一类广义Wiener非线性系统的参数辨识算法
参数辨识方法

参数辨识方法指通过实验数据或观测结果,推断或估计系统或模型的参数值的一类方法。
这些方法通常用于建立数学模型、探索系统行为、优化控制策略等领域。
以下是几种常见的参数辨识方法:
1. 最小二乘法(Least Squares Method):最小二乘法是一种常见的参数辨识方法,通过最小化实际观测值与模型预测值之间的差异来估计参数。
它适用于线性和非线性模型,并可考虑测量误差。
2. 极大似然估计(Maximum Likelihood Estimation):极大似然估计是一种统计方法,用于通过最大化观测数据的似然函数来估计参数。
它适用于概率模型和随机过程的参数辨识。
3. 遗传算法(Genetic Algorithms):遗传算法是一种优化算法,可以用于参数辨识问题。
它模拟生物进化过程中的选择、交叉和变异等操作,通过迭代搜索来找到最优参数组合。
4. 粒子群优化算法(Particle Swarm Optimization):粒子群优化算法是一种启发式优化算法,模拟鸟群或鱼群的行为,通过协作和信息共享来寻找最优参数组合。
5. 系统辨识理论(System Identification Theory):系统辨识理论提供了一系列数学和统计方法,用于从实验数据中推断系统的结构和参数。
它涵盖了许多方法,包括参数估计、频域分析、时域分析等。
这些方法的选择取决于具体的应用和问题领域。
不同方法有不同的假设和适用条件,需要根据实际情况选择合适的参数辨识方法来获得准确的参数估计。
非线性控制理论和方法

非线性控制理论和方法姓名:引言人类认识客观世界和改造世界的历史进程,总是由低级到高级,由简单到复杂,由表及里的纵深发展过程。
在控制领域方面也是一样,最先研究的控制系统都是线性的。
例如,瓦特蒸汽机调节器、液面高度的调节等。
这是由于受到人类对自然现象认识的客观水平和解决实际问题的能力的限制,因为对线性系统的物理描述和数学求解是比较容易实现的事情,而且已经形成了一套完善的线性理论和分析研究方法。
但是,现实生活中,大多数的系统都是非线性的。
非线性特性千差万别,目前还没一套可行的通用方法,而且每种方法只能针对某一类问题有效,不能普遍适用。
所以,可以这么说,我们对非线性控制系统的认识和处理,基本上还是处于初级阶段。
另外,从我们对控制系统的精度要求来看,用线性系统理论来处理目前绝大多数工程技术问题,在一定范围内都可以得到满意的结果。
因此,一个真实系统的非线性因素常常被我们所忽略了,或者被用各种线性关系所代替了。
这就是线性系统理论发展迅速并趋于完善,而非线性系统理论长期得不到重视和发展的主要原因。
控制理论的发展目前面临着一系列严重的挑战其中最明显的挑战来自大范围运动的非线性复杂系统, 同时, 现代非线性科学所揭示的分叉、混沌、奇异吸引子等, 无法用线性系统理论来解释, 呼唤着非线性控制理论和应用的突破。
1. 传统的非线性研究方法及其局限性传统的非线性研究是以死区、饱和、间隙、摩擦和继电特性等基本的、特殊的非线性因素为研究对象的, 主要方法是相平面法和描述函数法。
相平面法是Poincare 于1885 年首先提出的一种求解常微分方程的图解方法。
通过在相平面上绘制相轨迹, 可以求出微分方程在任何初始条件下的解。
它是时域分析法在相空间的推广应用, 但仅适用于一、二阶系统。
描述函数法是P. J.Daniel 于1940 年提出的非线性近似分析方法。
其主要思想是在一定的假设条件下, 将非线性环节在正弦信号作用下的输出用一次谐波分量来近似, 并导出非线性环节的等效近似频率特性(描述函数) , 非线性系统就等效为一个线性系统。
非线性系统系统辨识与控制研究

非线性系统系统辨识与控制研究引言:非线性系统是指系统在其输入与输出之间的关系不符合线性关系的系统。
这种系统具有复杂的动态行为和非线性特性,使得其辨识与控制变得非常具有挑战性。
然而,非线性系统在现实生活中的应用非常广泛,例如电力系统、机械系统和生物系统等。
因此,对非线性系统的系统辨识与控制研究具有重要意义。
一、非线性系统辨识方法研究1. 仿射变换法仿射变换法是一种常用的非线性系统辨识方法之一。
它通过将非线性系统进行仿射变换,将其转化为线性系统的形式,从而利用线性系统辨识的方法进行处理。
该方法适用于具有输入输出非线性关系的系统,但对于参数模型的选择和计算量较大的问题需要进一步研究。
2. 基于神经网络的方法神经网络作为一种强大的表达非线性关系的工具,被广泛应用于非线性系统辨识。
基于神经网络的方法可以通过训练神经网络模型,从大量的输入输出数据中学习非线性系统的映射关系。
该方法的优点是可以逼近任意非线性函数,但对于网络结构的选择和训练过程中的收敛性等问题还需深入研究。
3. 基于系统辨识方法的非线性系统辨识传统的系统辨识方法主要适用于线性系统的辨识,但其在非线性系统辨识中也有应用的价值。
通过对非线性系统进行线性化处理,可以将其转化为线性系统的辨识问题。
同时,利用最小二乘法、频域法等常用的系统辨识方法对线性化后的系统进行辨识。
这种方法的优势在于利用了线性系统辨识的经验和技术,但对于线性化的准确性和辨识结果的合理性需要进行评估。
二、非线性系统控制方法研究1. 反馈线性化控制反馈线性化是一种常用的非线性系统控制方法。
该方法通过在非线性系统中引入反馈控制器,将非线性系统转化为可控性的线性系统。
然后,利用线性系统控制方法设计控制器,并通过反馈线性化控制策略实现对非线性系统的控制。
该方法的优点在于简化了非线性系统控制的设计和分析过程,但对于系统的稳定性和性能等问题还需要进行进一步的研究。
2. 自适应控制自适应控制是一种针对非线性系统的适应性控制方法。
热工系统Hammerstein-Wiener模型辨识

