反激开关电源储能原理

合集下载

反激式开关电源设计详解

反激式开关电源设计详解

反激式开关电源设计详解一、工作原理1.开关管控制:反激式开关电源中,开关管起到了关键的作用。

当输入电压施加在开关管上时,开关管处于导通状态,此时电流流经变压器和输出电路,能量存储在变压器核心中。

当输入电压施加在开关管上时,开关管处于截止状态,此时能量释放,通过一对二极管和电容器形成输出脉冲电流。

2.变压器作用:反激式开关电源中的变压器主要用于将输入电压转换为所需的输出电压。

在导通状态下,输入电压施加在变压器的一侧,能量存储在变压器的磁场中。

在截止状态下,变压器的磁场崩溃,能量释放到输出电路中。

3.输出电路过滤:输出电流通过一对二极管和电容器形成脉冲电流。

为了使输出电流更加稳定,需要通过电容器对输出电流进行滤波,降低脉冲幅度,使输出电压更加平稳。

二、基本结构1.输入滤波电路:由于输入电源通常含有较多的噪声和干扰,为了保障开关电源的正常工作,需要在输入端添加一个滤波电路,通过滤波电容和电感将输入电压的尖峰和噪声滤除。

2.开关控制电路:开关控制电路用于对开关管进行控制,使其在合适的时机打开和关闭。

常见的控制方式有定时控制和反馈控制两种。

3.开关管:开关管在反激式开关电源中起到了关键的作用。

常见的开关管有MOS管、IGBT管等,其特性包括导通损耗、截止损耗和开关速度等。

4.变压器:变压器用于将输入电压变换为所需的输出电压。

同时,变压器还能起到隔离输入电源和输出负载的作用,保护负载。

5.输出整流滤波电路:输出整流滤波电路用于对输出电流进行整流和滤波,使输出电压更加稳定。

三、常见设计方法1.脉冲宽度调制(PWM)控制:PWM是一种常用的反激式开关电源控制方法,通过控制开关管的导通时间来调节输出电压和电流。

PWM控制能够实现较高的效率和较低的输出波纹,但需要一定的控制电路。

2.变压器匹配设计:在设计反激式开关电源时,需要合理选择变压器的匝数比,以实现所需的输入输出电压转换。

同时,还需要考虑变压器的大小和功耗。

反激式开关电源原理

反激式开关电源原理

反激式开关电源原理反激式开关电源是指使用反激高频变压器隔离输入输出回路的开关电源."反激"(FL Y BACK)的具体所指是当输入为高电平(开关管接通)时输出线路中串联的电感为放电状态,相反当输入为高电平(开关管断开)时输出线路中的串联的电感为充电状态.与之相对的是"正激"(FORWARD)式开关电源,当输入为高电平(开关管接通)时输出线路中串联的电感为充电状态,相反当输入为高电平(开关管断开)时输出线路中的串联的电感为放电状态,以此驱动负载.电机配导线(电机一个千瓦大约2A)"1.5加二,2.5加三""4后加四,6后加六""25后加五,50后递增减五""百二导线,配百数" 该口诀是按三相380V交流电动机容量直接选配导线的。

