米,其行驶时间是该列“和谐号”列车行驶时间的4(两5列车中途停留时间均除外).经查询,“复兴号”G92次 列 车 从 太 原 南 到 北 京 西 , 中 途 只 有 石 家 庄 一站,停留 10 分钟 .求乘坐“复兴号” G92 次列车从太原南到 北 京西需要多长时间 . 【考点】 分 式 方 程 应 用 【解析】 解: 设 乘 坐 “ 复 兴 号 ” G92 次 列 车 从 太 原 南 到 北 京 西 需 要 x 小时,由题意,得500500=+40151()646x x --解得 x =83经检验, x =83是原方程的根 . 答 : 乘 坐 “ 复 兴 号 ” G92 次 列 车 从 太 原 南 到 北 京 西需 要83小时 .21. (本题 8 分 ) 请 阅 读 下 列 材 料 , 并 完 成 相 应 的 任 务 :在 数 学 中 ,利 用 图 形 在 变 化 过 程 中 的 不 变 性 质 ,常 常 可 以 找 到 解 决 问 题 的 办 法 .著 名 美 籍 匈 牙 利数学家波利亚在 他 所著的《数学的发现 》一书中有这样一个 例子:试问如何在一 个三角形 ABC 的 AC 和 BC 两 边 上 分 别 取 一 点 X 和 Y ,使得 AX=BY=XY.( 如 图 ) 解 决 这 个 问 题 的 操 作 步 骤 如 下 : 第 一 步 ,在 CA 上 作 出 一 点 D ,使 得 CD=CB ,连 接 BD.第 二 步 ,在 CB 上 取 一 点Y ’ ,作 Y ’ Z ’ //CA,交 BD 于点 Z ’ ,并在 AB 上取一点 A ’ ,使 Z ’ A ’=Y ’ Z ’ .第 三 步 , 过 点 A 作 AZ//A ’ Z ’ ,交BD 于点 Z.第 四 步 , 过 点 Z 作 ZY//AC ,交 BC 于点 Y ,再过 Y 作 YX//ZA ,交 AC 于点 X. 则有 AX=BY=XY.下面是该结论的部 分 证明: 证明:A Z / / A ' Z ∴∠BA ' Z ' = ∠BAZ又 ∠A'BZ'=∠ABZ. ∴△BA ' Z△BAZ∴Z ' A ' = BZ ' .ZA BZ同 理 可 得 Y ' Z ' = BZ ' . ∴ Z ' A ' = Y ' Z ' .YZBZZAYZZ ' A ' = Y ' Z ' , ∴ZA = YZ ....任务:( 1) 请 根 据 上 面 的 操 作 步 骤 及 部 分 证 明 过 程 , 判 断 四 边 形 AXYZ 的形状,并加以证 明 ; ( 2) 请 再 仔 细 阅 读 上 面 的 操.作.步.骤., 在 ( 1)的基础上完成 AX=BY=XY 的证明过程; ( 3)上 述 解 决 问 题 的 过 程 中 ,通 过 作 平 行 线 把 四 边 形BA’Z’Y’放大得到四边形 BAZY,从而确定了点 Z,Y 的位置,这里运用了下面一种图形的变化是.A.平移B.旋转C.轴对称D.位似【考点】菱形的性质与判定,图形的位似【解析】(1)答:四边形 AXYZ 是菱形.证明:Z Y/ / A C, Y X/ / Z∴A, 四边形 AXYZ 是平行四边形.ZA =YZ , ∴AXYZ 是菱形(2)答:证明: C D= C B,∴∠1 =∠2ZY / /AC , ∴∠1 =∠3.∴∠2=∠3 . ∴YB =YZ .四边形 AXYZ 是菱形,∴AX=XY=YZ.∴AX=BY=XY.(3)上述解决问题的过程中,通过作平行线把四边形 BA’Z’Y’放大得到四边形 BAZY,从而确定了点 Z,Y 的位置,这里运用了下面一种图形的变化是 D (或位似).A.平移B.旋转C.轴对称D.位似22. (本题 12 分 )综 合 与 实 践 问 题 情 境 : 在 数 学 活 动 课 上 , 老 师 出 示 了 这 样 一 个 问 题 : 如 图 1, 在 矩 形 ABCD 中, AD=2AB , E 是 AB 延 长 线 上 一 点 ,且 BE=AB ,连 接 DE ,交 BC 于点 M ,以 DE 为 一 边 在 DE 的 左 下 方 作 正 方 形 DEFG , 连接 AM . 试 判 断 线 段 AM 与 DE 的 位 置 关 系 . 探 究 展 示 : 勤 奋 小 组 发 现 , AM 垂直平分 DE ,并展示了如下的 证 明方法: 证明: B E = A B , ∴ AE = 2 A B AD = 2 A B , ∴ AD = AE 四边形 ABCD 是 矩 形 , ∴ AD / / B C . ∴EM EBDM AB=( 依 据 1 ) BE = AB , ∴1EMDM=∴ E M = DM .即 AM 是△ ADE 的 DE 边上的中线, 又 AD = AE , ∴ AM ⊥ DE . (依据 2)∴AM 垂直平分 DE .反 思 交 流 : (1)① 上 述 证 明 过 程 中 的 “ 依 据 1”“ 依 据 2”分别是指什么? ② 试 判 断 图 1 中 的 点 A 是否在线段 GF 的 垂 直 平 分 上 , 请 直 接 回 答 , 不 必 证 明 ; (2)创 新 小 组 受 到 勤 奋 小 组 的 启 发 , 继 续 进 行 探 究 , 如 图 2, 连 接 CE ,以 CE 为 一 边 在 CE 的左下 方作正方形 CEFG , 发 现 点 G 在线段 BC 的 垂 直 平 分 线 上 , 请 你 给 出 证 明 ; 探 索 发 现 :(3)如图 3,连接 CE ,以 CE 为一边在 CE 的右上方作正方形 CEFG ,可以发现点 C ,点 B 都在线段 AE 的垂直平分线上,除此之外,请观察矩形 ABCD 和正方形CEFG 的顶点与边,你还能发现哪个顶点在哪条边的垂直平分线上,请写出一个你发现的结论,并加以证明.【考点】平行线分线段成比例,三线合一,正方形、矩形性质,全等【解析】(1) 答:①依据 1:两条直线被一组平行线所截,所得的对应线段成比例(或平行线分线段成比例).依据2:等腰三角形顶角的平分线,底边上的中线及底边上的高互相重合(或等腰三角形的“三线合一”).②答:点 A 在线段 GF的垂直平分线上. (2)证明:过点 G 作 GH ⊥BC 于点 H,四边形 ABCD 是矩形,点 E 在 AB 的延长线上,∴∠CBE =∠ABC =∠GHC = 90︒. ∴∠1+∠2=90︒.四边形 CEFG 为正方形,∴CG =CE, ∠GCE =90︒.∠1+∠3 = 90︒. ∴∠2=∠3.∴△GHC ≌△CBE. ∴H C =BE.四边形 ABCD 是矩形,∴AD =BC.AD =2A B, BE =AB, ∴B C = 2BE =2HC. ∴H C =BH.∴GH 垂直平分 BC.∴点 G 在 BC 的垂直平分线上(3)答:点 F 在 BC 边的垂直平分线上(或点 F 在 AD 边的垂直平分线上).证法一:过点 F 作 FM ⊥BC 于点 M,过点 E 作 EN ⊥FM 于点 N.∴∠BMN =∠ENM =∠ENF =90︒.四边形 ABCD 是矩形,点 E 在 AB 的延长线上,∴∠CBE =∠ABC = 90︒.∴四边形 BENM 为矩形.∴B M =EN,∠BEN = 90︒. ∴∠1+∠2 =90︒.四边形 CEFG 为正方形,∴EF =EC, ∠CEF = 90︒. ∴∠2 +∠3 =90︒.∴∠1=∠3. ∠CBE =∠ENF =90︒,∴△ENF≌△EBC.∴N E =BE. ∴B M =BE.四边形 ABCD 是矩形,∴AD =BC.AD =2A B, AB =BE. ∴B C = 2BM . ∴B M =MC.∴FM 垂直平分 BC,∴点 F 在 BC 边的垂直平分线上.证法二:过 F 作 FN ⊥BE 交 BE 的延长线于点 N,连接 FB,FC.四边形 ABCD 是矩形,点 E 在 AB 的延长线上,∴∠CBE=∠ABC=∠N=90°. ∴∠1+∠3=90°.四边形 CEFG 为正方形,∴EC=EF,∠CEF=90°.∴∠1+∠2=90°. ∴∠2=∠3.∴△ENF ≅△CBE.19 / 151 ∴NF=BE,NE=BC. 四边形 ABCD 是矩形, ∴AD=BC. AD=2AB , BE=AB. ∴设 BE=a ,则 BC=EN=2a,NF=a. ∴BF=CF. ∴点 F 在 BC 边 的 垂 直 平 分 线 上 .23. (本题 13 分 )综 合 与 探 究 如图,抛物线211433y x x =--与 x 轴交于 A , B 两点(点 A 在点 B 的 左 侧 ), 与 y 轴交于点 C ,连接AC , BC .点 P 是 第 四 象 限 内 抛 物 线 上 的 一 个 动 点 ,点 P 的横坐标为 m ,过 点 P 作 PM ⊥ x 轴 ,垂 足 为点 M , PM 交 BC 于点 Q ,过点 P 作 PE ∥ AC 交 x 轴于点 E ,交 BC 于点 F . ( 1) 求 A , B , C 三点的坐标; ( 2) 试探究在点 P 的 运 动 的 过 程 中 ,是 否 存 在 这 样 的 点 Q ,使 得 以 A , C , Q 为 顶 点 的 三 角 形 是 等腰三角形 .若 存 在 , 请 直.接.写出此时点 Q 的 坐 标 ; 若 不 存 在 , 请 说明理由; ( 3) 请用含 m 的 代 数 式 表 示 线 段 QF 的长,并求出 m 为 何 值 时 QF 有最大值 .【考点】 几 何 与 二 次 函 数 综 合【解析】( 1) 解: 由 y = 0 ,得2114=033x x --解得 x 1 = -3 , x 2 = 4 . ∴ 点 A , B 的坐标分别为 A(-3,0), B ( 4, 0) 由 x = 0 ,得 y = -4 .∴ 点 C 的 坐 标 为 C ( 0, -4) . ( 2) 答: Q (5 2 ,5 220 / 15 22 - 4) , Q (1,-3) . 2 ( 3) 过点F作FG⊥PQ于点 G .则 FG ∥x 轴 . 由 B ( 4, 0), C ( 0, -4),得△O B C 为 等 腰 直 角 三 角 形 . ∴ ∠OBC = ∠QFG = 45︒ . ∴ GQ = FGFQ . PE ∥AC , ∴ ∠1 = ∠2 .FG ∥x 轴,∴ ∠2 = ∠3 . ∴ ∠1 = ∠3 . ∠FGP = ∠AOC = 90︒ , ∴ △FGP ∽△AOC .。

