matlab常用计算命令
matlab常用指令

matlab常用指令MATLAB是一款非常实用的科学计算软件,在使用过程中,一些常用的指令是非常必要的。
在本篇文章中,我们将会介绍MATLAB常用指令,以使你更加熟练掌握MATLAB的使用。
一、基本数学运算+ 加- 减* 乘/ 除^ 幂(指数)sqrt 平方根exp 取指数log 取自然对数log10 取以10为底的对数sin 正弦cos 余弦tan 正切asin 反正弦acos 反余弦atan 反正切abs 绝对值rem 模运算fix 向零取整floor 向负无穷取整ceil 向正无穷取整round 四舍五入mod 取摸余数二、变量与矩阵1、赋值:通过等号将数值赋给变量,如:a=3;b=2.1;c=2+3i;2、数列:建立一个等差数组,例如:d=1:10; %1到10的等差数列e=linspace(0,2*pi,100); %0到2*pi之间的100个等间距点 a=[1 2 3;4 5 6;7 8 9];b=zeros(2,3);c=ones(3,2);d=rand(3,3);e=eye(4);4、矩阵元素操作:通过下标访问矩阵中的元素,例如:a(1,2) %输出a矩阵第一行第二列的元素b(2,3)=7 %将b矩阵第二行第三列的元素赋为75、矩阵运算:矩阵加减乘除,如:a+b %对应元素相加a-b %对应元素相减a*b %矩阵乘法a/b %矩阵除法a' %矩阵转置6、矩阵函数:除了使用基本操作外,还能使用各种矩阵相关函数完成矩阵计算,例如:inv(a) %矩阵求逆det(a) %矩阵求行列式trace(a) %矩阵求迹eig(a) %求特征值rank(a) %矩阵的秩size(a) %返回矩阵的大小max(a) %求矩阵元素最大值min(a) %求矩阵元素最小值sum(a) %求矩阵元素的和prod(a) %求矩阵所有元素的乘积mean(a) %求矩阵元素的平均值三、绘图1、二维绘图:绘制二维函数的曲线、散点图等,例如:x=linspace(-3,3,100); %生成-3到3之间的100个等间距点y=sin(x);plot(x,y); %绘制正弦函数曲线plot(x,y,'r--'); %绘制红色的正弦函数曲线,形状为虚线xlabel('x values');ylabel('y values');title('sine function');grid on;四、数据处理1、数据导入:在MATLAB中,可以通过各种方式将数据导入,如:a=load('filename.txt'); %从文件中载入数据b=xlsread('filename.xls'); %从Excel文件中载入数据五、编程1、条件语句:通过条件语句实现程序的分支结构,例如:if(a<0)disp('a is negative');elseif(a==0)disp('a is zero');elsedisp('a is positive');endfor i=1:10disp(i);end3、函数:在MATLAB中,可以自定义函数,函数调用格式为:function [out1,out2,...]=function_name(in1,in2,...)%函数说明%计算过程end4、脚本:在MATLAB中,脚本是一些命令或函数的集合,可以将脚本保存到文件中执行,例如:%脚本说明a=1;b=2;c=a+b;disp(c);以上便是MATLAB一些常用指令的详细介绍。
matlab中积分的命令

