第五章__铁碳相图习题参考答案

合集下载

《工程材料》第五章 铁碳合金相图

《工程材料》第五章 铁碳合金相图
2. 根据铁碳合金成分、组织、性能之间 的变化规律 , 确定选定材料的工作范 围。
二.制定热加工工艺方面的应用
第六节 铁碳合金的生产及分类
钢铁的冶炼。 钢锭的组织、质量及缺陷。 碳素钢的分类、编号及用途。
一.钢铁的冶炼
铸铁锭
生产铸铁件
高炉 炼铁
炼钢生铁
转炉 平炉 电炉
生产钢件
平炉炼钢
转炉炼钢
亚共析钢 ( hypoeutectoid steel )
过共析钢 ( hypereutectoid steel )
共晶白口铁 ( eutectoid white iron )
亚共晶白口铁( hypoeutectoid white iron )
过共晶白口铁( hypereutectoid white iron )
4.3%C
6.69%C Fe3C
Fe - Fe3C 相图
二. Fe - Fe3C 相图的分析
五个重要的成份点: P、S、E、C、K。 四条重要的线: EF、ES、GS、FK。 三个重要转变: 包晶转变反应式、共晶
转变反应式、共析转变反应式。 二个重要温度: 1148 ℃ 、727 ℃ 。
工程材料 机械制造基础 -Ⅰ
第五章 铁碳合金相图
第五章 铁碳合金相图 ( Iron – Carbon Phase Diagram )
Fe – C 相图的基础知识。 形成Fe - Fe3C 相图组元和基本组织的结
构与性能。 Fe - Fe3C 相图的建立与分析。 碳的质量分数对铁碳合金组织、性能的
共晶白口铁组织金相图
6.亚共晶白口铁 ( Wc = 3.0% )
亚共晶白口铁组织金相图
7.过共晶白口铁 ( Wc = 5.0% )

铁碳相图补充作业题答案

铁碳相图补充作业题答案

铁碳相图补充作业题答案1. 铁碳合金按Fe —Fe 3C 相图成分区域分成七类,分别是什么?2. 分析以上七种成分合金平衡结晶过程与最终组织,并计算:(1) 工业纯铁中三次渗碳体的最大含量。

分析:在工业纯铁中,随C 含量的增加,三次渗碳体的含量也越多,当C%=0.0218% (即P 点成分的工业纯铁中)时,Fe 3C Ⅲ量达到最大值。

W Fe3C Ⅲ=008.069.6008,00218.0--×100%=0.33% (2) 共析钢中,α和Fe 3C 的相对含量。

(Fe 3C Ⅲ量很少,一般忽略不计)W α=%100218.069.677.069.6⨯--=%10069.677.069.6⨯-=88% W Fe3C =1-88%=12%(3)45钢(含C :0.45%)中,组织组成物和相组成物的相对含量。

分析:45钢组织组成物为:铁素体(先共析)+ 珠光体相组成物为:铁素体(α)+ 渗碳体(Fe 3C )由于Fe 3C Ⅲ量很少,可以忽略不计,只考虑727℃共析转变完成之后即可。

组织组成物:⎪⎩⎪⎨⎧=-==⨯==⨯=----%57%431Wp %57%100%43%1000218.077.00218.045.00218.077.045.077.0或αWp W相组成物: ⎪⎩⎪⎨⎧=-==⨯==⨯=----%7%931W %7%100%93%100C 3Fe 0218.69.60218.045.030218.069.645.069.6或αo C Fe W W注:共析钢中,室温组织为α+ P W C %↑, W P ↑,可近似根据亚共析钢的平衡组织来估算钢的含C 量。

W P =%100%1008.077.0218.077.0028.0⨯==⨯--C C C∴ 钢的含C 量 C=0.8W P (忽略α、P 密度的差别)W P :珠光体所占的面积百分比。

(4)T10钢(1%C )中,Fe3C Ⅱ和珠光体的相对量W Fe3C Ⅱ=%10077.069.677.00.1⨯--=4% W P =1—4%=96%注:在过共析钢中,W C ↑, Fe3C Ⅱ↑当 W C =2.11% Fe 3C Ⅱ达到最大值W Fe3C Ⅱ最大=%6.22%10077.069,677.011.2=⨯-- (5)共晶白口铸铁中,Fe 3C 共晶与γ共在共晶温度下的相对量。