【最新】2018年山西省中考数学模拟试题及答案-word范文模板 (26页)

【最新】2018年山西省中考数学模拟试题及答案-word范文模板 (26页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==2018年山西省中考数学模拟试题及答案模考的重要性我们再怎么强调都不为过。

根据实际数据显示,一般学生想要达到理想成绩,平均要参加3-4次模拟考试。

参加模考,可以提前体验考试氛围,减弱考试紧张情绪。

以下是小编给你带来的最新模拟试题,希望能帮到你哈。

2018年山西省中考数学模拟试题一、选择题(共10小题,每小题3分,共30分)1.(3分)(201X•山西)计算﹣2+3的结果是( )A. 1B. ﹣1C. ﹣5D. ﹣62.(3分)(201X•山西)如图,直线AB、CD被直线EF所截,AB∥CD,∠1=110°,则∠2等于( )A. 65°B. 70°C. 75°D. 80°3.(3分)(201X•山西)下列运算正确的是( )A. 3a2+5a2=8a4B. a6•a2=a12C. (a+b)2=a2+b2D. (a2+1)0=14.(3分)(201X•山西)如图是我国古代数学家赵爽在为《周髀算经》作注解时给出的“弦图”,它解决的数学问题是( )A. 黄金分割B. 垂径定理C. 勾股定理D. 正弦定理5.(3分)(201X•山西)如图是由三个小正方体叠成的一个几何体,它的左视图是( )A. B. C. D.6.(3分)(201X•山西)我们学习了一次函数、二次函数和反比例函数,回顾学习过程,都是按照列表、描点、连线得到函数的图象,然后根据函数的图象研究函数的性质,这种研究方法主要体现的数学思想是( )A. 演绎B. 数形结合C. 抽象D. 公理化7.(3分)(201X•山西)在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是( )A. 频率就是概率B. 频率与试验次数无关C. 概率是随机的,与频率无关D. 随着试验次数的增加,频率一般会越来越接近概率8.(3分)(201X•山西)如图,⊙O是△ABC的外接圆,连接OA、OB,∠OBA=50°,则∠C的度数为( )A. 30°B. 40°C. 50°D. 80°9.(3分)(201X•山西)PM2.5 是指大气中直径小于或等于2.5μm(1μm=0.000001m)的颗粒物,也称为可入肺颗粒物,它们含有大量的有毒、有害物质,对人体健康和大气环境质量有很大危害.2.5μm用科学记数法可表示为( )A. 2.5×10﹣5mB. 0.25×10﹣7mC. 2.5×10﹣6mD. 25×10﹣5m10.(3分)(201X•山西)如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的变长为a,则重叠部分四边形EMCN的面积为( )A. a2B. a2C. a2D. a2二、填空题(共6小题,每小题3分,共18分)11.(3分)(201X•山西)计算:3a2b3•2a2b=_________ .12.(3分)(201X•山西)化简 + 的结果是_________ .13.(3分)(201X•山西)如图,已知一次函数y=kx﹣4的图象与x轴、y轴分别交于A、B两点,与反比例函数y= 在第一象限内的图象交于点C,且A为BC的中点,则k= _________ .14.(3分)(201X•山西)甲、乙、丙三位同学打乒乓球,想通过“手心手背”游戏来决定其中哪两个人先打,规则如下:三个人同时各用一只手随机出示手心或手背,若只有两个人手势相同(都是手心或都是手背),则这两人先打,若三人手势相同,则重新决定.那么通过一次“手心手背”游戏能决定甲打乒乓球的概率是_________ .15.(3分)(201X•山西)一走廊拐角的横截面积如图,已知AB⊥BC,AB∥DE,BC∥FG,且两组平行墙壁间的走廊宽度都是1m,的圆心为O,半径为1m,且∠EOF=90°,DE、FG分别与⊙O相切于E、F两点.若水平放置的木棒MN的两个端点M、N分别在AB和BC上,且MN与⊙O相切于点P,P是的中点,则木棒MN的长度为_________ m.16.(3分)(201X•山西)如图,在△ABC中,∠BAC=30°,AB=AC,AD是BC边上的中线,∠ACE= ∠BAC,CE交AB于点E,交AD于点F.若BC=2,则EF的长为_________ .三、解答题(共8小题,共72分)17.(10分)(201X•山西)(1)计算:(﹣2)2•sin60°﹣( )﹣1× ;(2)分解因式:(x﹣1)(x﹣3)+1.18.(6分)(201X•山西)解不等式组并求出它的正整数解: .19.(6分)(201X•山西)阅读以下材料,并按要求完成相应的任务.几何中,平行四边形、矩形、菱形、正方形和等腰梯形都是特殊的四边形,大家对于它们的性质都非常熟悉,生活中还有一种特殊的四边形﹣﹣筝形.所谓筝形,它的形状与我们生活中风筝的骨架相似.定义:两组邻边分别相等的四边形,称之为筝形,如图,四边形ABCD是筝形,其中AB=AD,CB=CD判定:①两组邻边分别相等的四边形是筝形②有一条对角线垂直平分另一条对角线的四边形是筝形显然,菱形是特殊的筝形,就一般筝形而言,它与菱形有许多相同点和不同点如果只研究一般的筝形(不包括菱形),请根据以上材料完成下列任务:(1)请说出筝形和菱形的相同点和不同点各两条;(2)请仿照图1的画法,在图2所示的8×8网格中重新设计一个由四个全等的筝形和四个全等的菱形组成的新图案,具体要求如下:①顶点都在格点上;②所涉及的图案既是轴对称图形又是中心对称图形;③将新图案中的四个筝形都图上阴影(建议用一系列平行斜线表示阴影).20.(10分)(201X•山西)某公司招聘人才,对应聘者分别进行阅读能力、思维能力和表达能力三项测试,其中甲、乙两人的成绩如下表(单位:分):项目人员阅读思维表达甲 93 86 73乙 95 81 79(1)若根据三项测试的平均成绩在甲、乙两人中录用一人,那么谁将能被录用?(2)根据实际需要,公司将阅读、思维和表达能力三项测试得分按3:5:2的比确定每人的最后成绩,若按此成绩在甲、乙两人中录用一人,谁将被录用?(3)公司按照(2)中的成绩计算方法,将每位应聘者的最后成绩绘制成如图所示的频数分布直方图(每组分数段均包含左端数值,不包含右端数值,如最右边一组分数x为:85≤x<90),并决定由高分到低分录用8名员工,甲、乙两人能否被录用?请说明理由,并求出本次招聘人才的录用率.21.(7分)(201X•山西)如图,点A、B、C表示某旅游景区三个缆车站的位置,线段AB、BC表示连接缆车站的钢缆,已知A、B、C三点在同一铅直平面内,它们的海拔高度AA′,BB′,CC′分别为110米、310米、710米,钢缆AB的坡度i1=1:2,钢缆BC的坡度i2=1:1,景区因改造缆车线路,需要从A到C直线架设一条钢缆,那么钢缆AC的长度是多少米?(注:坡度:是指坡面的铅直高度与水平宽度的比)22.(9分)(201X•山西)某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了2201X米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少米2?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?23.(11分)(201X•山西)课程学习:正方形折纸中的数学.动手操作:如图1,四边形ABCD是一张正方形纸片,先将正方形ABCD对折,使BC与AD重合,折痕为EF,把这个正方形展平,然后沿直线CG折叠,使B点落在EF上,对应点为B′.数学思考:(1)求∠CB′F的度数;(2)如图2,在图1的基础上,连接AB′,试判断∠B′AE与∠GCB′的大小关系,并说明理由;解决问题:(3)如图3,按以下步骤进行操作:第一步:先将正方形ABCD对折,使BC与AD重合,折痕为EF,把这个正方形展平,然后继续对折,使AB与DC重合,折痕为MN,再把这个正方形展平,设EF和MN相交于点O;第二步:沿直线CG折叠,使B点落在EF上,对应点为B′,再沿直线AH折叠,使D点落在EF上,对应点为D′;第三步:设CG、AH分别与MN相交于点P、Q,连接B′P、PD′、D′Q、QB′,试判断四边形B′PD′Q的形状,并证明你的结论.24.(13分)(201X•山西)综合与探究:如图,在平面直角坐标系xOy中,四边形OABC是平行四边形,A、C两点的坐标分别为(4,0),(﹣2,3),抛物线W 经过O、A、C三点,D是抛物线W的顶点.(1)求抛物线W的解析式及顶点D的坐标;(2)将抛物线W和▱OABC一起先向右平移4个单位后,再向下平移m(0(3)在(2)的条件下,当S取最大值时,设此时抛物线W′的顶点为F,若点M是x轴上的动点,点N时抛物线W′上的动点,试判断是否存在这样的点M和点N,使得以D、F、M、N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.2018年山西省中考数学模拟试题答案一、选择题(共10小题,每小题3分,共30分)1.