自动控制原理非线性分析知识点总结

合集下载

自动控制原理第七章非线性控制系统的分析

自动控制原理第七章非线性控制系统的分析
X X
这里,M=3,h=1
负倒描述函数为
N 1 X
X
12 1 1 2
X
X 1
X 1, N 1 X , N 1
必有极值
d N 1X 令
0 dX
得 X 2
N 1 2
2
0.523
12
1
1 2
2
6
X: 1 2
-N-1(X): 0.523
2.自振的稳定性分析
在A点,振幅XA,频率A。
扰动:
X : A点 C点 C点被G(j)轨迹包围,不稳定,
振幅 ,工作点由C点向B点运动;
A点一个不稳 定的极限环。
X : A点 D点 D点不被G(j)轨迹包围,稳定,
振幅 ,工作点由D点左移。
在B点,振幅XB,频率B 。 扰动:
X : B点 E点 E点不被G(j) 轨迹包围,稳定,
振幅 ,工作点由E点到B点;
X : B点 F点 F点被G(j)轨迹包围,不稳定,
振幅 ,工作点由F回到B点。
B点呈现稳定的自激振荡:振幅XB ,频率B。
3.闭环系统稳定性判别步骤
1)绘制非线性部分的负倒描述函数曲线和线 性部分的频率特性曲线。
2)若G(j)曲线不包围“-N-1(X)”曲线,则系统稳定。 若G(j)曲线包围“-N-1(X) ”曲线,系统不稳定。 若G(j)曲线与“-N-1(X)”曲线相交,系统出现自振。
3)若G(j )曲线与“-N-1(X)”曲线有交点,做以 下性能分析:
(1)不稳定的极限环
(2)稳定的极限环 计算自振频率和幅值。
例1:非线性系统如图所示,其中非线性特性为 具有死区的继电器,分析系统的稳定性。
0e

