反激式开关电源变压器设计原理

合集下载

反激式变压器开关电源工作原理

反激式变压器开关电源工作原理

反激式变压器开关电源工作原理反激式变压器开关电源工作原理比较简单,输出电压控制范围比较大,因此,在一般电器设备中应用最广泛。

1-7-1.反激式变压器开关电源工作原理所谓反激式变压器开关电源,是指当变压器的初级线圈正好被直流脉冲电压激励时,变压器的次级线圈没有向负载提供功率输出,而仅在变压器初级线圈的激励电压被关断后才向负载提供功率输出,这种变压器开关电源称为反激式开关电源。

图1-19-a是反激式变压器开关电源的简单工作原理图,图1-19-a中,Ui是开关电源的输入电压,T是开关变压器,K是控制开关,C是储能滤波电容,R是负载电阻。

图1-19-b是反激式变压器开关电源的电压输出波形。

把图1-19-a与图1-16-a进行比较,如果我们把图1-16-a中开关变压器次级线圈的同名端对调一下,原来变压器输出电压的正、负极性就会完全颠倒过来,图1-19-b所示的电压输出波形基本上就是从图1-16-b的波形颠倒过来的。

不过,因为图1-16-b的波形对应的是纯电阻负载,而图1-19-b的负载是一个储能滤波电容和一个电阻并联。

由于储能滤波电容的容量很大,其两端电压基本不变,变压器次级线圈输出电压uo相当于被整流二极管和输出电压Uo进行限幅,因此,图1-16-b中输出电压uo的脉冲尖峰完全被削除,被限幅后的剩余电压幅值正好等于输出电压Uo的最大值Up,同时也等于变压器次级线圈输出电压uo的半波平均值Upa。

下面我们来详细分析反激式变压器开关电源的工作过程(参考图1-20)。

图1-19-a中,在控制开关K接通的Ton期间,输入电源Ui对变压器初级线圈N1绕组加电,初级线圈N1绕组有电流i1流过,在N1两端产生自感电动势的同时,在变压器次级线圈N2绕组的两端也同时产生感应电动势,但由于整流二极管的作用,没有产生回路电流。

相当于变压器次级线圈开路,变压器次级线圈相当于一个电感。

因此,流过变压器初级线圈N1绕组的电流就是变压器的励磁电流,变压器初级线圈N1绕组两端产生自感电动势可由下式表示:或上式中,e1为变压器初级线圈N1绕组产生的自感电动势,L1是变压器初级线圈N1绕组的电感,N1为变压器初级线圈N1绕组线圈绕组的匝数,为变压器铁心中的磁通。

反激式变压器开关电源工作原理

反激式变压器开关电源工作原理

反激式变压器开关电源工作原理引言:反激式变压器开关电源是一种常用的电源设计,广泛应用于各个领域,如电子设备、通信设备、工业控制等。

在本文中,我们将详细介绍反激式变压器开关电源的工作原理及其基本组成部分。

一、工作原理反激式变压器开关电源是一种通过开关管的断续导通实现能量转换的电源设计。

其工作原理可以概括为以下几个过程:1. 输入电压变换:反激式变压器开关电源通常采用交流输入,利用输入电压的变换来实现电能的转换和调节。

输入电压首先经过整流电路,将交流电信号转换为脉冲直流电信号。

2. 能量储存:脉冲直流电信号进入能量储存电容器,用于储存电能。

这里的能量储存器通常采用电容器,其大小和选择根据需求进行合理的设计。

3. 开关管控制:开关管是反激式变压器开关电源的核心部分,用于对能量的开关和控制。

开关管的导通与断开实现了能量的转换。

通过控制开关管的导通时间长短可以实现输出电压和电能的调节。

4. 变压器工作:在开关管导通状态下,输入电压经过变压器变换为输出电压。

反激式变压器特点之一是输入端和输出端没有直接电气连接,其通过磁耦合实现电能传输。

5. 输出滤波:输出电压经过滤波电路,滤除脉动和噪声,得到平稳、纹波较小的直流电压供给外部负载使用。

二、基本组成部分反激式变压器开关电源主要由以下几个基本组成部分构成:1. 整流电路:整流电路用于将交流电信号转换为脉冲直流电信号,常见的整流电路有单相整流桥和三相整流桥。