(3分)(201X•山西)计算﹣2+3的结果是( )A. 1B. ﹣1C. ﹣5D. ﹣6考点:有理数的加法.分析:根据异号两数相加的法则进行计算即可.解答:解:因为﹣2,3异号,且|﹣2|<|3|,所以﹣2+3=1.故选A.点评:本题主要考查了异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值.2.(3分)(201X•山西)如图,直线AB、CD被直线EF所截,AB∥CD,∠1=110°,则∠2等于( )A. 65°B. 70°C. 75°D. 80°考点:平行线的性质.分析:根据“两直线平行,同旁内角互补”和“对顶角相等”来求∠2的度数.解答:解:如图,∵AB∥CD,∠1=110°,∴∠1+∠3=180°,即100+∠3=180°,∴∠3=70°,∴∠2=∠3=70°.故选:B.点评:本题考查了平行线的性质.总结:平行线性质定理定理1:两条平行线被第三条直线所截,同位角相等. 简单说成:两直线平行,同位角相等.定理2:两条平行线被地三条直线所截,同旁内角互补..简单说成:两直线平行,同旁内角互补.定理3:两条平行线被第三条直线所截,内错角相等. 简单说成:两直线平行,内错角相等.3.(3分)(201X•山西)下列运算正确的是( )A. 3a2+5a2=8a4B. a6•a2=a12C. (a+b)2=a2+b2D. (a2+1)0=1考点:完全平方公式;合并同类项;同底数幂的乘法;零指数幂.专题:计算题.分析: A、原式合并同类项得到结果,即可做出判断;B、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;C、原式利用完全平方公式展开得到结果,即可做出判断;D、原式利用零指数幂法则计算得到结果,即可做出判断.解答:解:A、原式=8a2,故选项错误;B、原式=a8,故选项错误;C、原式=a2+b2+2ab,故选项错误;D、原式=1,故选项正确.故选D.点评:此题考查了完全平方公式,合并同类项,同底数幂的乘法,以及零指数幂,熟练掌握公式及法则是解本题的关键.4.(3分)(201X•山西)如图是我国古代数学家赵爽在为《周髀算经》作注解时给出的“弦图”,它解决的数学问题是( )A. 黄金分割B. 垂径定理C. 勾股定理D. 正弦定理考点:勾股定理的证明.分析:“弦图”,说明了直角三角形的三边之间的关系,解决了勾股定理的证明.解答:解:“弦图”,说明了直角三角形的三边之间的关系,解决的问题是:勾股定理.故选C.点评:本题考查了勾股定理的证明,勾股定理证明的方法最常用的思路是利用面积证明.5.(3分)(201X•山西)如图是由三个小正方体叠成的一个几何体,它的左视图是( )A. B. C. D.考点:简单组合体的三视图.分析:根据从左边看得到的图形是左视图,可得答案.解答:解:从左边看第一层一个正方形,第二层一个正方形,故选:C.点评:本题考查了简单组合体的三视图,从左边看得到的图形是左视图.6.(3分)(201X•山西)我们学习了一次函数、二次函数和反比例函数,回顾学习过程,都是按照列表、描点、连线得到函数的图象,然后根据函数的图象研究函数的性质,这种研究方法主要体现的数学思想是( )A. 演绎B. 数形结合C. 抽象D. 公理化考点:二次函数的性质;一次函数的性质;反比例函数的性质.专题:数形结合.分析:从函数解析式到函数图象,再利用函数图象研究函数的性质正是数形结合的数学思想的体现.解答:解:学习了一次函数、二次函数和反比例函数,都是按照列表、描点、连线得到函数的图象,然后根据函数的图象研究函数的性质,这种研究方法主要体现了数形结合的数学思想.故选B.点评:本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣, ),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣,时,y取得最小值,即顶点是抛物线的最低点;当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.7.(3分)(201X•山西)在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是( )A. 频率就是概率B . 频率与试验次数无关C. 概率是随机的,与频率无关D. 随着试验次数的增加,频率一般会越来越接近概率考点:利用频率估计概率.分析:根据大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率解答.解答:解:∵大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率,∴A、B、C错误,D正确.故选D.点评:本题考查了利用频率估计概率的知识,大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率.8.(3分)(201X•山西)如图,⊙O是△ABC的外接圆,连接OA、OB,∠OBA=50°,则∠C的度数为( )A. 30°B. 40°C. 50°D. 80°考点:圆周角定理.分析:根据三角形的内角和定理求得∠AOB的度数,再进一步根据圆周角定理求解.解答:解:∵OA=OB,∠OBA=50°,∴∠OAB=∠OBA=50°,∴∠AOB=180°﹣50°×2=80°,∴∠C= ∠AOB=40°.故选:B.点评:此题综合运用了三角形的内角和定理以及圆周角定理.一条弧所对的圆周角等于它所对的圆心角的一半.9.(3分)(201X•山西)PM2.5是指大气中直径小于或等于2.5μm(1μm=0.000001m)的颗粒物,也称为可入肺颗粒物,它们含有大量的有毒、有害物质,对人体健康和大气环境质量有很大危害.2.5μm用科学记数法可表示为( )A. 2.5×10﹣5mB. 0.25×10﹣7mC. 2.5×10﹣6mD. 25×10﹣5m考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:2.5μm×0.000001m=2.5×10﹣6m;故选:C.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.10.(3分)(201X•山西)如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的变长为a,则重叠部分四边形EMCN的面积为( )A. a2B. a2C. a2D. a2考点:全等三角形的判定与性质;正方形的性质.分析:作EM⊥BC 于点M,EQ⊥CD于点Q,△EPM≌△EQN,利用四边形EMCN的面积等于正方形MCQE的面积求解.解答:解:作EM⊥BC于点M,EQ⊥CD于点Q,∵四边形ABCD是正方形,∴∠BCD=90°,又∵∠EPM=∠EQN=90°,∴∠PEQ=90°,∴∠PEM+∠MEQ=90°,∵三角形FEG是直角三角形,∴∠NEF=∠NEQ+∠MEQ=90°,∴∠PEM=∠NEQ,∵AC是∠BCD的角平分线,∠EPC=∠EQC=90°,∴EP=EN,四边形MCQE是正方形,在△EPM和△EQN中,,∴△EPM≌△EQN(ASA)∴S△EQN=S△EPM,∴四边形EMCN的面积等于正方形MCQE的面积,∵正方形ABCD的边长为a,∴AC= a,∵EC=2AE,∴EC= a,∴EP=PC= a,∴正方形MCQE的面积= a× a= a2,∴四边形EMCN的面积= a2,故选:D.点评:本题主要考查了正方形的性质及全等三角形的判定及性质,解题的关键是作出辅助线,证出△EPM≌△EQN.二、填空题(共6小题,每小题3分,共18分)11.(3分)(201X•山西)计算:3a2b3•2a2b=6a4b4 .考点:单项式乘单项式.分析:根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.解答:解:3a2b3•2a2b=(3×2)×(a2•a2)(b3•b)=6a4b4.故答案为:6a4b4.点评:此题考查了单项式乘以单项式,熟练掌握运算法则是解本题的关键.12.(3分)(201X•山西)化简 + 的结果是.考点:分式的加减法.专题:计算题.分析:原式通分并利用同分母分式的加法法则计算即可得到结果.解答:解:原式= + = = .故答案为:点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.13.(3分)(201X•山西)如图,已知一次函数y=kx﹣4的图象与x轴、y轴分别交于A、B两点,与反比例函数y= 在第一象限内的图象交于点C,且A为BC的中点,则k= 4 .考点:反比例函数与一次函数的交点问题.专题:计算题.