金属材料3_第五章 铁碳合金相图和碳钢

金属材料3_第五章 铁碳合金相图和碳钢
第一节 纯铁、铁碳合金的相结构及其性能
一、纯铁及其同素异构转变
图5-1 纯铁的冷却曲线及晶体转变
第一节 纯铁、铁碳合金的相结构及其性能
P58.tif
二、 Fe-Fe3C合金的相结构及其性能 (1)铁素体 纯铁在912℃以下具有体心立方晶格。 (2)奥氏体 碳溶于γ-Fe中的间隙固溶体称为奥氏体,以符号A表示。 (3)渗碳体 渗碳体的分子式为Fe3C,它是一种具有复杂晶格的间 隙化合物。
(1)普通碳素结构钢 这类钢冶炼容易、工艺性好、价廉,而且在 力学性能上也能满足一般工程结构及普通机器零件的要求,所以 应用很广。
P72.TIF
1.碳素结构钢的牌号、性能及用途
(2)优质碳素结构钢 这类结构钢的硫、磷含量较低(wS≤0.030%, wP≤0.035%),非金属夹杂物也较少,钢的品质较高,塑性、韧性都 比(普通)碳素结构钢更佳,出厂时既保证化学成分,又保证力学性 能,主要用于制造较重要的机械零件。
表5-1 Fe-F C相图中的特性点
第二节 Fe-Fe3C相图分析
表5-2 Fe-F C相图中的特性线
二、碳钢的组织转变过程
第二节 Fe-Fe3C相图分析
图5-5 Fe-F C相图钢的部分
1.共析钢结晶后的组织转变
第二节 Fe-Fe3C相图分析
5z7.tif
5-41.eps
1.碳素结构钢的牌号、性能及用途
表5-5 优质碳素结构钢的牌号、性能和用途(参见GB/T 699—1999)
1.碳素结构钢的牌号、性能及用途
表5-5 优质碳素结构钢的牌号、性能和用途(参见GB/T 699—1999)
1.碳素结构钢的牌号、性能及用途
(3)碳素铸钢 在机器制造和工程结构上,有许多形状复杂难以用 锻造、切削加工等方法成形的零件,如轧钢机机架、水压机横梁、 机车车架及大齿轮等,用铸铁铸造又难以满足性能要求,这时一 般选用铸钢铸造。

第五章 铁碳相图

第五章 铁碳相图

铁碳合金系相图
一、相图分析
4、Fe-Fe3C合金相图
3)相图中相区 五个单相区:液相区 L 奥氏体 (A) 渗碳体 Fe3C 七个双相区:L+ + + 高温固溶体 铁素体 (F)
L+ + Fe3C +Fe3C
L+ Fe3C
三个三相区:HJB线 L++ ECK线 L + + Fe3C PSK线 + +Fe3C
珠光体的强度很高,塑性、韧性和硬度介于渗碳体和铁素体之 间,其力学性能如下: 抗拉强度(σ b) 770 冲击韧度 (α k) 3×105~4×105 J/m2 伸长率 (δ ) 硬度(HB) 20%~30% 180
⑷相图中的ABCD为液相线;AHJECF为固相线。 ⑸水平线HJB为包晶反应线 碳的质量分数 0.09%~0.53%的铁碳合金在平衡结晶过程中均 发生包晶反应。 ⑹水平线ECF为共晶反应线 碳的质量分数 在2.11%~6.69%之间的铁碳合金,在平衡结晶 过程中均发生共晶反应。 ⑺水平线PSK为共析反应线 碳的质量分数 0.0218%~6.69%的铁碳合金,在平衡结晶过程 中均发生共析反应。PSK线亦称A1线。
1
1148 2
D
1 2 L+Fe3C
2
1227
A
912℃
C 1
Ld
F
5 F
F
+ A S P 53
43
A+Fe3CⅡ
3
A+Fe3CⅡ+Ld
Ld+Fe3CⅠ 2
600 400 Q 200
4 4
3
3
Fe3CⅡ+Ld'
K
P
F+P P+Fe3CⅡ 0.77