自动控制原理第十章非线性控制系统

自动控制原理第十章非线性控制系统

自动控制原理第十章非线性控制系统非线性控制系统是指系统动态特性不能用线性数学模型表示或者用线性控制方法解决的控制系统。

非线性控制系统是相对于线性控制系统而言的,在现实工程应用中,许多系统经常具有非线性特性,例如液压系统、电力系统、机械系统等。

非线性控制系统的研究对于实现系统的高效控制和稳定运行具有重要意义。

一、非线性控制系统的特点1.非线性特性:非线性控制系统的动态特性往往不能用线性方程或者线性微分方程描述,经常出现非线性现象,如饱和、死区、干扰等。

2.多变量关联:非线性系统动态关系中存在多个变量之间的相互影响,不同变量之间存在复杂的耦合关系,难以分离分析和解决。

3.滞后响应:非线性系统的响应时间较长,且在过渡过程中存在较大的像后现象,不易预测和控制。

4.不确定性:非线性系统通常存在参数变化、外部扰动和测量误差等不确定性因素,会导致系统性能变差,控制效果下降。

二、非线性控制系统的分类1.反馈线性化控制:将非线性系统通过适当的状态反馈、输出反馈或其它形式的反馈转化为线性系统,然后采用线性控制方法进行设计。

2.优化控制:通过建立非线性系统的数学模型,利用优化理论和方法,使系统达到其中一种性能指标最优。

3.自适应控制:根据非线性系统的参数变化和不确定性,设计自适应控制器,实时调整控制参数,以适应系统的动态变化。

4.非线性校正控制:通过建立非线性系统的映射关系,将测量信号进行修正,以减小系统的非线性误差。

5.非线性反馈控制:根据非线性系统的特性,设计合适的反馈控制策略,使得系统稳定。

三、非线性控制系统设计方法1.线性化方法:通过将非线性系统在其中一工作点上线性化,得到局部的线性模型,然后利用线性控制方法进行设计和分析。

2.动态编程方法:采用动态系统优化的方法,建立非线性系统的动态规划模型,通过求解该模型得到系统的最优控制策略。

3.反步控制方法:通过构造适当的反步函数和反步扩散方程,实现系统状态的稳定和输出的跟踪。

自动控制原理非线性控制系统分析

自动控制原理非线性控制系统分析
M -a
y
0
a
x
-M
y M7
2、死区特性 当输入|x|≤ ∆ 时,输出y=0,当输入|x|> ∆ 时,y与x呈线性关系。∆ 死区范围,K=tgβ 是死 区特性线性段的斜率。
死区特性对系统最直接的影响是造成系统的 稳态误差。死区的存在相当于降低了系统的开环 增益,从而提高了系统的稳定性,减弱了过渡过 程的振荡性。另外死区可以滤除输入端做小幅度 振荡的干扰信号,从而提高系统的抗干扰能力。
81非线性控制系统概述研究非线性控制理论的意义实际上理想的线性系统并不存在组成系统的各元件的动态和静态特性都存在着不同程度的非线性
自动控制原理
第八章 非线性控制系统分析
8-1 非线性控制系统概述
1. 研究非线性控制理论的意义
实际上,理想的线性系统并不存在,组成 系统的各元件的动态和静态特性都存在着不同 程度的非线性。
y M -a K 0 a -M x
13
8
3、饱和特性 当输入|x|≤ a 时, y与x呈线性关系, 即y=Kx;当输入|x|> a时,输出y保持为 一常值 。a为线性区,K是饱和特性线性 区的斜率。 饱和特性对系统的影响比较复杂,随 系统的结构和参数的不同而不同。但一般 来说,饱和特性往往促使系统稳定,但会 减小系统的放大系数,降低系统的稳态精 度。
y y y
0
x
0
x
0
x
3
2. 非线性系统的特征 稳定性分析复杂,系统可能存在多个平衡状态; t x0 e x x( x 1) x(t ) 1 x0 x0 et
4
可能存在自激振荡现象; 频率响应发生畸变。
3. 非线性系统的分析与设计方法

自动控制原理第八章非线性控制系统

自动控制原理第八章非线性控制系统
稳定性定义
如果一个非线性系统在初始扰动下偏离平衡状态,但在时间推移过程中能够恢复到平衡状态,则称该系统是稳定 的。
线性系统稳定的必要条件
系统矩阵A的所有特征值均具有负实 部。
系统矩阵A的所有特征值均具有非正实 部,且至少有一个特征值为0。
劳斯-赫尔维茨稳定判据
劳斯判据
通过计算系统矩阵A的三次或更高次特征多项式的根的实部来判断系统的稳定性。如果所有根的实部 均为负,则系统稳定;否则,系统不稳定。
输出反馈方法
通过输出反馈来改善非线性系统的性能,实 现系统的稳定性和跟踪性能。
自适应控制方法
通过在线调整控制器参数来适应非线性的变 化,提高系统的跟踪性能和稳定性。
非线性系统的设计方法
根轨迹法
通过绘制根轨迹图来分析系统的稳定性,并 设计适当的控制器。
相平面法
通过绘制相平面图来分析非线性系统的动态 行为,进行系统的分析和设计。
感谢您的观看
THANKS
自动控制原理第八章非线性 控制系统
目录
• 非线性系统的基本概念 • 非线性系统的分析方法 • 非线性系统的稳定性分析 • 非线性系统的校正与设计 • 非线性系统的应用实例
01
非线性系统的基本概念
非线性系统的定义
非线性系统的定义
非线性系统是指系统的输出与输入之 间不满足线性关系的系统。在自动控 制原理中,非线性系统是指系统的动 态特性不能用线性微分方程来描述的 系统。
02
它通过将非线性系统表示为一 个黑箱模型,通过测量系统的 输入输出信号来研究其动态特 性。
03
输入输出法适用于分析具有复 杂结构的非线性系统,通过实 验测量和数据分析,可以了解 系统的动态响应和稳定性。
03

自动控制原理第八部分非线性控制系统分析

自动控制原理第八部分非线性控制系统分析

8.2 常见非线性特性及其对系统运动的影响
在一个控制系统中,包含有一个以上的非线性元件,
就构成了非线性系统。 控制系统中的典型非线性特性有:
8.2.1 饱和特性 饱和非线性的输入输出关系及数学表达式如下:
xa ka y kx x a ka x a
对系统的影响:
y
上的斜率应大小相等,符号相同。
( x , x )
x
图8-15
相轨迹对称于原点
f ( x, x ) f ( x, x )
(8-14)
2.相平面上的奇点
由相轨迹的斜率方程
x dx dx f ( x, x) 可知,相上的

只要不同时满足x 0, f ( x, x ) 0 ( x, x )
例8-1.设系统的微分方程为:
x
x x 0 x
其相平面图如右图所示 (绘制方法在下节介绍)
D
0
E
C
图中的箭头表示系统的 状态沿相轨迹的移动方向。
1 A B
x
p
图8-9 例8-1的相平面图
18
由图可知: (1)在各种初始条件下(任意一条相轨迹),系统都趋向原点(0,0),说 明原点是系统的平衡点,系统是稳定的。
f ( x, x )
x(t), 也可以写成以t为参变量的形式,用 这个 来表示。
x f (x )
x(t)
x
x
t 图8-8 方程的解
1.相轨迹:如果我们取 x 和 作为平面的直角坐标,则 x 系统在每一时刻的 均相应于平面上的一点。当 t 变化时, ( x, x ) 这一 点 x x 平面上将绘出一条相应的轨迹-----相轨迹。 在 它描述系统的运动过程。 2.相平面: x 平面称为相平面。对于一个系统,初始条件 x 不同时,其方程的解也不同。因而针对不同的初始条件,可以绘出不同的相轨迹。 若以各种可能的状态作为初始条件,则可得到一组相轨迹族。