分析:先确定B点坐标,根据A为BC的中点,则点C和点B关于点A中心对称,所以C点的纵坐标为4,再利用反比例函数图象上点的坐标特征可确定C点坐标,然后把C点坐标代入y=kx﹣4即可得到k的值.解答:解:把y=0代入y=kx﹣4得y=﹣4,则B点坐标为(0,﹣4),∵A为BC的中点,∴C点的纵坐标为4,把y=4代入y= 得x=2,∴C点坐标为(2,4),把C(2,4)代入y=kx﹣4得2k﹣4=4,解得k=4.故答案为4.点评:本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.14.(3分)(201X•山西)甲、乙、丙三位同学打乒乓球,想通过“手心手背”游戏来决定其中哪两个人先打,规则如下:三个人同时各用一只手随机出示手心或手背,若只有两个人手势相同(都是手心或都是手背),则这两人先打,若三人手势相同,则重新决定.那么通过一次“手心手背”游戏能决定甲打乒乓球的概率是.考点:列表法与树状图法.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与通过一次“手心手背”游戏能决定甲打乒乓球的情况,再利用概率公式即可求得答案.解答:解:分别用A,B表示手心,手背.画树状图得:∵共有8种等可能的结果,通过一次“手心手背”游戏能决定甲打乒乓球的有4种情况,∴通过一次“手心手背”游戏能决定甲打乒乓球的概率是: = .故答案为: .点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.15.(3分)(201X•山西)一走廊拐角的横截面积如图,已知AB⊥BC,AB∥DE,BC∥FG,且两组平行墙壁间的走廊宽度都是1m,的圆心为O,半径为1m,且∠EOF=90°,DE、FG分别与⊙O相切于E、F两点.若水平放置的木棒MN的两个端点M、N分别在AB和BC上,且MN与⊙O相切于点P,P是的中点,则木棒MN的长度为(4 ﹣2) m.考点:切线的性质.专题:应用题.分析:连接OB,延长OF,OE分别交BC于H,交AB于G,证得四边形BGOH是正方形,然后证得OB经过点P,根据勾股定理切点OB的长,因为半径OP=1,所以BP=2 ﹣1,然后求得△BPM≌△BPN得出P是MN的中点,最后根据直角三角形斜边上的中线等于斜边的一半即可求得.解答:解:连接OB,延长OF,OE分别交BC于H,交AB于G,∵DE、FG分别与⊙O相切于E、F两点,∴OE⊥ED,OF⊥FG,∵AB∥DE,BC∥FG,∴OG⊥AB,OH⊥BC,∵∠EOF=90°,∴四边形BGOH是矩形,∵两组平行墙壁间的走廊宽度都是1m,⊙O半径为1m,∴OG=OH=2,∴矩形BGOH是正方形,∴∠BOG=∠BOH=45°,∵P是的中点,∴OB经过P点,在正方形BGOH中,边长=2,∴OB=2 ,∵OP=1,∴BP=2 ﹣1,∵p是MN与⊙O的切点,∴OB⊥MN,∵OB是正方形BGOH的对角线,∴∠OBG=∠OBH=45°,在△BPM与△BPN中∴△BPM≌△BPN(ASA)∴MP=NP,∴MN=2BP,∵BP=2 ﹣1,∴MN=2(2 ﹣1)=4 ﹣2,点评:本题考查了圆的切线的性质,正方形的判定和性质,全等三角形的判定和性质以及勾股定理的应用,O、P、B三点共线是本题的关键.16.(3分)(201X•山西)如图,在△ABC中,∠BAC=30°,AB=AC,AD是BC边上的中线,∠ACE= ∠BAC,CE交AB于点E,交AD于点F.若BC=2,则EF的长为﹣1 .考点:勾股定理;等腰三角形的性质;含30度角的直角三角形;等腰直角三角形.分析:过F点作FG∥BC.根据等腰三角形的性质和三角形内角和定理可得AF=CF,在Rt△CDF中,根据三角函数可得AF=CF=2,DF= ,根据平行线分线段成比例可得比例式GF:BD=AF:AD,求得GF=4﹣2 ,再根据平行线分线段成比例可得比例式EF:EC=GF:BC,依此即可得到EF= ﹣1.解答:解:过F点作FG∥BC.∵在△ABC中,AB=AC,AD是BC边上的中线,∴BD=CD= BC=1,∠BAD=∠CAD= ∠BAC=15°,AD⊥BC,∵∠ACE= ∠BAC,∴∠CAD=∠ACE=15°,∴AF=CF,∵∠ACD=(180°﹣30°)÷2=75°,∴∠DCE=75°﹣15°=60°,在Rt△CDF中,AF=CF= =2,DF=CD•tan60°= ,∵FG∥BC,∴GF:BD=AF:AD,即GF:1=2:(2+ ),解得GF=4﹣2 ,∴EF:EC=GF:BC,即EF:(EF+2)=(4﹣2 ):2,解得EF= ﹣1.故答案为:﹣1.点评:综合考查了等腰三角形的性质,三角形内角和定理可得,三角函数,平行线分线段成比例,以及方程思想,本题的难点是作出辅助线,寻找解题的途径.三、解答题(共8小题,共72分)17.(10分)(201X•山西)(1)计算:(﹣2)2•sin60°﹣( )﹣1× ;(2)分解因式:(x﹣1)(x﹣3)+1.考点:实数的运算;因式分解-运用公式法;负整数指数幂;特殊角的三角函数值.分析: (1)本题涉及零指数幂、乘方、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果;(2)根据整式的乘法,可得多项式,根据因式分解的方法,可得答案.解答:解:(1)原式=2 ﹣2×=﹣2 ;(2)原式=x2﹣4x+3+1=(x﹣2)2.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.(6分)(201X•山西)解不等式组并求出它的正整数解: .考点:解一元一次不等式组;一元一次不等式组的整数解.分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.解答:解:解①得:x>﹣,解②得:x≤2,则不等式组的解集是:﹣则正整数解是:1,2点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.19.(6分)(201X•山西)阅读以下材料,并按要求完成相应的任务.几何中,平行四边形、矩形、菱形、正方形和等腰梯形都是特殊的四边形,大家对于它们的性质都非常熟悉,生活中还有一种特殊的四边形﹣﹣筝形.所谓筝形,它的形状与我们生活中风筝的骨架相似.定义:两组邻边分别相等的四边形,称之为筝形,如图,四边形ABCD是筝形,其中AB=AD,CB=CD判定:①两组邻边分别相等的四边形是筝形②有一条对角线垂直平分另一条对角线的四边形是筝形显然,菱形是特殊的筝形,就一般筝形而言,它与菱形有许多相同点和不同点如果只研究一般的筝形(不包括菱形),请根据以上材料完成下列任务:如果只研究一般的筝形(不包括菱形),请根据以上材料完成下列任务:(1)请说出筝形和菱形的相同点和不同点各两条;(2)请仿照图1的画法,在图2所示的8×8网格中重新设计一个由四个全等的筝形和四个全等的菱形组成的新图案,具体要求如下:①顶点都在格点上;②所涉及的图案既是轴对称图形又是中心对称图形;③将新图案中的四个筝形都图上阴影(建议用一系列平行斜线表示阴影).考点:利用旋转设计图案;菱形的性质;利用轴对称设计图案.分析: (1)利用菱形的性质以及结合图形得出筝形的性质分别得出异同点即可;(2)利用轴对称图形和中心对称图形的定义结合题意得出答案.解答:解:(1)相同点:①两组邻边分别相等;②有一组对角相等;③一条对角线垂直平分另一条对角线;④一条对角线平分一组对角;⑤都是轴对称图形;⑥面积等于对角线乘积的一半;不同点:①菱形的对角线互相平分,筝形的对角线不互相平分;②菱形的四边都相等,筝形只有两组邻边分别相等;③菱形的两组对边分别平行,筝形的对边不平行;④菱形的两组对角分别相等,筝形只有一组对角相等;⑤菱形的邻角互补,筝形的邻角不互补;⑥菱形的既是轴对称图形又是中心对称图形,筝形是轴对称图形不是中心对称图形;(2)如图所示:.点评:此题主要考查了利用旋转设计图案,借助网格得出符合题意的图形是解题关键.20.(10分)(201X•山西)某公司招聘人才,对应聘者分别进行阅读能力、思维能力和表达能力三项测试,其中甲、乙两人的成绩如下表(单位:分):项目人员阅读思维表达甲 93 86 73乙 95 81 79(1)若根据三项测试的平均成绩在甲、乙两人中录用一人,那么谁将能被录用?(2)根据实际需要,公司将阅读、思维和表达能力三项测试得分按3:5:2的比确定每人的最后成绩,若按此成绩在甲、乙两人中录用一人,谁将被录用?(3)公司按照(2)中的成绩计算方法,将每位应聘者的最后成绩绘制成如图所示的频数分布直方图(每组分数段均包含左端数值,不包含右端数值,如最右边一组分数x为:85≤x<90),并决定由高分到低分录用8名员工,甲、乙两人能否被录用?请说明理由,并求出本次招聘人才的录用率.考点:频数(率)分布直方图;算术平均数;加权平均数.分析: (1)根据平均数的计算公式分别进行计算即可;(2)根据加权平均数的计算公式分别进行解答即可;。