第五章_铁碳相图

第五章_铁碳相图

第五章铁碳相图定义:分析研究铁碳合金在平衡条件下合金的成分、温度、合金相之间关系的图解。

一、铁碳合金的基本组织与性能根据铁与碳组元的作用不同,铁碳合金的基本组织有:铁素体、奥氏体、渗碳体、珠光体和莱氏体。

1、铁素体铁素体F:碳溶入α-Fe中形成的间隙固溶体铁素体性能:σb=180-280MPa,δ=30%-50%,硬度≈80HBS。

2、奥氏体奥氏体(A):碳溶入γ-Fe中形成的间隙固溶体。

奥氏体性能:σb=400MPa,δ=40%-50%,硬度=160-200HBS。

3、渗碳体渗碳体(Fe3C):铁与碳形成的具有复杂晶体结构的间隙化合物。

渗碳体性能:熔点高约1227℃,硬度≈800HBW,δ≈0,脆性大。

Fe3C是钢中的强化相,它的形态、大小、数量与分布对铁碳合金性能产生非常大的影响。

4、珠光体珠光体(P):铁素体和渗碳体组成的两相复合物。

其性能介于F和Fe3C之间即:σb=770MPa,δ=20%-30%,硬度≈180HBS,A KV=24-32J。

5、莱氏体(Ld或Ld′)莱氏体:奥氏体和Fe3C组成的两相复合物。

在1148℃时称为高温莱氏体(Ld′),溶碳量为ωC=4.3%;在727℃时,由P和Fe3C组成的两相复合物,称为低温莱氏体(Ld)。

其性能与Fe3C相似,又硬又脆。

二、铁碳合金相图在铁碳合金中,铁与碳可形成Fe3C、Fe2C、FeC等一系列化合物。

而稳定的化合物可作为一个独立的组元。

因此,整个Fe-C相图可视为由Fe-Fe3C、Fe3C-Fe2C等一系列二元相图构成。

但因铁碳合金中当ωC>5%时,性能很脆,无实用价值,故铁碳合金相图中仅研究Fe-Fe3C相图。

简化后的Fe-Fe3C相图如图5-1所示。

1、相图分析Fe -Fe 3C 相图分为上、下两部分。

二元共晶相图(前面以讲)和二元共析相图。

⑴Fe -Fe 3C 相图中的特征点 P 点:碳在F 中的最大溶解度。

G 点:Fe Fe -⇔γα-的同素异晶转变点。

《金属学与热处理》(第二版)课后习题参考答案

《金属学与热处理》(第二版)课后习题参考答案

金属学与热处理第一章习题1.作图表示出立方晶系(1 2 3)、(0 -1 -2)、(4 2 1)等晶面和[-1 0 2]、[-2 1 1]、[3 4 6] 等晶向3.某晶体的原子位于正方晶格的节点上,其晶格常数a=b≠c,c=2/3a。

今有一晶面在X、Y、Z坐标轴上的截距分别是5个原子间距,2个原子间距和3个原子间距,求该晶面的晶面参数。

解:设X方向的截距为5a,Y方向的截距为2a,则Z方向截距为3c=3X2a/3=2a,取截距的倒数,分别为1/5a,1/2a,1/2a化为最小简单整数分别为2,5,5故该晶面的晶面指数为(2 5 5)4.体心立方晶格的晶格常数为a,试求出(1 0 0)、(1 1 0)、(1 1 1)晶面的晶面间距,并指出面间距最大的晶面解:(1 0 0)面间距为a/2,(1 1 0)面间距为√2a/2,(1 1 1)面间距为√3a/3三个晶面晶面中面间距最大的晶面为(1 1 0)7.证明理想密排六方晶胞中的轴比c/a=1.633证明:理想密排六方晶格配位数为12,即晶胞上底面中心原子与其下面的3个位于晶胞内的原子相切,成正四面体,如图所示则OD=c/2,AB=BC=CA=CD=a因△ABC是等边三角形,所以有OC=2/3CE由于(BC)2=(CE)2+(BE)2则有(CD)2=(OC)2+(1/2c)2,即因此c/a=√8/3=1.6338.试证明面心立方晶格的八面体间隙半径为r=0.414R解:面心立方八面体间隙半径r=a/2-√2a/4=0.146a面心立方原子半径R=√2a/4,则a=4R/√2,代入上式有R=0.146X4R/√2=0.414R9.a)设有一刚球模型,球的直径不变,当由面心立方晶格转变为体心立方晶格时,试计算其体积膨胀。

b)经X射线测定,在912℃时γ-Fe的晶格常数为0.3633nm,α-Fe的晶格常数为0.2892nm,当由γ-Fe转化为α-Fe时,求其体积膨胀,并与a)比较,说明其差别的原因。