《自动控制原理》第八章非线性控制系统分析

《自动控制原理》第八章非线性控制系统分析

K G jw = ( ) S 0.1S+1)( 0.2S+1) ( K −0.3w− j(1−0.02w2 )] [ = 4 2 w 0.0004w + 0.05w +1) (
S= jw
令 ImG(jw) = 0 即 1 – 0.02w2 = 0 ,可得 G(jw) 曲线与负实轴交点的频率为:
1 wx = = 50 = 7.07rad / s 0.02
C(t)
∆2 ∆3 ∆ = ∆1 + + k k k2 1 1
K1 ,k2 ,k3 为传递函数各自的增益
处于系统前向通路最前边的元件,其死区所 造成的影响最大,而放大元件和执行元件的影响 可以通过提高这些元件前几项的传递函数来减小。 死区对系统的直接影响是造成稳态误差,降 低了定位精度。
≤ 时,输出量 y 与 x 是线 饱和:当输入量 x≤ a x> a > 时,输出量不再 性关系 y = kx ,当 随着输入量线性增长,而保持为某一常值。
两条曲线在交点处的幅值相等,即: −π
1 1 1 2 [arcsin + 4 1−( ) ] A A A = −1
得:A = 0.5 应用奈氏判据可以判断交点对应的周期运动 2.5sin7.07t 是稳定的,故当 k = 15 时,非线性系统 工作在自振状态,自振振幅 A = 2.5 ,频率 w = 7.07rad/s (2)欲使系统稳定地工作,不出现自振荡,由于 G(s) 的极点均在右半平面,故根据奈氏判据
相对负倒描述函数为:
A A2 ( ) 1 π π h h − =− =− NA ( ) 4 4 A2 h2 1−( ) ( ) −1 h A
采用相对描述函数后,系统的特征方程改写为:

自动控制原理:第八章 非线性控制系统分析(描述函数)

自动控制原理:第八章 非线性控制系统分析(描述函数)
1 G1
【例8】系统如图,说明系统是否自振,并确定使系统稳定的初值
(A)范围。
【解】等效变换求等效G*(s)。
D(s) 1 N ( A) G1(s) G1(s) 0
N ( A) G1(s) 1 G1(s)
N ( A) G1(s) 1 1 G1(s)
G
*(s)
G1 ( s) 1 G1(s)
N ( A) 8
88
G( j )
2K
j (1 j )
2K
12
1
j
1
8
j
8
K
1
8 0.3927
Ac 8 2 3.6
K A ,
【例7】系统如图,已知
G1
(
s)
N
(
A)
1, s(s 1) 4M 1 A
G2 ( s)
h
2
A
K s
(A
h)
(1)G3 ( s),系1统是否自振?确定使系统自振的K值范围;求 K=2时的自振参数。
A
1
h 2
A
j
4Mh
A2
M h
4h
A
1
h 2
A
j
4h2
A2
1 A
N ( A) 4h
1 1 h 2
j
h
A
4h
1
h
2
A
j
h
A
A A
A
1
h
2
j
4h A 4
4. 自振分析(定性)
穿入 穿出 相切于
不是自振点 的点 是自振点
半稳定的周期运动
自振条件:
名称

自动控制原理非线性系统的分析

自动控制原理非线性系统的分析

式中A,B为实常数与初始条件有关相轨迹分别为以
( F c/k,0 )和 (F c/k,0 ) 为圆心的椭圆族.
7
y
0
4
-Fc/k
1
3
-Fc/k
Xc
2
由图可见

Fc k
xc
Fc k
时,系统运动停止于横轴上,如
初始点1出发,经2,3点到横轴上4点,与0点有稳态偏差.
⑵若以 y /为纵轴将变成圆族。
13
ii.共俄复根在s右半平面 (10) :不稳定焦点
iii.一对负实根 稳定节点, 1 临界稳定。
iv.一对正实根 ( 1) 不稳定节点
14
V 一对共轭虚根 ξ=0 ——中心点
等幅振荡
Vi 一对共轭实根 (正反馈) ——鞍点(不稳定)
15
可见,当定出奇点的特征,那么它附近导流的运动也 相应确定下来。 ④特征区:奇点周围相轨迹具有共性的区域,共性是指 普通点(描述点)在该区域内不是沿相轨迹趋于奇点(吸 引)就是沿相轨迹离开奇点(发散),他们对应的区域分 , 别称为吸引区、发散区。
利用这一特征可判断系统品质。因为在奇点附近某一 特征区域内画出一条相轨迹,即可知道其他初始条件下导 流运况。这也为画相轨迹提供了理论依据。
例: 试绘制由下列方程描述的非线性系统的相平面图。
dx 0
⑶利用系统特征方程根确定奇点位置及特征
如二阶系统 x 2n x n 2 x 0 ,s 2 2n s n 2 0
常令 x 0 ,x 0 求(奇 x ,0 )也 点 可 x x ff( (x x ,,用 y y ) ) 解出x. i.共轭复根 (01) 在s左半平面 :稳定焦点
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自动控制原理非线性分析知识点总结自动控制原理是工程领域中的一门重要学科,它研究的是如何通过
设备和技术手段,使得系统的运行能够自动控制并满足特定的性能要求。