2. 能量储存器:能量储存器主要是指电容器,用于储存电能。

其容量的大小和选择应根据输出电流和纹波要求进行合理设计。

3. 开关管:开关管是反激式变压器开关电源的核心部分,主要通过导通或断开来控制能量转换和电压调节。

常见的开关管有MOSFET、IGBT等。

4. 控制电路:控制电路是用于控制开关管导通和断开的电路部分。

它通常接收来自负载和输入电压的反馈信号,并通过控制信号控制开关管的工作。

5. 变压器:变压器是反激式变压器开关电源的核心组件之一,通过变压器实现输入电压和输出电压的转换。

反激式开关电源(flyback)环路设计基础

反激式开关电源(flyback)环路设计基础

反激式开关电源(flyback)是一种常见的电源结构,广泛应用于电子设备中。

它具有结构简单、成本低廉、效率高等优点,在消费电子、工业控制和通信设备等领域被广泛应用。

本文旨在介绍反激式开关电源环路设计的基础知识,包括工作原理、设计步骤和注意事项。

一、反激式开关电源的工作原理1.1 反激式开关电源的基本结构反激式开关电源由输入滤波器、整流桥、高频变压器、功率开关器件、输出整流滤波器、控制电路等组成。

其中,高频变压器是反激式开关电源的关键部件,通过变压器实现输入电压的隔离和变换,功率开关器件则控制变压器的工作状态,实现电源的调节和稳定输出。

1.2 反激式开关电源的工作原理反激式开关电源通过功率开关器件周期性地将输入电压斩波,将输入电能存储在变压器的磁场中,然后再将其转换为输出电压。

在工作周期的后半段,存储的能量释放到输出负载上,从而实现对输出电压的调节。

通过控制功率开关器件的导通时间和断态时间,可以实现对输出电压的调节和稳定。

二、反激式开关电源环路设计的基础知识2.1 反激式开关电源的设计步骤(1)确定电源的输入输出参数:包括输入电压范围、输出电压、输出电流、负载调整范围等;(2)选择功率开关器件和高频变压器:根据电源的输入输出参数和工作频率选择合适的功率开关器件和高频变压器;(3)设计反激式开关电源的控制电路:根据所选的功率开关器件和高频变压器设计相应的控制电路,包括PWM控制电路、电源启动电路等;(4)设计输入输出滤波器和保护电路:设计输入输出滤波器,保证电源的输入输出稳定和干净,设计过压、过流、过温等保护电路,保证电源的安全稳定工作。

2.2 反激式开关电源环路设计的注意事项(1)磁性元件的设计:高频变压器和输出感应元件的设计是整个反激式开关电源设计的关键,应合理设计磁芯、线圈匝数等参数,保证磁性元件承载功率、效率和体积的平衡;(2)功率开关器件的选择和驱动:应选择合适的功率开关器件,并设计合理的驱动电路,保证功率开关器件的可靠工作和转换效率;(3)控制电路的设计:应根据功率开关器件的工作特性和工作频率设计合适的PWM控制电路和反馈控制电路,保证电源的稳定可调;(4)输入输出滤波器和保护电路的设计:应合理设计输入输出滤波器和保护电路,保证电源的输入输出稳定和安全可靠。

详解反激式开关电源的工作原理,通俗易懂一看就会

详解反激式开关电源的工作原理,通俗易懂一看就会

详解反激式开关电源的工作原理,通俗易懂一看就会反激式开关电源是一种高效能、高频率的变换器,可以将输入直流电压转换为符合要求的输出电压,这一特性使其被广泛应用于电子设备、通讯设备等领域中。

其工作原理可以简单地概括为:利用脉冲反转的方式将输入电压变成貌似交流的信号,再利用变压器调节电压和电流,得到输出电压。

1. 输入脉冲变换反激式开关电源的输入电压通常是一个直流电源,输入电压首先通过全桥整流电路将输入的交流电流变为直流电流,也就是通过一个矩形波将输入电压转换为反向的脉冲信号,并抵消了电源电阻,使电源的输出电压更为稳定。