第五章金属学基础第五节铁碳合金相图

第五章金属学基础第五节铁碳合金相图

第五章金属学基础第五节铁碳合金相图由α-Fe转变为γ-Fe就是属于________。

A.同素异构转变B.共析转变C.共晶转变D.匀晶转变Fe-Fe3C相图就是Fe-C合金相图的一部分,生产中使用的碳钢与铸铁的含碳量不超过________,Fe-Fe3C相图部分就可满足生产上的要求。

A.2、11%B.1、5%C.4、3%D.5%Fe-Fe3C相图就是Fe-C合金相图的一部分,其组元为________。

A.F+AB.F+Fe3CC.Fe+Fe3CD.P+Fe3C当温度在室温至727℃时,α-Fe的体心立方晶格中的溶碳量为________。

A.0、0008%~0、0218%B.0、0008%~0、077%C.0、0218%~0、77%D.0、77%~2、11%当温度在727~1148℃时,γ-Fe的面心立方晶格中的溶碳量为________。

A.0、0008%~0、0218%B.0、0008%~0、077%C.0、0218%~0、77%D.0、77%~2、11%在下列铁的形态中,具有体心立方晶格的就是________。

A.α-FeB.γ-FeC.δ-FeD.α-Fe与δ-Fe在下列铁的形态中,具有面心立方晶格的就是________。

A.α-FeB.γ-FeC.δ-FeD.α-Fe与δ-Fe渗碳体的性能特点就是________。

Ⅰ.硬度高;Ⅱ.硬度低;Ⅲ.强度高;Ⅳ.强度低;Ⅴ.塑性高;Ⅵ.塑性低。

A.Ⅱ+Ⅲ+ⅤB.Ⅰ+ⅤC.Ⅰ+Ⅳ+ⅥD.Ⅰ+Ⅵ碳溶于α-Fe的晶格中形成的固溶体称为________。

A.铁体素B.奥氏体C.渗碳体D.马氏体铁素体的最大的溶碳量为________。

A.0、77%B.0、0008%C.0、0218%D.2、11%在室温时,铁素体的最大的溶碳量为________。

A.0、77%B.0、0008%C.0、0218%D.2、11%在727℃时,铁素体的最大的溶碳量为________。

机械工程材料 第三版 第五章 铁碳合金相图

机械工程材料 第三版 第五章 铁碳合金相图
① 亚共晶白口铸铁 (2.11~4.3%C)
② 共晶白口铸铁 (4.3%C)
③ 过共晶白口铸铁 (4.3~6.69%C)
㈠工业纯铁的 结晶过程
合 金 液 体 在 1-2
点间转变为, 3-4 点 间 → , 5-6 点 间 → 。 到7点,从中
析出Fe3C。
L+ H B
J
N +
+ S
工业纯铁的结晶过程
PQ—碳在-Fe中的固
溶线。
⒊ 相区
⑴ 五个单相区:
L、、、、Fe3C ⑵ 七个两相区: L+、
L+、L+Fe3C、 +、 +Fe3C、+ 、 +Fe3C
⑶ 三个三相区:即HJB (L++)、ECF(L++ Fe3C)、 PSK(++ Fe3C)三条水平线
三、典型合金的平衡结晶过程
铁碳相图上的合金,按成分可分为三类: ⑴ 工业纯铁(<0.0218% C) 组织为单相铁素体。
㈡ 共析钢的结晶过程
合金液体在 1-2点间转变
为。到S点
发生共析转 变:
S⇄P+Fe3C, 全部转变
为珠光体。
共析钢的结晶过程
珠光体在光镜下呈指纹状. 变结束时,珠光体中相的
相对重量百分比为:
Q
SK PK
6.69 0.77 6.69 0.0218
88.8%,
Q Fe3C 100% 88.8% 11.2%
从铁素体中析出的渗碳体称三次渗碳体,用Fe3CⅢ 表示。 Fe3CⅢ以不连续网状或片状分布于晶界。
随温度下降,
Fe3CⅢ量不断 增加,合金的
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章铁碳相图习题参考答案一、解释下列名词答:1、铁素体:碳溶入α-Fe中形成的间隙固溶体。