"1.5加二"表示1.5mm2的铜芯塑料线,能配3.5kW的及以下的电动机。

由于4kW 电动机接近3.5kW的选取用范围,而且该口诀又有一定的余量,所以在速查表中4kW以下的电动机所选导线皆取1.5mm2。

"2.5加三"、"4后加四",表示2.5mm2及4mm2的铜芯塑料线分别能配5.5kW、8kW电动机。

"6后加六",是说从6mm2的开始,能配"加大六"kW的电动机。

即6mm2的可配12kW,选相近规格即配1lkW电动机。

10mm2可配16kW,选相近规格即配15kW电动机。

16mm2可配22kW电动机。

这中间还有18.5kW电动机,亦选16mm2的铜芯塑料线。

"25后加五",是说从25mm2开始,加数由六改为五了。

即25mm2可配30kW的电动机。

35mm2可配40kW,选相近规格即配37kW电动机。

"50后递增减五",是说从50mm2开始,由加大变成减少了,而且是逐级递增减五的。

反激式开关电源(flyback)环路设计基础

反激式开关电源(flyback)环路设计基础

反激式开关电源(flyback)是一种常见的电源结构,广泛应用于电子设备中。

它具有结构简单、成本低廉、效率高等优点,在消费电子、工业控制和通信设备等领域被广泛应用。

本文旨在介绍反激式开关电源环路设计的基础知识,包括工作原理、设计步骤和注意事项。

一、反激式开关电源的工作原理1.1 反激式开关电源的基本结构反激式开关电源由输入滤波器、整流桥、高频变压器、功率开关器件、输出整流滤波器、控制电路等组成。

其中,高频变压器是反激式开关电源的关键部件,通过变压器实现输入电压的隔离和变换,功率开关器件则控制变压器的工作状态,实现电源的调节和稳定输出。

1.2 反激式开关电源的工作原理反激式开关电源通过功率开关器件周期性地将输入电压斩波,将输入电能存储在变压器的磁场中,然后再将其转换为输出电压。

在工作周期的后半段,存储的能量释放到输出负载上,从而实现对输出电压的调节。

通过控制功率开关器件的导通时间和断态时间,可以实现对输出电压的调节和稳定。

二、反激式开关电源环路设计的基础知识2.1 反激式开关电源的设计步骤(1)确定电源的输入输出参数:包括输入电压范围、输出电压、输出电流、负载调整范围等;(2)选择功率开关器件和高频变压器:根据电源的输入输出参数和工作频率选择合适的功率开关器件和高频变压器;(3)设计反激式开关电源的控制电路:根据所选的功率开关器件和高频变压器设计相应的控制电路,包括PWM控制电路、电源启动电路等;(4)设计输入输出滤波器和保护电路:设计输入输出滤波器,保证电源的输入输出稳定和干净,设计过压、过流、过温等保护电路,保证电源的安全稳定工作。

2.2 反激式开关电源环路设计的注意事项(1)磁性元件的设计:高频变压器和输出感应元件的设计是整个反激式开关电源设计的关键,应合理设计磁芯、线圈匝数等参数,保证磁性元件承载功率、效率和体积的平衡;(2)功率开关器件的选择和驱动:应选择合适的功率开关器件,并设计合理的驱动电路,保证功率开关器件的可靠工作和转换效率;(3)控制电路的设计:应根据功率开关器件的工作特性和工作频率设计合适的PWM控制电路和反馈控制电路,保证电源的稳定可调;(4)输入输出滤波器和保护电路的设计:应合理设计输入输出滤波器和保护电路,保证电源的输入输出稳定和安全可靠。

反激式开关电源工作原理及波形分析

反激式开关电源工作原理及波形分析

反激式开关电源工作原理及波形分析
本页仅作为文档封面,使用时可以删除
This document is for reference only-rar21year.March
反激式开关电源工作时可以简化为下图所示电路:
Mos管控制原边(左侧)电流的通断。