中 图分 类 号 : T K 3 2 3 文献标识码 : A
I de n t i ic f a t i o n o f The r ma l Pr o c e s s Us i ng Ha m me r s t e i n- W i e ne r Mo d e l
ABS TRACT : I n t h e r ma l s y s t e m,ma n y p r o d u c t i o n l i n k s a r e n o n l i n e r a a n d t i me - d e l a y, S O t h e i d e n t i i f c a t i o n o f t h e m i s ma i n r e s t ic r t i v e f a c t o r or f t h e r ma l s y s t e m. Ha mme r s t e i n - Wi e n e r mo d e l i s a c o mp o s i t e mo d e l o f Ha mme r s t e i n mo d e l
a n d Wi e n e r mo d e l ,w h i c h c a n b e t t e r e x p r e s s t h e d y n a mi c c h a r a c t e i r s t i c s a n d s t a t i c c h a r a c t e is r t i c s o f t h e p r o d u c t i o n
非线性系统辨识模型选择方法综述

文献2:Model selection approaches for non-linear system identification: a reviewX. Hong, R.J. Mitchell, S. Chen, C.J. Harris, K. Li and G.W. Irwin. International Journal of Systems Science, 2008,39(10): 925–946非线性系统辨识模型选择方法综述摘要:近20年来基于有限观测数据集的非线性系统辨识方法的研究比较成熟。
由于可利用现有线性学习算法,同时满足收敛条件,目前深入研究和广泛使用的非线性系统辨识方法是一类具有万能逼近能力的参数线性化非线性模型辨识(linear-in-the-parameters nonlinear model identification )。
本文综述了参数线性化的非线性模型选择方法。
非线性系统辨识最基本问题是从观测数据中识别具有最好模型泛化性能的最小模型。
综述了各种非线性系统辨识算法中实现良好模型泛化性的一些重要概念,包括贝叶斯参数正规化,基于交叉验证和实验设计的模型选择准则。
机器学习的一个显著进步,被认为是确定的结构风险最小化原则为基础的内核模式,即支持向量机的发展。
基于凸优化建模算法,包括支持向量回归算法,输入选择算法和在线系统辨识算法。
1 引言控制工程学科的系统辨识,是指从测量数据建立系统/过程动态特性的数学描述,以便准确预测输入未来行为。
系统辨识2个重要子问题:(1)确定描述系统输入和输出变量之间函数关系的模型结构;(2)估计选定或衍生模型结构范围内模型参数。
最初自然的想法是使用输入输出观测值线性差分方程。
早期研究集中在线性时不变系统,近期线性辨识研究考虑连续系统辨识、子空间辨识、变量误差法(errors-in-the-variable methods )。
模型质量重要测度是未知过程逼近的拟合精度。
非线性系统辨识方法综述

非线性系统辨识方法综述系统辨识属于现代控制工程范畴,是以研究建立一个系统的数学模型的技术方法。
分析法和实验法是主要的数学模型建立方法。
系统辨是一种实验建立数学模型的方法,可实时建模,满足不同模型建立的需求。
L.A.Zadeh于1962年提出系统辨识的定义:在输入、输出的基础上,确定一个在一定条件下与所观测系统相等的系统。
系统辨识技术主要由系统的结构辨识和系统的参数估计两部分组成。
系统的数学表达式的形式称之为系统的结构。
对SISO系统而言,系统的阶次为系统的机构;对多变量线性系统而言,模型结构就是系统的能控性结构指数或能观性结构指数。
但实际应用中难以找到与现有系统等价的模型。
因此,系统辨识从实际的角度看是选择一个最好的能拟合实际系统输入输出特性的模型。
本文介绍一些新型的系统辨识方法,体现新型方法的优势,最后得出结论。
二、基于神经网络的非线性系统辨识方法近年来,人工神经网络得到了广泛的应用,尤其是在模式识别、机器学习、智能计算和数据挖掘方面。
人工神经网络具有较好的非线性计算能力、并行计算处理能力和自适应能力,这为非线性系统的辨识提供了新的解决方法。
结合神经网络的系统辨识法被用于各领域的研究,并不断提出改进型方法,取得了较好的进展。
如刘通等人使用了径向基函数神经网络对伺服电机进行了辨识,使用了梯度下降方法进行训练,确定系统参数;张济民等人对摆式列车倾摆控制系统进行了改进,使用BP神经对倾摆控制系统进行辨识;崔文峰等人将最小二乘法与传统人工神经网络结合,改善了移动机器人CyCab的运行系统。
与传统的系统识别方法相比较,人工神经网络具有较多优点:(一)使用神经元之间相连接的权值使得系统的输出可以逐渐进行调整;(二)可以辨识非线性系统,这种辨识方法是络自身来进行,无需编程;(三)无需对系统建行数模,因为神经网络的参数已都反映在内部;(四)神经网络的独立性强,它采用的学习算法是它收敛速度的唯一影响因素;(五)神经网络也适用于在线计算机控制。
系统辨识课件-经典的辨识方法