奥氏体:碳溶入γ-Fe中形成的间隙固溶体。

渗碳体:铁与碳形成的具有复杂晶体结构的金属化合物。

珠光体:铁素体和渗碳体组成的机械混合物。

莱氏体:由奥氏体和渗碳体组成的机械混合物。

2、Fe3CⅠ:由液相中直接析出来的渗碳体称为一次渗碳体。

Fe3CⅡ:从A中析出的Fe3C称为二次渗碳体。

Fe3CⅢ:从铁素体中析出的Fe3C称为三次渗碳体。

共析Fe3C:经共析反应生成的渗碳体即珠光体中的渗碳体称为共析渗碳体。

共晶Fe3C:经共晶反应生成的渗碳体即莱氏体中的渗碳体称为共晶渗碳体。

3、钢:含碳量大于0.00218%,小于2.11%的铁碳合金。

白口铸铁:含碳量大于2.11%的铁碳合金。

二、填空题1、常温平衡状态下,铁碳合金基本相有铁素体(F)、渗碳体(Fe3C)等两个。

2、Fe-Fe3C相图有4个单相区,各相区的相分别是液相(L)、δ相、铁素体(F)、奥氏体(A)。

3、Fe-Fe3C 相图有三条水平线,即HJB、ECF和PSK线,它们代表的反应分别是包晶反应、共晶反应和共析反应。

4、工业纯铁的含碳量为≤0.0218%,室温平衡组织为F+ Fe3CⅢ。

5、共晶白口铁的含碳量为4.3%,室温平衡组织P占40.37%,Fe3C共晶占47.82%,Fe3CⅡ占11.81%。

6、一钢试样,在室温平衡组织中,珠光体占60%,铁素体占40%,该钢的含碳量为0.4707。

7、钢的组织特点是高温组织为奥氏体(A),具有良好的塑、韧性,因而适于热加工成形。

8、白口铸铁的特点是液态结晶都有共晶转变,室温平衡组织中都有莱氏体,因而适于通过铸造成形。

三、简答题1、为什么γ-Fe 和α- Fe 的比容不同?一块质量一定的铁发生(γ-Fe →α-Fe )转变时,其体积如何变化?答:因为γ-Fe和α- Fe原子排列的紧密程度不同,γ-Fe的致密度为74%,α- Fe的致密度为68%,因此一块质量一定的铁发生(γ-Fe →α-Fe )转变时体积将发生膨胀。

2、铁素体(F),奥氏体(A),渗碳体(Fe3C),珠光体(P),莱氏体(Ld)的结构、组织形态、性能等各有何特点?答:铁素体结构为体心立方晶格。

由于碳在α-Fe中的溶解度`很小,它的性能与纯铁相近。

塑性、韧性好,强度、硬度低。

它在钢中一般呈块状或片状。

奥氏体(A)结构为面心立方晶格。

因其晶格间隙尺寸较大,故碳在γ-Fe中的溶解度较大。

有很好的塑性。

渗碳体(Fe3C)具有复杂晶格的间隙化合物。

渗碳体具有很高的硬度,但塑性很差,延伸率接近于零。

在钢中以片状存在或网络状存在于晶界。

在莱氏体中为连续的基体,有时呈鱼骨状。

珠光体(P)为铁素体和渗碳体组成的机械混合物。

铁素体和渗碳体呈层片状。

珠光体有较高的强度和硬度,但塑性较差。

莱氏体(Ld)为奥氏体和渗碳体组成的机械混合物。

在莱氏体中,渗碳体是连续分布的相,奥氏体呈颗粒状分布在渗碳体基体上。

由于渗碳体很脆,所以莱氏体是塑性很差的组织。

3、Fe-Fe3C合金相图有何作用?在生产实践中有何指导意义?又有何局限性?答:⑴碳钢和铸铁都是铁碳合金,是使用最广泛的金属材料。

铁碳合金相图是研究铁碳合金的重要工具,了解与掌握铁碳合金相图,对于钢铁材料的研究和使用,各种热加工工艺的制订以及工艺废品原因的分析等方面都有重要指导意义。

⑵为选材提供成分依据:铁碳相图描述了铁碳合金的组织随含碳量的变化规律,合金的性能决定于合金的组织,这样根据零件的性能要求来选择不同成分的铁碳合金;为制定热加工工艺提供依据:对铸造,根据相图可以找出不同成分的钢或铸铁的熔点,确定铸造温度;根据相图上液相线和固相线间距离估计铸造性能的好坏。