Mos管导通时:
电感充电(实则为建立磁通),副边二极管截止,无电流。

Mos管断开时:
由于电流不同突变(实际上是磁通不能突变),于是在副边形成感应电流,二极管导通。

原边反射电压:
副边有电流流通时,会在原边感应出一个电压(下+上-),叠加在输入电压上。

原边的尖峰电压:
由于漏电感的存在,该部分的磁通没有通过磁芯耦合到副边,因此mos管断开时,会产生很大的电压来维持电流,从而达到维持磁通的目的。

振荡波形:
Mos管关断时尾部有振荡,是由于开关电流工作在断续模式时,能量释放完全后,原边、副边无电流。

此时原边的电路可以等效为电源+电感+电容(Mos 管输入电容),发生谐振。

实测波形如下:
(黄色为mos驱动,绿色为mos管的VDS,粉色是原边线圈的电流)。

反激电源的工作原理详解

反激电源的工作原理详解

反激电源的工作原理详解
反激电源(flyback power supply)是一种常见的开关电源拓扑结构,它通过磁性元件(变压器)储存能量并将其传递给负载。

以下是反激电源的工作原理的详细解释:
1. 输入电压:反激电源的输入电压通常是交流电源,通过整流电路将交流电转换为直流电。

2. 开关管:反激电源中有一个开关管(通常是MOSFET或BJT),它的作用是控制能量的传输和储存。

3. 控制电路:反激电源中有一个控制电路,它通过对开关管的控制来实现能量的传输和储存。

控制电路可以采用各种不同的方式,如PWM(脉宽调制)控制或变频控制。

4. 变压器:反激电源中的关键元件是变压器,它由一个或多个绕组组成。

输入绕组连接到开关管和输入电源,输出绕组连接到负载。

变压器通过磁耦合将能量从输入绕组传输到输出绕组。

5. 储能:当开关管导通时,输入绕组的电流开始增加,同时储存能量。

当开关管断开时,输入绕组的电流停止增加,并且能量通过变压器传递到输出绕组。

6. 整流和滤波:输出绕组的交流电压通过整流电路转换为直流电压,并通过滤波电路去除纹波。

这样就得到了稳定的直流电压,可以供给负载使用。

总结起来,反激电源的工作原理是通过控制开关管的导通和断开,使得能量在变压器中储存和传递,最终得到稳定的直流电压输出。

这种拓扑结构具有成本低、效率高的优点,因此在许多应用中得到广泛应用。

反激开关电源的工作原理

反激开关电源的工作原理

反激开关电源的工作原理
反激开关电源是一种常见的电源转换器,用于将直流电转换为高频交流电,并经过变压器变换输出所需要的电压。

该电源的工作原理如下:
1. 输入电压通过整流电路转换为直流电压,供给电容器充电。

2. 当电容器充满电后,触发器工作,通过控制开关管切换开关管的导通方式,使得输出变为高频交流电。

3. 高频交流电通过变压器进行变压处理。

变压器的一侧连接输出负载,另一侧与开关管相连。

4. 在开关管导通的一段时间内,变压器储存一部分能量,并将其传递到输出负载,从而实现电压变换。

5. 在开关管截止的另一段时间内,变压器中的储能被释放到输出负载,输出电压维持稳定。

6. 通过控制开关管的导通时间与截止时间的比例,可以调整输出电压的大小。

7. 反激开关电源中还设置有保护电路,当输入电压发生异常或者输出负载出现问题时,可以及时切断电源,防止损坏电子元件。

总的来说,反激开关电源通过控制开关管的导通和截止来实现直流电压到高频交流电的转换,再经过变压器变换输出所需电压。

其工作原理主要依赖于开关管和变压器的协同工作,通过周期性切换开关管状态来实现能量的转换和传递。

反激式变压器开关电源工作原理

反激式变压器开关电源工作原理

反激式变压器开关电源工作原理
反激式变压器开关电源是一种常见的开关电源拓扑结构,其工作原理
是通过快速开关管(MOSFET或IGBT)周期性地开关电源输入侧的电压,
使得变压器的磁场产生周期性的变化,从而形成高频交流电,经过输出整
流滤波后得到所需的直流输出电压。

下面是反激式变压器开关电源的详细工作原理介绍:
1.输入侧电压整流:输入电源的交流电压经过整流电路,转换为半波
或全波的脉冲电流,较低的电压通过滤波电容进行滤波,变为直流电压。

2.输入电感存储能量:变压器的输入侧有一个电感,当开关管导通时,电感存储电能,当开关管截止时,电感释放储能,产生电压波动,使得输
入侧电流减小。

3.开关管驱动:控制电路通过控制开关管的导通与截止,来实现周期
性地开关输入侧电压。

控制电路检测到输出电压低于设定值时,控制开关
管导通,电感储能;当输出电压高于设定值时,控制开关管截止,电感释
放能量。

4.变压器传递能量:当开关管导通时,电感储能产生的磁场将能量传
递到变压器绕组中;当开关管截止时,电感的储能释放,磁场消失,变压
器的绕组感应出变化的磁通,产生高频交流电。