2018年5月份山西省晋中市中考适应性考试数学试题

2018年5月份山西省晋中市中考适应性考试数学试题

2018年晋中市中考模拟数学试题答案一、选择题二、填空题(共15分)11、X 2y 612、x >3 13、第一象限 14、2或10 15、27 三、解答题(共75分) 16、(本题10分) (1)=6×32-33+1+4 -----------------(4分) =5 -------------------(5分) (2)先化简,再求值:24()44a a aa -÷+--,其中+2. 原式=224244()4444a a a a a a a a a ---+÷+=÷----2244(2)a a a a --=⨯--12a =-.-------3分 当2+时,原式中的各个分母都不为0, 所以原式12a ====------------------------------5分17、(本题6分)将2份“爱国”分别记为A 、B ,2份“诚信”分别记为C 、D,根据题意列表如下:……(3分)由上表可知,共有12种结果,且每种结果出现的可能性相同,以“爱国”为主题的征文同时被抽中的结果有2种,所以P (以“爱国”主题的征文同时被抽中)=61……(6分)。

18、(本题6分)①C(2分)②解:连接OD∵Rt△ABC中,AC=3,AB=5,根据勾股定理得BC=4, ---------------(3分)∴sinB=错误!未找到引用源。

=错误!未找到引用源。

----------------(4分)由题意可知,AB是⊙O的切线∴∠ODB=90º,设⊙O的半径为r,则 OB=4-r错误!未找到引用源。

=错误!未找到引用源。

r=错误!未找到引用源。

--------------------(5分)在Rt△ACO中,根据勾股定AO 错误!未找到引用源。

= 35 2答:AO为352----------------(6分)19、(本题10分)(1)34.2-----------------(3分)(2)如图:C过点C 作CG ⊥DB ,垂足为G由(1)可知,CG=34.2 ------------------(4分) ∵BD ∥AF ∠BAF=35°∴∠DBC=35° --------------------(5分) 在中∠BCG=90°-∠DBC=90°-35°=55° ----------------------(6分) 又∵∠DCB=85°∴∠DCG=85°-55°=30° ----------------------------------(7分) 在中cos30°=23即CD CG =23 ∴CD=22.83(cm ) —— --------------(9分)答:支架CD 的长度应该调节为38.22cm --------------(10分)20.(本题9分)设该区从2015年至2017年完成煤改电户数的年平均增长率为x--------(1分) 由题意得:7500(1+x )2=10800 -----------------------------------------(2分) 即(1+x )2=1.44解得:x 1=0.2 x 2=-2.2(舍去) --------------------(3分)答:该区从2015年至2017年完成煤改电户数的年平均增长率为20%。

真题】2018年山西省中考数学试卷含答案解析(Word版)

真题】2018年山西省中考数学试卷含答案解析(Word版)

真题】2018年山西省中考数学试卷含答案解析(Word版)2018年山西省中考数学试卷(解析版)第I卷选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分,在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.下面有理数比较大小,正确的是()A。

<-2B。

-5<3C。

-2<-3D。

1<-4答案】B考点】有理数比较大小2.“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果。

下列四部著作中,不属于我国古代数学著作的是()A。

《九章算术》B。

《几何原本》C。

《海岛算经》D。

《周髀算经》答案】B考点】数学文化解析】《几何原本》的作者是___。

3.下列运算正确的是()A。

-a3= a6B。

(b2/b3)- (b6/b2)=-b2/b3C。

2a2×a3=2a6D。

2a/a=2答案】D考点】整式运算4.下列一元二次方程中,没有实数根的是()A。

x2-2x=0B。

x2+4x-1=0C。

2x2-4x+3=0D。

3x2=5x-2答案】C考点】一元二次方程根的判别式解析】△>0,有两个不相等的实数根;△=0,有两个相等的实数根;△<0,没有实数根。

A.△=4,B.△=20,C.△=-8,D.△=1.5.近年来快递业发展迅速,下表是2018年1-3月份我省部分地市邮政快递业务量的统计结果(单位:万件)太原市 3303.78大同市 332.68长治市 302.34晋中市 319.79运城市 725.86临汾市 416.01吕梁市 338.871-3月份我省这七个地市邮政快递业务量的中位数是()A。

319.79万件B。

332.68万件C。

338.87万件D。

416.01万件答案】C考点】数据的分析解析】将表格中七个数据从小到大排列,第四个数据为中位数,即338.87万件。

6.黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西45千米处,是黄河上最具气势的自然景观,其落差约30米,年平均流量1010立方米/秒。

2018年山西省中考预测考试数学试卷及参考答案

2018年山西省中考预测考试数学试卷及参考答案

2018年山西省初中升学考试终极预测试题(卷)数 学 试 卷考生须知:1.本试卷分为第I 卷和第II 卷两部分,考试时间为120分钟。

2.答选择题前,考生务必将自己的姓名、考号、考试科目涂写在答题卡上,考试结束后,试题和答题卡一并收回,每题选出答案后,必须用2B 铅笔把答题卡上对应的答案标号【ABCD 】涂黑,若需改动,先用橡皮擦干净,再改涂其他答案,答在试卷上无效。

第I 卷 选择题(共20分)一.选择题(在每小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡将该项涂黑,本大题共10个小题,每小题2分,共20分)1.16的算术平方根是 ( )A . 4±B .4C .4-D .8 2.下列运算正确的是( ) A .632a a a ÷= B .22()ab ab = C .329()a a =D .532a a a =⋅3.在ABC △中,︒=∠90C ,2=AB ,1=BC ,那么B cos 的值是( )A .21B .22C .23D .34.已知⊙O 1的半径r 为3cm ,⊙O 2的半径R 为4cm ,圆心距O 1O 2为5cm ,则这两圆的位置关系是( )A .内切B .内含C .相交D .外切5.下列图形是几家通讯公司的标志,其中既是轴对称图形又是中心对称图形的是( )6.某物体的三个视图如图所示,该物体的直观图是 ( )7.若关于x 一元二次方程0162=++-k x x 有两个相等的实数根,则k 的值为( ) A. 8 B. 9C.12 D . 368.如图,已知扇形OBC ,OAD 的半径之间的关系是12OB OA =, 则⌒BC 的长是⌒AD 长的 ( ) A .14倍 B .12倍 C .2倍D .4倍9.我市某一周的最高气温统计如下表:则这组数据的中位数与众数分别是( ) A . 26.5,27 B .27.5,28C . 28,27D .27,2810.如图,把正△ABC 的外接圆对折,使点A 与劣弧BC⌒ 的中点M 重合,折痕分别交AB 、AC 于D 、E ,若BC=5,则线段DE 的长为 ()A .52B . 103C .D .A .B .C .D .OCBAD第8题图学 校 姓 名 学 号 考试日期密 封 线 内 请 不 要 答 卷……………………………………………………………………………………………………………………………………………………………………………第II 卷 非选择题(共100分)二.填空题(本大题共8小题,每小题3分,共24分,把答案填在题中横线上)11.使xx 1-有意义的x 的取值范围是 . 12.长城总长约为6700010米,用科学记数法表示为 (保留两个有效数字).13.因式分解:1232-y = .14.请你写出一个有一根为1的一元二次方程: .15.请你写出一个图象在第一、三象限的反比例函数 .16.一次函数1y x =-+与反比例函数2y=-,x 与y 的对应值如下表:不等式1x -+>-x2的解为 . 17.如图,在等腰梯形ABCD 中,AD BC ∥,BC =4AD =B ∠=45°.直角三角板含45°角的顶点E 在边BC 上移动,一直角边始终经过点A ,斜边与CD 交于点F .若ABE △为等腰三角形,则CF 的长等于 .18.如图,把一张长方形纸条ABCD 沿EF 折叠,若158∠=,则AEG ∠= .三.解答题(本大题共8小题,共76分,解答应写出必要的文字说明、证明过程或演算步骤.)19.(每小题5分,共10分)(1)计算:()123121-⎪⎭⎫ ⎝⎛+--.(2)请你先化简2)1(111-÷⎪⎭⎫⎝⎛--+xx x x x ,再从0,2- , 2,1中选择一个合适的数代入,求出这个代数式的值.20.(本题满分6分)如图,斜坡AC 的坡度(坡比)为1:3,AC =10米.坡顶有一旗杆BC ,旗杆顶端B 点与A 点有一条彩带AB 相连,AB =14米.试求旗杆BC 的高度.第18题A第17题密 封 线 内 请 不 要 答 卷ABCD21.(本小题8分)已知图中的曲线是反比例函数5m y x-=(m 为常数)图象的一支. (Ⅰ)这个反比例函数图象的另一支在第几象限?常数m 的取值范围是什么?(Ⅱ)若该函数的图象与正比例函数2y x =的图象在第一象内限的交点为A ,过A 点作x 轴的垂线,垂足为B ,当OAB △的面积为4时,求点A 的坐标及反比例函数的解析式.母亲节过后,某校在本校学生中做了一次抽样调查,并把调查结果分为三种类型:A .不知道哪一天是母亲节的;B .知道但没有任何行动的;C .知道并问候母亲的.下图是根据调查结果绘制的统计图(部分).(1)已知A 类学生占被调查学生人数的30%,则被调查学生有多少人? (2)计算B 类学生的人数并根据计算结果补全统计图;(3)如果该校共有学生2000人,试估计这个学校学生中有多少人知道母亲节并问候了母亲.23.(满分8分)如图,已知AB 是⊙O 的直径,点C 是⊙O 上一点,连结BC ,AC ,过点C 作直线CD ⊥AB 于点D ,点E 是AB 上一点,直线CE 交⊙O 于点F ,连结BF ,与直线CD 交于点G .求证:BF BG BC ⋅=2某文化用品商店用200元购进一批学生书包,面市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6300元。