对于锻造:根据相图可以确定锻造温度。

对焊接:根据相图来分析碳钢焊缝组织,并用适当热处理方法来减轻或消除组织不均匀性;对热处理:铁碳相图更为重要,如退火、正火、淬火的加热温度都要参考铁碳相图加以选择。

⑶由于铁碳相图是以无限缓慢加热和冷却的速度得到的,而在实际加热和冷却通常都有不同程度的滞后现象。

4、画出 Fe-Fe3C 相图,指出图中 S 、C 、E 、P、N 、G 及 GS 、SE 、PQ 、PSK 各点、线的F+F e3C III 912℃A+F e3C IIA+FP+FP+F e3C IIPP+Ld+F e3C IIA+Ld+F e3C IILdLd′Ld′+F e3C ILd+F e3C IL+F e3C IL+AA0.0218%FK P727℃G Q4.3%CA0.77%2.11%ED1227℃1538℃SVIVIVIIIIII意义,并标出各相区的相组成物和组织组成物。

答:C :共晶点1148℃ 4.30%C ,在这一点上发生共晶转变,反应式:C Fe A Lc E 3+⇔,当冷到1148℃时具有C 点成分的液体中同时结晶出具有E 点成分的奥氏体和渗碳体的两相混合物——莱氏体()()C Fe A Le E 3+→E :碳在Fe -γ中的最大溶解度点1148℃ 2.11%CG :Fe Fe -⇔-γα同素异构转变点(A 3)912℃ 0%CH :碳在Fe -δ中的最大溶解度为1495℃ 0.09%CJ :包晶转变点1495℃ 0.17%C 在这一点上发生包晶转变,反应式:J H B A L ⇔+δ当冷却到1495℃时具有B 点成分的液相与具有H 点成分的固相δ反应生成具有J 点成分的固相A 。

N :Fe Fe -⇔-δγ同素异构转变点(A 4)1394℃ 0%CP :碳在Fe -α中的最大溶解度点 0.0218%C 727℃S :共析点727℃ 0.77%C 在这一点上发生共析转变,反应式:c Fe F A p s 3+⇔,当冷却到727℃时从具有S 点成分的奥氏体中同时析出具有P 点成分的铁素体和渗碳体的两相混合物——珠光体P (c Fe F p 3+)ES 线:碳在奥氏体中的溶解度曲线,又称Acm 温度线,随温度的降低,碳在奥化体中的溶解度减少,多余的碳以C Fe 3形式析出,所以具有0.77%~2.11%C 的钢冷却到Acm 线与PSK 线之间时的组织ⅡC Fe A 3+,从A 中析出的C Fe 3称为二次渗碳体。

GS 线:不同含碳量的奥氏体冷却时析出铁素体的开始线称A 3线,GP 线则是铁素体析出的终了线,所以GSP 区的显微组织是A F +。

PQ 线:碳在铁素体中的溶解度曲线,随温度的降低,碳在铁素体中的溶解度减少,多余的碳以C Fe 3形式析出,从F 中析出的C Fe 3称为三次渗碳体ⅢC Fe 3,由于铁素体含碳很少,析出的ⅢC Fe 3很少,一般忽略,认为从727℃冷却到室温的显微组织不变。

PSK 线:共析转变线,在这条线上发生共析转变C Fe F A P S 3+⇔,产物(P )珠光体,含碳量在0.02~6.69%的铁碳合金冷却到727℃时都有共析转变发生。