2. 电源管理器接下来,脉冲信号被送入电源管理器。

电源管理器可以分别实现过压、过流、过电压等保护,并且可以调整输出电压。

对于负载变化或输入电压波动引起的输出电压变化,反激式开关电源可以通过均衡控制电路,降低输出电压的乱跳程度,保持它的稳定性。

3. MOSFET开关接下来,反激式开关电源的信号被送入MOSFET开关,通过开关管的控制电压,使MOSFET管的开关状态取反,从而产生带有相反极性的脉冲信号。

开关管的控制信号交调宽度调制,通过控制开关管的开关时间比,使得输出电压得以调节。

4. 变压器脉冲信号至此已经变成了一定的频率和脉宽的交变电压,接下来需要利用变压器进一步转换电压和电流。

变压器是反激式开关电源的关键组成部分,主要由绕组、铁芯和绝缘材料构成。

绕组和铁芯的性质决定了变压器的工作原理:通过磁场的感应作用,在输出端产生一个转换后的电压。

5. 输出电路最后,输出电路使用整流电路,将由变压器产生的交流电压转换为直流电压。

整流电路可以采用单相整流电路或三相整流电路,通过各种电子元件将交流电转换为直流电,以供电子设备使用。

以上就是反激式开关电源的工作原理的介绍。

总的来说,反激式开关电源的优点在于其高效能、可靠性和稳定性,可以为电子设备提供高质量的能源。

反激开关电源的工作原理

反激开关电源的工作原理

反激开关电源的工作原理
反激开关电源是一种常见的电源转换器,用于将直流电转换为高频交流电,并经过变压器变换输出所需要的电压。

该电源的工作原理如下:
1. 输入电压通过整流电路转换为直流电压,供给电容器充电。

2. 当电容器充满电后,触发器工作,通过控制开关管切换开关管的导通方式,使得输出变为高频交流电。

3. 高频交流电通过变压器进行变压处理。

变压器的一侧连接输出负载,另一侧与开关管相连。

4. 在开关管导通的一段时间内,变压器储存一部分能量,并将其传递到输出负载,从而实现电压变换。

5. 在开关管截止的另一段时间内,变压器中的储能被释放到输出负载,输出电压维持稳定。

6. 通过控制开关管的导通时间与截止时间的比例,可以调整输出电压的大小。

7. 反激开关电源中还设置有保护电路,当输入电压发生异常或者输出负载出现问题时,可以及时切断电源,防止损坏电子元件。

总的来说,反激开关电源通过控制开关管的导通和截止来实现直流电压到高频交流电的转换,再经过变压器变换输出所需电压。

其工作原理主要依赖于开关管和变压器的协同工作,通过周期性切换开关管状态来实现能量的转换和传递。

反激式变压器开关电源工作原理

反激式变压器开关电源工作原理

反激式变压器开关电源工作原理
反激式变压器开关电源是一种常见的开关电源拓扑结构,其工作原理
是通过快速开关管(MOSFET或IGBT)周期性地开关电源输入侧的电压,
使得变压器的磁场产生周期性的变化,从而形成高频交流电,经过输出整
流滤波后得到所需的直流输出电压。

下面是反激式变压器开关电源的详细工作原理介绍:
1.输入侧电压整流:输入电源的交流电压经过整流电路,转换为半波
或全波的脉冲电流,较低的电压通过滤波电容进行滤波,变为直流电压。

2.输入电感存储能量:变压器的输入侧有一个电感,当开关管导通时,电感存储电能,当开关管截止时,电感释放储能,产生电压波动,使得输
入侧电流减小。

3.开关管驱动:控制电路通过控制开关管的导通与截止,来实现周期
性地开关输入侧电压。

控制电路检测到输出电压低于设定值时,控制开关
管导通,电感储能;当输出电压高于设定值时,控制开关管截止,电感释
放能量。

4.变压器传递能量:当开关管导通时,电感储能产生的磁场将能量传
递到变压器绕组中;当开关管截止时,电感的储能释放,磁场消失,变压
器的绕组感应出变化的磁通,产生高频交流电。