山西省晋中市数学中考模拟试卷(3月)

山西省晋中市数学中考模拟试卷(3月)

山西省晋中市数学中考模拟试卷(3月)姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)(2018·肇庆模拟) 的相反数是()A .B .C .D . 52. (2分)下列图中不是正方体展开图的是()A .B .C .D .3. (2分) (2019九下·南关月考) 长春市农博产业园占地2150000平方米,数字2150000用科学记数法表示为()A . 21.5×105B . 2.15×105C . 2.15×106D . 0.215×1074. (2分) (2019九上·宁波月考) “明年的12月4日是晴天”这个事件是()A . 确定事件B . 不可能事件C . 必然事件D . 不确定事件5. (2分) (2018七下·越秀期中) 下列命题不成立的是()A . 等角的补角相等B . 两直线平行,内错角相等C . 同位角相等D . 对顶角相等6. (2分) (2018八上·韶关期末) 下列计算中,正确的个数有()①3x3·(-2x2)=-6x5 ②4a3b÷(-2a2b)=-2a③(a3)2=a5④(-a)3÷(-a)=-a2A . 1个B . 2个C . 3个D . 4个7. (2分)如图,将矩形纸片ABCD沿EF折叠,使点B与CD的中点重合,若AB=2,BC=3,则△FCB′与△B′DG 的面积之比为()A . 9:4B . 3:2C . 4:3D . 16:98. (2分)(2019·香洲模拟) 如图,平行四边形AOBC中,∠AOB=60°,AO=8,AC=15,反比例函数y=(x>0)图象经过点A,与BC交于点D,则的值为()A .B .C .D .二、填空题 (共7题;共7分)9. (1分)(2020·海南模拟) 因式分解: ________.10. (1分)若数据2,3,-1,7,x的平均数为2,则x=________.11. (1分)四边形ABCD中,AB∥DC,AB=DC.要想该四边形成为矩形,只需再加上一个条件是________12. (1分) (2018八下·深圳期中) 已知关于x的不等式组有且只有三个整数解,则a 的取值范围是________13. (1分) (2019九上·东台月考) 若菱形的两条对角线长分别是方程的两实根,则菱形的面积为________.14. (1分) (2019七上·萧山月考) 从大拇指开始,按照大拇指→食指→中指→无名指→小指→无名指→中指→食指→大拇指→食指……的顺序,依次数整数1、2、3、4、5,6、7、…,当数到4019时对应的手指为________;当第n次数到无名指时,数到的数是________(用含n的代数式表示).15. (1分)(2017·兴化模拟) 在矩形ABCD中,AB=4,BC=3,点P在边AB上.若将△DAP沿DP折叠,使点A落在矩形ABCD的对角线上,则AP的长为________.三、解答题 (共11题;共117分)16. (5分) (2017七下·平谷期末) 列方程组解应用题新年联欢会上,同学们组织了猜谜活动,并采取每答对一题得分,每答错一题扣分记分方法。

山西省晋中市中考数学预测卷

山西省晋中市中考数学预测卷

山西省晋中市中考数学预测卷姓名:________ 班级:________ 成绩:________一、选择题(每小题3分,共30分) (共10题;共30分)1. (3分) a , b是有理数,它们在数轴上的对应点的位置如下图所示:把a,-a,b,-b按照从小到大的顺序排列().A . -b<-a<a<bB . -a<-b<a<bC . -b<a<-a<bD . -b<b<-a<a2. (3分) (2018九上·重庆月考) 计算的结果是()A . 6aB . a4C . a6D . a103. (3分)下列结论错误的是()A . 成轴对称的图形全等B . 两边对应相等的直角三角形全等C . 一边和一锐角对应相等的两直角三角形全等D . 两直线被第三条直线所截,同位角相等4. (3分)若分式的值为零,则m = ()A . ±4B . 4C . -4D . 15. (3分)(2012·贵港) 如图是由若干个大小相同的正方体搭成的几何体的三视图,则该几何体所用的正方体的个数是()A . 2B . 3C . 4D . 56. (3分)(2017·东营) 如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是()A .B .C .D .7. (3分) (2016九上·济宁期中) 如图,⊙C过原点,且与两坐标轴分别交于点A、点B,点A的坐标为(0,3),M是第三象限内上一点,∠BMO=120°,则⊙C的半径长为()A . 6B . 5C . 3D . 38. (3分)如图,马航370失联后,“海巡31”船匀速在印度洋搜救,当它行驶到A处时,发现它的北偏东30°方向有一灯塔B,海巡船继续向北航行4小时后到达C处,发现灯塔B在它的北偏东60°方向.若海巡船继续向北航行,那么要再过多少时间海巡船离灯塔B最近?()A . 1小时B . 2小时C . 小时D . 2小时9. (3分) (2017八下·东营期末) 如图,E、F分别是正方形ABCD的边AB、BC上的点,且BE=CF,连接CE、DF,将△DCF绕着正方形的中心O按顺时针方向旋转到△CBE的位置,则旋转角为()A . 30°B . 45°C . 60°D . 90°10. (3分)如图,在平面直角坐标系中,☉O的半径为1,则直线y=x- 与☉O的位置关系是()A . 相离B . 相切C . 相交D . 以上三种情况都有可能二、填空题(每小题4分,共24分) (共6题;共24分)11. (4分)(2+1)(22+1)(24+1)…(232+1)+1的个位数字是________12. (4分) (2018八上·北仑期末) 如图,已知,要使,则可以添加的一个条件是________.13. (4分)(2018·灌云模拟) 在元旦晚会的投飞镖游戏环节中,5名同学的投掷成绩单位:环分别是:7、9、9、6、8,则这组数据的众数是________.14. (4分) (2017七上·江门月考) 规定一种新的运算“*”:对于任意有理数x,y满足x*y=x-y+xy.例如,3*2=3-2+3×2=7,则2*1=________.15. (4分)(2018·扬州模拟) 一个矩形的周长为16,面积为14,则该矩形的对角线长为________.16. (4分) (2016九上·宜春期中) 如图,正方形ABCD与正三角形AEF的顶点A重合,将△AEF绕顶点A 旋转,在旋转过程中,当BE=DF时,∠BAE的大小可以是________.三、解答题(8小题,共66分) (共8题;共66分)17. (6分)计算①(﹣2a2b)2•(﹣2a2b2)3②(﹣2x2y)3+8(x2)2•(﹣x)2•(﹣y)3③(﹣3a3)2•a3+(﹣4a)2•a7﹣(5a3)3 .18. (6分) (2016九上·长清开学考) 解不等式组:,并把解集在数轴上表示出来.19. (6分)(2017·马龙模拟) 某校为了解九年级学生的身体素质情况,随机对九年级的50名学生进行一分钟跳绳次数测验,以测试数据为样本,绘制出部分频数分布表和部分频数分布直方图.组别次数x频数(人)第1组80≤x<1006第2组100≤x<120a第3组120≤x<14012第4组140≤x<160a+10第5组160≤x<180请结合图表完成以下问题.(1)求出表中的a;(2)补全频数分布直方图;(3)若x≥140为优良,该校九年级有450名学生,请估计跳绳成绩达到优良的学生约有多少人?20. (8分)(2018·资阳) 已知:如图,在Rt△ABC中,∠ACB=90°,点M是斜边AB的中点,MD∥BC,且MD=CM,DE⊥AB于点E,连结AD、CD.(1)求证:△MED∽△BCA;(2)求证:△AMD≌△CMD;(3)设△MDE的面积为S1,四边形BCMD的面积为S2,当S2= S1时,求cos∠ABC的值.21. (8分)(2016·长沙) 如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD的延长线于点E,点F为CE的中点,连接DB,DC,DF.(1)求∠CDE的度数;(2)求证:DF是⊙O的切线;(3)若AC=2 DE,求tan∠ABD的值.22. (10.0分)(2020·拉萨模拟) 如图1,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+c与y轴交于点A(0,6),与x轴交于点B(﹣2,0),C(6,0).(1)直接写出抛物线的解析式及其对称轴;(2)如图2,连接AB,AC,设点P(m,n)是抛物线上位于第一象限内的一动点,且在对称轴右侧,过点P 作PD⊥AC于点E,交x轴于点D,过点P作PG∥AB交AC于点F,交x轴于点G.设线段DG的长为d,求d与m的函数关系式,并注明m的取值范围;(3)在(2)的条件下,若△PDG的面积为,①求点P的坐标;②设M为直线AP上一动点,连接OM交直线AC于点S,则点M在运动过程中,在抛物线上是否存在点R,使得△ARS为等腰直角三角形?若存在,请直接写出点M及其对应的点R的坐标;若不存在,请说明理由.23. (10.0分)如图,平行四边形ABCD中,点O是AC与BD的交点,过点O的直线EF与BA,DC的延长线分别交于点E,F.(1)求证:△AOE≌△COF.(2)请连接EC,AF,则EF与AC满足什么条件时,四边形AECF是矩形,并说明理由.24. (12分)(2017·德阳模拟) 如图,在正方形ABCD中,点E在对角线AC上,点F在边BC上,连接BE、DF,DF交对角线AC于点G,且DE=DG.(1)求证:AE=CG;(2)试判断BE和DF的位置关系,并说明理由.参考答案一、选择题(每小题3分,共30分) (共10题;共30分) 1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题(每小题4分,共24分) (共6题;共24分) 11-1、12-1、13-1、14-1、15-1、16-1、三、解答题(8小题,共66分) (共8题;共66分)17-1、18-1、19-1、19-2、19-3、20-1、20-2、20-3、21-1、21-2、21-3、22-1、22-2、23-1、23-2、24-1、24-2、。