5、简述 Fe-Fe 3C 相图中三个基本反应:包晶反应,共晶反应及共析反应,写出反应式,标出含碳量及温度。

答:共析反应:冷却到727℃时具有S 点成分的奥氏体中同时析出具有P 点成分的铁素体和渗碳体的两相混合物。

γ0.8−−→−æ727F 0.02+Fe 3C 6.69 包晶反应:冷却到1495℃时具有B 点成分的液相与具有H 点成分的固相δ反应生成具有J 点成分的固相A 。

L 0.5+δ0.1−−→−æ1495γ0.16共晶反应:1148℃时具有C 点成分的液体中同时结晶出具有E 点成分的奥氏体和渗碳体的两相混合物。

L 4.3−−→−æ1147γ 2.14+ Fe 3C 6.696、亚共析钢、共析钢和过共析钢的组织有何特点和异同点。

答:亚共析钢的组织由铁素体和珠光体所组成。

其中铁素体呈块状。

珠光体中铁素体与渗碳体呈片状分布。

共析钢的组织由珠光体所组成。

过共析钢的组织由珠光体和二次渗碳体所组成,其中二次渗碳体在晶界形成连续的网络状。

共同点:钢的组织中都含有珠光体。

不同点:亚共析钢的组织是铁素体和珠光体,共析钢的组织是珠光体,过共析钢的组织是珠光体和二次渗碳体。

7、分析含碳量分别为0.60%、0.77%、1.0% 的铁碳合金从液态缓冷至室温时的结晶过程和室温组织。

答:0.77%C:在1~点间合金按匀晶转变结晶出A ,在2点结晶结束,全部转变为奥氏体。

冷到3点时(727℃),在恒温下发生共析转变,转变结束时全部为珠光体P ,珠光体中的渗碳体称为共析渗碳体,当温度继续下降时,珠光体中铁素体溶碳量减少,其成分沿固溶度线PQ 变化,析出三次渗碳体Fe3C III ,它常与共析渗碳体长在一起,彼此分不出,且数量少,可忽略。

室温时组织P 。

0.60% C :合金在1~2间按匀晶转变结晶出A ,在2点结晶结束,全部转变为奥氏体。

冷到3点时开始析出F ,3~4点A 成分沿GS 线变化,铁素体成分沿GP 线变化,当温度到4点时,奥氏体的成分达到S 点成分(含碳0.77%),便发生共析转变,形成珠光体,此时,原先析出的铁素体保持不变,称为先共析铁素体,其成分为0.0218%C ,所以共析转变结束后,合金的组织为先共析铁素体和珠光体,当温度继续下降时,铁素体的溶碳量沿PQ 线变化,析出三次渗碳体,同样Fe3C III 量很少,可忽略。

所以含碳0.40%的亚共析钢的室温组织为:F+P1.0% C :合金在1~2点间按匀晶转变结晶出奥氏体,2点结晶结束,合金为单相奥氏体,冷却到3点,开始从奥氏体中析出二次渗碳体Fe3C II ,Fe3C II 沿奥氏体的晶界析出,呈网状分布,3-4间Fe3C II 不断析出,奥氏体成分沿ES 线变化,当温度到达4点(727℃)时,其含碳量降为0.77%,在恒温下发生共析转变,形成珠光体,此时先析出的Fe3C II 保持不变,称为先共析渗碳体,所以共析转变结束时的组织为先共析二次渗碳体和珠光体,忽略Fe3C III 。

室温组织为二次渗碳体和珠光体。

8、指出下列名词的主要区别:一次渗碳体、二次渗碳体、三次渗碳体、共晶渗碳体与共析渗碳体。

答:一次渗碳体:由液相中直接析出来的渗碳体称为一次渗碳体。

二次渗碳体:从A 中析出的C Fe 3称为二次渗碳体。

三次渗碳体:从F中析出的CFe3称为三次渗碳体ⅢCFe3。

共晶渗碳体:经共晶反应生成的渗碳体即莱氏体中的渗碳体称为共晶渗碳体。

共析渗碳体:经共析反应生成的渗碳体即珠光体中的渗碳体称为共析渗碳体。

9、根据 Fe-Fe3C 相图,计算:⑴室温下,含碳 0.6% 的钢中珠光体和铁素体各占多少;⑵室温下,含碳 1.2% 的钢中珠光体和二次渗碳体各占多少;⑶铁碳合金中,二次渗碳体和三次渗碳体的最大百分含量。

相关文档
最新文档