5.输出整流滤波:变压器传递出的高频交流电经过输出端的整流电路,将交流电转换为直流电,然后经过滤波电容进行滤波,去除残余的脉动,
得到平滑的直流输出电压。

6.控制反馈:控制电路会不断检测输出电压并与设定值进行比较,根据比较结果控制开关管的导通与截止,使得输出电压保持在设定范围内。

反激式开关电源工作原理

反激式开关电源工作原理

反激式开关电源工作原理
反激式开关电源是一种常见的电源设计,其工作原理如下:
1. 输入电压:将交流电源输入到变压器的主线圈中。

主线圈的绕组根据需要选择适当的变比,以实现输入电压的转换和隔离。

2. 桥式整流:在主线圈的输出端连接一个桥式整流电路,将交流信号转换成直流信号。

桥式整流电路通常由四个二极管组成,通过改变二极管的导通方式,将正负半周的交流信号转换为正向的直流信号。

3. 滤波电容:为了进一步减小直流信号中的纹波成分,通常在桥式整流电路后面添加一个滤波电容。

滤波电容会充当一个能量储存器,在充电过程中吸收纹波成分,在电容放电过程中输出平稳的直流信号。

4. 开关管:在滤波电容充电期间,控制开关管的导通和截止状态,以避免电压过高和电流过大。

通常使用开关管,如MOSFET、BJT等。

当开关管导通时,它会允许电源输出电流,而当开关管截止时,它会切断电源输出。

5. 控制电路:使用控制电路来控制开关管的开关时间和频率。

控制电路通常会监测输出电压,并根据需要调整开关管的状态,以保持输出电压稳定。

通过上述步骤,反激式开关电源可以实现将输入电压转换为稳定的输出电压,具有高效率、小体积和广泛的应用范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

反激开关电源储能原理
反激开关电源是一种常见的电源储能设备,其原理是通过反激开关电路将输入电源的能量转化为磁场能量,并通过储能元件(如电感、电容等)进行储存,以供后续使用。

它在电子设备中广泛应用,如电子产品、通信设备、工业控制等领域。

反激开关电源是一种非绝缘型开关电源,其工作原理基于开关管的开关动作。

当开关管导通时,输入电源的能量通过变压器传递到输出端,同时在储能元件中形成磁场能量;当开关管关断时,储能元件的磁场能量被释放,通过变压器将能量传递到输出端。

通过不断重复导通和关断的过程,实现能量的转换和储存。

具体而言,反激开关电源可分为四个阶段:充能、放能、反激和能量传递。

在充能阶段,输入电源经过整流和滤波后,通过开关管导通,将电能传递到储能元件(一般为电感和电容)。

此时,储能元件开始储存电能,形成磁场能量。

在放能阶段,开关管关断,储能元件中的磁场能量被释放。

由于电感的自感作用,电流会产生反向变化,使电感两端的电压升高。

同时,电容也会开始放电,向负载传递能量。

在反激阶段,当电感两端的电压超过开关管的耐压能力时,开关管
会关闭,形成反激电压。

反激电压的出现是为了保护开关管,避免其过压损坏,并且通过反激电压将储存在电感中的能量转移到输出端。

在能量传递阶段,反激电压经过变压器的作用,将能量传递到输出端。

通过合理设计变压器的匝数比例,可以实现电压的升降转换。

输出端可以连接负载,将能量供应给外部电路。

反激开关电源的储能原理是通过充能、放能、反激和能量传递四个阶段的循环工作,实现能量的转换和储存。

其优点是效率高、体积小、重量轻、成本低等,因此在电子设备中得到广泛应用。

但也需要注意开关管的选择和控制,以确保电源的稳定性和可靠性。

反激开关电源储能原理简单而有效,通过合理的电路设计和工作模式,将输入电源的能量转化为储存能量,并通过变压器将能量传递到输出端。

这种电源具有高效、小巧、轻便等优点,在现代电子设备中起着重要的作用。

相关文档
最新文档