ˆ (t ) Ru (t )dt Ruz ( ) g
0
此为辨识过程脉冲响应的理论依据
2 Ru ( ) u ( ) 白噪声输入时 ˆ 1 g ( ) Ruz ( ) 2 u
4.5.2 用M序列作输入信号的离散算法
第4章 经典的辨识方法
4.1 引言 ● 辨识方法的分类 ▲ 经典的辨识方法 (Classical Identification) :首先获得系统的非参数模型(频 率响应,脉冲响应,阶跃响应),通过特定方法,将非参数模型转化成参数 模型 (传递函数)。 ① 阶跃响应辨识方法 (Step Response Identification) ② 脉冲响应辨识方法 (Impulse Response Identification) ③ 频率响应辨识方法 (Frequency Response Identification) ④ 相关分析辨识方法 (Correlation Analysis Identification) ⑤ 谱分析辨识方法 (Spectral Analysis Identification) ▲ 现代的辨识方法 (Modern Identification):假定一种模型结构,通过模型与过 程之间的误差准则来确定模型的结构参数)。 ① 最小二乘类辨识方法 (Least Square Identification) ② 梯度校正辨识方法 (Gradient Correction Identification) ③概率逼近辨识方法(Probability Approximation Identification) 经典的辨识方法 1)首先得到系统的非参数模型; 2)由非参数模型转换成参数模型。
K 1 lim h1 (t )
hr (t ) [ K r 1 hr 1 ( )]d
Wiener系统中线性函数辨识的渐近性分析

第3 1卷第 1期
2012年 3月
计
算
技
术
与 自 动
化
Vo . . . 1 31 NO 1
M a .2 0 12 r
Co u i g Te h o o y a d Au o to mp tn c n l g n t ma in
文 章 编 号 :0 3 6 9 ( 0 2 0 - 0 2 - 0 1 0 — 19 2 1 )1 0 1 7
ቤተ መጻሕፍቲ ባይዱ
mo e r e .S e o ep ir if r t na o ttefr rs se week o d l d r owh n sm r i no mai b u h ome y tm r n wn,t e et s mpo i o a in emarx o o o h s woay tt c v ra c ti c
提 下 , 渐近 方差式能更精 确地接 近于各 自对应的真实采样值 。最后 用仿真算例 验证本文 方法的有效性 和 该
可行性。
关键词 : e e Wi r系统 ; n 系统辨 识 ; 预测误差法 ; 渐近性 ; 有限阶次
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一类广义Wiener非线性系统的参数辨识算法
景绍学;范梦松;李冬梅
【期刊名称】《软件工程师》
【年(卷),期】2018(021)010
【摘要】传统的Wiener系统在工业系统建模方面获得了大量应用,但是当系统含有动态非线性环节时,就会因为模型不匹配导致建模效果不佳.为了更好的对这类系统进行建模,必须将传统Wiener系统中的静态非线性模块扩展为动态非线性形式.在采用全新结构的基础上,基于关键项分离技术参数化系统以减小算法计算量,并避免出现参数乘积项;对数据进行滤波以获得参数的无偏估计;运用最小二乘算法以获得健壮的参数估计值.数值仿真表明了算法的有效性.
【总页数】4页(P20-23)
【作者】景绍学;范梦松;李冬梅
【作者单位】淮阴师范学院物理与电子电气工程学院,江苏淮安 223300;淮阴师范学院物理与电子电气工程学院,江苏淮安 223300;淮阴师范学院物理与电子电气工程学院,江苏淮安 223300
【正文语种】中文
【中图分类】TP391.9
【相关文献】
1.一类非线性系统结构和参数辨识方法的应用研究 [J], 陈庆新;刘明远
2.Hammerstein-Wiener系统的递推贝叶斯参数辨识算法 [J], 景绍学;李正明
3.一类非线性系统参数辨识的新方法及其在生化发酵... [J], 胡仰曾
4.广义预测控制在特殊Wiener型非线性系统的应用研究 [J], 李鑫
5.一类广义Wiener非线性系统的参数辨识算法 [J], 景绍学; 范梦松; 李冬梅因版权原因,仅展示原文概要,查看原文内容请购买。