非线性分析则是探讨系统在非线性条件下的行为特性。

在这篇文
章中,我们将对自动控制原理中的非线性分析知识点进行总结。

一、非线性系统的定义与特点
非线性系统是指系统的输出与输入之间的关系不是简单的比例关系,而是呈现出非线性的特征。

与线性系统相比,非线性系统具有以下几
个特点:
1. 非线性叠加性:系统的输出并不是输入信号的简单叠加,而是受
到系统自身状态和非线性特性的影响。

2. 非线性失稳性:非线性系统可能会出现失稳现象,即系统的输出
会趋向于无穷大或无穷小。

3. 非线性动态行为:非线性系统在输入信号发生变化时,其输出信
号的变化可能是不连续的,出现跳跃、震荡等现象。

二、非线性系统的分析方法
1. 相平面分析法:通过绘制相平面图,可以直观地了解系统的非线
性行为。

相平面图可以显示出系统的轨迹、奇点等信息,帮助我们分
析系统的稳定性和动态特性。

2. 频域分析法:利用频域分析方法,我们可以对非线性系统进行频
谱分析,找出系统的频率响应和频率特性。

通过分析系统的幅频特性
和相频特性,我们可以判断系统的稳定性和动态性能。

3. 时域响应分析法:时域分析是对系统的输入信号与输出响应进行
时间上的观察和分析。

通过观察和分析系统的阶跃响应、脉冲响应、
频率响应等,可以推断出系统的稳定性和动态特性。

4. 广义函数法:广义函数是处理非线性系统时常用的一种数学方法。

通过引入广义函数,我们可以简化非线性系统的数学描述,方便进行
分析与计算。

5. 数值模拟方法:对于复杂的非线性系统,我们可以利用计算机进
行仿真和数值模拟,通过对系统的模拟实验,得到系统的动态行为和
性能参数。

三、非线性系统的稳定性分析
1. 稳定性概念:稳定性是衡量系统响应的一种重要指标。

对于非线
性系统,我们通常关注的是渐近稳定性和有界稳定性。

渐近稳定性指
的是系统在经过一段时间后,输出信号能趋于有限值。

有界稳定性指
的是系统的输出信号受到界限限制,不会超出一定范围。

2. 纯粹时滞系统的稳定性判据:对于一类特殊的非线性系统——纯
粹时滞系统,我们可以通过判别方程的零点位置来判断其稳定性。


判别方程的所有根的实部小于零时,系统是渐近稳定的。

3. 极坐标法的应用:极坐标法是一种常用的稳定性分析方法,通过
将非线性系统的状态量用极坐标表示,可以简化系统的数学描述,并
帮助我们判断系统的稳定性。

四、非线性系统的控制方法
1. 反馈线性化方法:反馈线性化是控制非线性系统的常用方法之一,通过引入反馈控制器,将非线性系统转化为等效的线性系统进行控制。

2. 滑模控制方法:滑模控制是一种鲁棒控制方法,通过引入滑模面
和滑模控制律,可以有效地抑制非线性系统的不确定性和扰动。

3. 自适应控制方法:自适应控制是一种能够自动调节控制参数的方法,适用于非线性系统参数变化较大或者系统模型不准确的情况。

4. 非线性优化方法:非线性优化是一种通过优化控制输入信号,使
得系统性能达到最优的方法。

利用非线性优化方法,我们可以最大化
系统的性能指标,如误差最小化、能耗最小化等。

五、非线性系统的应用领域
非线性系统的分析和控制方法在许多领域都有广泛的应用,如航天
航空、电力电子、自动驾驶等。

在这些应用领域中,非线性系统往往
具有比较复杂的动态行为和性能要求,需要借助有效的非线性分析方
法和控制策略。

综上所述,非线性分析是自动控制原理中的重要内容,通过对非线
性系统的分析和控制,可以帮助我们全面了解系统的动态行为和性能
特性,并设计出更加稳定和优化的控制策略。

在实际工程应用中,我
们需要综合运用各种分析方法和控制技术,针对不同的非线性系统进行有效的分析与控制。

相关文档
最新文档