5.输出整流滤波:变压器传递出的高频交流电经过输出端的整流电路,将交流电转换为直流电,然后经过滤波电容进行滤波,去除残余的脉动,
得到平滑的直流输出电压。

6.控制反馈:控制电路会不断检测输出电压并与设定值进行比较,根据比较结果控制开关管的导通与截止,使得输出电压保持在设定范围内。

反激式开关电源设计方法

反激式开关电源设计方法

反激式开关电源设计方法1.工作原理反激式开关电源是一种将线性变压器替换为变压器型电感器的开关电源。

它的工作原理是通过开关管周期性的打开和关闭,将直流电源的电能经过变压器转化为需要的输出电压。

当开关管打开时,电流从电源流入变压器进行储能;当开关管关闭时,储存在变压器中的电能会通过二次侧电容器得以释放,并输出到负载上。

2.主要组成部分(1)输入滤波电路:用来消除电源输入端的干扰信号,保证稳定的输入电压。

(2)整流电路:将交流输入电压转化为直流电压,常采用整流桥整流。

(3)激励电路:用来控制开关管的导通和关闭,以实现变压器的能量转移。

(4)变压器:用来完成电能的变换和隔离,将输入端的电能转换为所需的输出电能。

(5)输出电路:包括输出电容和输出滤波电路,用来滤除开关产生的高频脉冲,以得到稳定的输出电压。

3.设计要点在进行反激式开关电源设计时(1)确定输出电压和电流需求:根据实际应用需求,确定所需的输出电压和电流,并根据负载特性选择合适的功率等级。

(2)选择合适的开关管和变压器:根据负载需求和电路参数,选择合适的开关管和变压器,以保证输出电压和效率的要求。

(3)控制开关频率和占空比:根据负载要求和电路特性,选择合适的开关频率和占空比,以保证输出电压的稳定性和整体效果。

(4)进行热设计和保护措施:由于开关管会产生较高的温度,需要进行合理的热设计,同时添加保护电路,如过流保护、过温保护等,以保证电路的安全性和可靠性。

(5)进行EMC设计和测试:由于开关电源会产生较大的电磁干扰,需要进行EMC设计和测试,以满足相关的国际标准要求。

总结:反激式开关电源是一种常用的电源设计方案,其设计方法包括确定输出需求、选择合适的器件、控制开关频率和占空比、进行热设计和保护措施,以及进行EMC设计和测试。

通过合理的设计和选择,可以实现高效率、小型化的电源方案,满足各种电子设备的需求。

反激式开关电源工作原理

反激式开关电源工作原理

反激式开关电源工作原理
反激式开关电源是一种常见的电源设计,其工作原理如下:
1. 输入电压:将交流电源输入到变压器的主线圈中。

主线圈的绕组根据需要选择适当的变比,以实现输入电压的转换和隔离。

2. 桥式整流:在主线圈的输出端连接一个桥式整流电路,将交流信号转换成直流信号。

桥式整流电路通常由四个二极管组成,通过改变二极管的导通方式,将正负半周的交流信号转换为正向的直流信号。

3. 滤波电容:为了进一步减小直流信号中的纹波成分,通常在桥式整流电路后面添加一个滤波电容。

滤波电容会充当一个能量储存器,在充电过程中吸收纹波成分,在电容放电过程中输出平稳的直流信号。

4. 开关管:在滤波电容充电期间,控制开关管的导通和截止状态,以避免电压过高和电流过大。

通常使用开关管,如MOSFET、BJT等。

当开关管导通时,它会允许电源输出电流,而当开关管截止时,它会切断电源输出。

5. 控制电路:使用控制电路来控制开关管的开关时间和频率。

控制电路通常会监测输出电压,并根据需要调整开关管的状态,以保持输出电压稳定。

通过上述步骤,反激式开关电源可以实现将输入电压转换为稳定的输出电压,具有高效率、小体积和广泛的应用范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

反激式开关电源变压器设计原理
首先是变比选择。

变压器的变比决定了输入电压和输出电压的比值。

通常情况下,开关电源需要将输入交流电压转换为稳定的直流电压,因此
输出电压需要较低。

在选择变比时,考虑到电路的复杂性和功率转换效率,一般选择较大的输入电压和较小的输出电压。

变比的选择也需要考虑到负
载的要求和功率转换效率的平衡。

其次是磁芯材料。

变压器的磁芯材料直接影响到电路的性能和效率。

一般情况下,磁芯材料需要具备较高的矫顽力和饱和磁场强度,以实现高
效率的电力转换。

常用的磁芯材料有硅钢片、铁氧体和钕铁硼等。

在选择
磁芯材料时需要综合考虑材料的价格、性能和可用性。

最后是工作频率。

反激式开关电源变压器工作在高频率下,一般在
10kHz至1MHz之间。

高频率的工作可以减小变压器的体积和重量,提高
电路的效率和响应速度。

但是,高频率也会增加电路的开关损耗和EMI
(电磁干扰)噪声。

因此,在设计反激式开关电源变压器时需要对工作频
率的选择进行充分的考虑。

此外,还需要注意的是反激式开关电源变压器的绝缘和散热问题。


于反激式开关电源工作在高压和高频下,变压器绝缘需要特别注意以防止
电路失效和安全事故发生。

同时,由于电路的功率转换过程中会产生大量
的热量,因此需要设计合适的散热系统来保证电路的正常运行。

总结起来,反激式开关电源变压器的设计原理包括变比选择、磁芯材
料和工作频率的选择。

设计人员需要根据具体的应用需求,综合考虑功率
转换效率、体积和重量等因素,选择合适的设计方案。

同时,还需要注意
绝缘和散热问题,以保证电路的安全和可靠运行。

相关文档
最新文档