山西省晋中市数学中考模拟试卷(4月)

山西省晋中市数学中考模拟试卷(4月)

山西省晋中市数学中考模拟试卷(4月)姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2018·路北模拟) 已知mn<0且1﹣m>1﹣n>0>n+m+1,那么n,m,,的大小关系是()A . m< < <nB . m< < <nC . <m< n <D . m< < n <2. (2分)(2018·宜昌) 下列运算正确的是()A . x2+x2=x4B . x3•x2=x6C . 2x4÷x2=2x2D . (3x)2=6x23. (2分) (2020七上·和平期末) 如果∠α和∠β互补,且∠α<∠β,则下列表示∠α的余角的式子中:①90°﹣∠α;②∠β﹣90°;③ (∠α+∠β);④ (∠β﹣∠α)其中正确的有()A . 1个B . 2个C . 3个D . 4个4. (2分) (2015七上·市北期末) 下列图形中,是正方体的展开图是()A . ①②B . ③④C . ③D . ④5. (2分)若关于x,y的方程组的解满足0<x+y<1,则k的取值范围是()A . -4<k<0B . -1<k<0C . 0<k<8D . k>-46. (2分) (2017八上·平邑期末) 关于x的分式方程的解为正数则m的取值范围是()A . m>-1B . m≠1C . m>1且m≠-1D . m>-1且m≠17. (2分) (2019九上·成都月考) 根据PM2.5空气质量标准:24小时PM2.5均值在0∽35(微克/立方米)的空气质量等级为优.将环保部门对我市PM2.5一周的检测数据制作成如下统计表,这组PM2.5数据的中位数是()A . 21微克/立方米B . 20微克/立方米C . 19微克/立方米D . 18微克/立方米8. (2分) (2018九上·阿荣旗月考) 函数y=﹣x2﹣4x+3图象顶点坐标是()A . (2,﹣7)B . (2,7)C . (﹣2,﹣7)D . (﹣2,7)9. (2分) (2020九上·博罗期末) 如图,将绕点A按顺时针方向旋转一定角度得到,点B的对应点D恰好落在边上.若,则的长为()A . 0.5B . 1.5C .D . 110. (2分) (2018九上·信阳期末) 如图,在矩形ABCD中,已知AB=4,BC=3,矩形在直线l上绕其右下角的顶点B向右旋转90°至图中①的位置,再绕右下角的顶点继续向右旋转90°至图中②的位置,…,以此类推,这样连续旋转2018次后,顶点A在整个旋转过程中所经过的路径长之和是()A . 2025πB . 3029.5πC . 3028.5πD . 3024π二、填空题 (共6题;共6分)11. (1分)(2018·香洲模拟) 分解因式:4x2﹣36=________.12. (1分)科学记数法表示:0.000 000 234=________.13. (1分) (2019九上·龙山期末) 某县城2008年农民人均年收入为7 800元,计划到2010年,农民人均年收入达到9 100元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018中考数学预测试卷一、选择题:本大题共10小题,每小题3分,共30分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的代号填入题后括号内. 1.|﹣2|的值是( ) A .﹣2 B .2C.D.﹣2.已知某种纸一张的厚度约为0.0089cm ,用科学记数法表示这个数为( ) A .8.9×10﹣5 B .8.9×10﹣4 C .8.9×10﹣3 D .8.9×10﹣2 3.计算a 3•(﹣a )2的结果是( ) A .a 5B .﹣a 5C .a 6D .﹣a 64.如图,矩形ABCD 的边AD 长为2,AB 长为1,点A 在数轴上对应的数是﹣1,以A 点为圆心,对角线AC 长为半径画弧,交数轴于点E ,则这个点E 表示的实数是( ) A.+1B.C.﹣1D .1﹣5.已知一次函数y=ax ﹣x ﹣a +1(a 为常数),则其函数图象一定过象限( ) A .一、二B .二、三C .三、四D .一、四6.在△ABC 中,AB=3,AC=2.当∠B 最大时,BC 的长是( ) A .1B .5C.D.7.一元二次方程2x 2+3x +1=0的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .无法确定8.下列运算结果正确的是( )A .a 2+a 3=a 5B .a 2·a 3=a 6C .a 3÷a 2=aD .(a 2)3=a 59.如图,将矩形ABCD 绕点A 逆时针旋转90°至矩形AEFG ,点D 的旋转路径为 ⌒DG,若AB =1,BC =2,则阴影部分的面积为( ) A .π3+2 B .1+π2C .π2D .π3+1A BG(第9题)BCDEF(第10题)(第4题)10.如图,将正六边形ABCDEF 放入平面直角坐标系后,若点A 、B 、E 的坐标分别为 (a ,b )、(3,1)、(-a ,b ),则点D 的坐标为( )A .(1,3)B .(3,-1)C .(-1,-3)D .(-3,1)二、填空题:本大题共8小题,每小题3分,共24分,不需写出解答过程,请把最后结果填在题中横线上.11.分解因式2x 2+4x +2= ▲ .12.已知一组数据2,6,5,2,4,则这组数据的中位数是 ▲ .13.若关于x 的方程x 2+mx +5=0有一个根为1,则该方程的另一根为 ▲ . 14.如图,△ABC 是⊙O 的内接三角形,AD 是⊙O 直径,若∠ABC =50°,则∠CAD = ▲ °.15.如图,在□ABCD 中,E 、F 分别是AD 、CD 的中点,EF 与BD 相交于点M ,若△DEM的面积为1,则□ABCD 的面积为 ▲ .16.如图,A (a ,b )、B (1,4)(a >1)是反比例函数y =kx (x >0)图像上两点,过A 、B分别作x 轴、y 轴的垂线,垂足分别为C 、D 、E 、F ,AE 、BD 交于点G .则四边形ACDG 的面积随着a 的增大而 ▲ .(填“减小”、“不变”或“增大”)17.二次函数y =a (x -b )2+c (a <0)的图像经过点(1,1)和(3,3),则b 的取值范围是 ▲ .18.如图,在△ABC 中,∠C =90°,AC =BC =1,P 为△ABC 内一个动点,∠PAB =∠PBC ,则CP 的最小值为 ▲ .(第14题)ABCDE F M (第15题)(第16题)(第18题)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)二、填空题:11. ;12. ;13. ;14. ; 15. ;16. ;17. ;18. ; 三. 解答题(共10小题)19.(本题满分5分)计算:01120172()4---+.20. (5分)解不等式组 :并将解集在数轴上表示.21.(6分)先化简,再求值:(b a +b +b a -b ) ÷ aa 2-b 2.其中2017,a b =22. (6分)一个不透明的袋子中,装有2个红球,1个白球,1个黄球,这些球除颜色外都相同.求下列事件的概率:(1)搅匀后从中任意摸出1个球,恰好是红球; (2)搅匀后从中任意摸出2个球,2个都是红球.23.(8分)某公司在某市五个区投放共享单车供市民使用,投放量的分布及投放后的使用情况统计如下.(1)该公司在全市一共投放了▲万辆共享单车;(2)在扇形统计图中,B区所对应扇形的圆心角为▲°;(3)该公司在全市投放的共享单车的使用量占投放量的85%,请计算C区共享单车的使用量并补全条形统计图.24.(8分)将平行四边形纸片ABCD按如图方式折叠,使点C与A重合,点D落到D′处,折痕为EF.(1)求证:△ABE≌△AD′F;(2)连接CF,判断四边形AECF是什么特殊四边形?证明你的结论.25.(8分)如图,正比例函数y=2x的图象与反比例函数y=的图象交于点A、B,AB=2,(1)求k的值;(2)若反比例函数y=的图象上存在一点C,则当△ABC为直角三角形,请直接写出点C的坐标.26.(10分)如图,在Rt △ABC 中,∠A =90°,点D 、E 分别在AC 、BC 上,且CD ·BC =AC ·CE ,以E 为圆心,DE 长为半径作圆,⊙E 经过点B ,与AB 、BC 分别交于点F 、G .(1)求证:AC 是⊙E 的切线; (2)若AF =4,CG =5, ①求⊙E 的半径;②若Rt △ABC 的内切圆圆心为I ,则IE = ▲ .27. (10分)如图,在平面直角坐标系中,二次函数y=ax 2+bx ﹣4(a ≠0)的图象与x 轴交于A (﹣2,0)、C (8,0)两点,与y 轴交于点B ,其对称轴与x 轴交于点D . (1)求该二次函数的解析式;(2)如图1,连结BC ,在线段BC 上是否存在点E ,使得△CDE 为等腰三角形?若存在,求出所有符合条件的点E 的坐标;若不存在,请说明理由;(3)如图2,若点P (m ,n )是该二次函数图象上的一个动点(其中m >0,n <0),连结PB ,PD ,BD ,求△BDP 面积的最大值及此时点P 的坐标.C(第26题)28. (10分)如图,A(-5,0),B(-3,0),点C在y轴的正半轴上,∠CBO=45°,CD∥AB.∠CDA=90°.点P从点Q(4,0)出发,沿x轴向左以每秒1个单位长度的速度运动,运动时时间t秒.(1)求点C的坐标;(2)当∠BCP=15°时,求t的值;(3)以点P为圆心,PC为半径的⊙P随点P的运动而变化,当⊙P与四边形ABCD的边(或边所在的直线)相切时,求t的值.参考答案一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)二、填空题:11. 2(x +1)2 12.4 13. 5 14.40 15.16 16.增大 17.b >2 18.2-1 三、解答题: 19.2-;20. (本题5分)解不等式组:.解:解①得x <2,解②得x ≥﹣1,则不等式组的解集是﹣1≤x <2. 数轴略。

21. (法一)解:原式= b a +b ·(a +b )(a -b )a + ba -b ·(a +b )(a -b )a =b (a -b )a +b (a +b )a=ab -b 2+ab +b 2a =2b ························································································· 4分 (法二)解:原式 =ab -b 2+ab +b 2 (a +b )(a -b )·(a +b )(a -b )a =2b ·························································································································· 4分当2017,a b ==6分 22.(本题6分)(1)解: 搅匀后从中任意摸出1个球,所有可能出现的结果共有4种,它们出现的可能性相同.所有的结果中,满足“恰好是红球”(记为事件A )的结果有2种,所以P(A )=2 4 = 12 .……3分(2)解:搅匀后从中任意摸出2个球,所有可能出现的结果有:(红1,红2)、(红1,黄)、(红2,黄)、(红1,白)、(红2,白)、(白,黄),共有6种,它们出现的可能性相同.所有的结果中,满足“2个都是红球”(记为事件B )的结果只有1种,所以P(B)=16 .……6分23.(本题8分)(1)4 ……2分(2)36 ……4分(3)图略4×85%-0.8-0.3-0.9-0.7=0.7(万辆)答:C区共享单车的使用量为0.7万辆.……8分24. (1)证明:由折叠可知:∠D=∠D′,CD=AD′,∠C=∠D′AE.∵四边形ABCD是平行四边形,∴∠B=∠D,AB=CD,∠C=∠BAD.∴∠B=∠D′,AB=AD′,∠D′AE=∠BAD,即∠1+∠2=∠2+∠3.∴∠1=∠3.在△ABE和△AD′F中∵∴△ABE≌△AD′F(ASA).(2)解:四边形AECF是菱形.证明:由折叠可知:AE=EC,∠4=∠5.∵四边形ABCD是平行四边形,∴AD∥BC.∴∠5=∠6.∴∠4=∠6.∴AF=AE.∵AE=EC,∴AF=EC.又∵AF∥EC,∴四边形AECF是平行四边形.又∵AF=AE,∴平行四边形AECF是菱形.25. 【考点】反比例函数与一次函数的交点问题.【分析】(1)过点A作AD⊥x轴,垂足为D,由点A、B的对称性可知OA=,根据点在直线上,设点A的坐标为(a,2a),在Rt△OAD中,通过勾股定理即可求出点A的坐标,由点A的坐标利用待定系数法即可求出结论;(2)由点A、B的对称性结合点A的坐标求出点B的坐标,根据点C在反比例函数图象上,设出点C的坐标为(n,),分△ABC三个角分别为直角来考虑,利用“两直线垂直斜率之积为﹣1(斜率都存在)”求出点C的坐标.【解答】解:(1)过点A作AD⊥x轴,垂足为D,如图1所示.由题意可知点A与点B关于点O中心对称,且AB=2,∴OA=OB=.设点A的坐标为(a,2a),在Rt△OAD中,∠ADO=90°,由勾股定理得:a2+(2a)2=()2,解得:a=1,∴点A的坐标为(1,2).把A (1,2)代入y=中得:2=,解得:k=2.(2)∵点A 的坐标为(1,2),点A 、B 关于原点O 中心对称, ∴点B 的坐标为(﹣1,﹣2).设点C 的坐标为(n,), △ABC 为直角三角形分三种情况: ①∠ABC=90°,则有AB ⊥BC,•=﹣1,即n 2+5n +4,解得:n 1=﹣4,n 2=﹣1(舍去),此时点C 的坐标为(﹣4,﹣);②∠BAC=90°,则有BA ⊥AC,•=﹣1,即n 2﹣5n +4=0,解得:n 3=4,n 4=1(舍去),此时点C 的坐标为(4,);③∠ACB=90°,则有AC ⊥BC,•=﹣1,即n 2=4,解得:n 5=﹣2,n 6=2,此时点C 的坐标为(﹣2,﹣1)或(2,1).综上所述:当△ABC 为直角三角形,点C 的坐标为(﹣4,﹣)、(4,)、(﹣2,﹣1)或(2,1). 26. (1)证明:∵ CD ·BC =AC ·CE ,∴ CD CA =CE CB∵∠DCE =∠ACB .∴△CDE ∽△CAB ,∴∠EDC =∠A =90° ,∴ED ⊥AC 又∵点D 在⊙O 上,∴AC 与⊙E 相切于点D .……………… 4分 (2)过点E 作EH ⊥AB ,垂足为H ,∴BH =FH .在四边形AHED 中,∠AHE =∠A =∠ADE =90°, ∴四边形AHED 为矩形,∴ED =HA ,ED ∥AB ,∴∠B =∠DEC . 设⊙O 的半径为r ,则EB =ED =EG =r , ∴BH =FH =r -4,EC =r +5. 在△BHE 和△EDC 中,∵∠B =∠DEC ,∠BHE =∠EDC ,∴△BHE ∽△EDC . ∴BH ED =BE EC ,即 r -4 r =rr +5.∴r =20.即⊙E 的半径为20……………………………………………………8分 (3)130 ……………………………………………………10分 27. (本小题满分10分)(第26题)28. (本题10分)解:(1)∵∠BCO=∠CBO=45°,∴OC=OB=3。

相关文档
最新文档