matlab中积分的命令Matlab中有多种命令可以用于数值积分,本文将介绍其中几个常用的积分命令,包括quad、quadl、quadgk和integral。
这些命令可以用于一维和多维积分,可以求解定积分和非定积分。
一、quad命令quad命令用于求解一维定积分,其语法为:Q = quad(fun,xmin,xmax)其中fun为要积分的函数句柄,xmin和xmax为积分的下限和上限。
quad命令使用自适应的数值积分方法,可以在较高的精度下求解积分。
二、quadl命令quadl命令也用于求解一维定积分,其语法为:Q = quadl(fun,xmin,xmax)quadl命令使用高斯-勒让德求积法,可以在较高的精度下求解积分。
与quad命令相比,quadl命令在处理某些特定类型的函数时更为准确和稳定。
三、quadgk命令quadgk命令用于求解一维非定积分,其语法为:Q = quadgk(fun,xmin,xmax)quadgk命令使用高斯-科特斯求积法,可以在较高的精度下求解非定积分。
与quad命令和quadl命令相比,quadgk命令对积分区间的长度不敏感,适用于各种类型的函数。
四、integral命令integral命令用于求解一维定积分和非定积分,其语法为:Q = integral(fun,xmin,xmax)integral命令根据输入的积分区间长度自动选择合适的数值积分方法,可以在较高的精度下求解积分。
与quad命令、quadl命令和quadgk命令相比,integral命令更加智能化,可以根据积分函数的特点自动调整积分算法。
除了以上介绍的命令外,Matlab还提供了其他一些用于数值积分的命令,如dblquad、triplequad和quad2d等。
这些命令可以用于求解二维和多维积分,适用于更复杂的问题。
在使用这些积分命令时,需要注意以下几点:1. 积分区间的选择:根据积分函数的特点选择合适的积分区间,以确保求解的准确性和稳定性。
matlab常用命令

以下是一些常用的Matlab命令:1.dir 可以查看当前工作目录下的文件。
2.who 可以查看当前工作空间中的变量名。
3.whos 可以查看当前工作空间中变量名及其详细信息。
4.cd 可以改变当前工作目录。
5.pwd 可以查看当前工作目录。
6.clear 可以清除当前工作空间中的变量。
7.delete 可以删除当前工作空间中的变量。
8.clc 可以清除命令窗口中的文本。
9.cls 可以清除命令窗口中的变量和文本。
10.help 可以查看Matlab函数的帮助文档。
11.doc 可以查看Matlab函数的帮助文档。
12.demo 可以演示Matlab函数的使用方法。
13.type 可以查看Matlab文件的类型和内容。
14.plot 可以绘制二维图形。
15.scatter 可以绘制散点图。
16.bar 可以绘制条形图。
17.plotyy 可以绘制双y轴图形。
18.surf 可以绘制三维曲面图。
19.mesh 可以绘制三维网格图。
20.table 可以创建表格型数据对象。
21.image 可以显示二维图像。
22.imread 可以读取图像文件。
23.imshow 可以显示图像文件。
24.imwrite 可以将图像文件写入磁盘。
25.size 可以获取矩阵的大小。
26.rand 可以生成随机数矩阵。
27.randn 可以生成正态分布随机数矩阵。
28.ones 可以生成全为1的矩阵。
29.zeros 可以生成全为0的矩阵。
30.eye 可以生成单位矩阵。
31.magic 可以生成魔方矩阵。
32.linspace 可以生成等差数列向量。
33.logspace 可以生成对数等差数列向量。
34.freq 可以生成频率向量。
35.polyspace 可以生成多项式空间向量。
36.grid 可以生成网格矩阵。
37.sort 可以对向量进行排序。
38.find 可以查找矩阵中的非零元素位置。
39.trace 可以计算矩阵的迹。
matlab 计算频谱的命令

【主题】matlab 计算频谱的命令一、matlab 中的频谱分析在 matlab 中,频谱分析是一种常见的数据处理技术,主要用于分析信号在频域上的特性。
频谱分析可以帮助我们了解信号的频率成分、周期性特征以及信号之间的关系,因此在信号处理、通信系统、音频分析等领域有着广泛的应用。
matlab 提供了丰富的频谱分析函数和命令,通过这些工具我们可以快速、准确地进行频谱分析,并获取有价值的信息。
二、常用的频谱分析命令1. fftfft 是 matlab 中最常用的频谱分析命令之一。
它可以将时域信号转换为频域信号,通过计算信号的傅立叶变换来获取信号的频谱信息。
其基本语法为:Y = fft(X),其中 X 表示输入的时域信号,Y 表示输出的频域信号。
对于一个长度为 N 的输入信号,fft 命令将返回一个长度为 N 的复数数组,其中包含了信号在频域上的幅度和相位信息。
我们可以进一步对这些复数进行振幅谱和相位谱的分析,以获取更详细的频谱特征。
2. periodogramperiodogram 是用于计算信号功率谱密度(PSD)的命令。
它可以帮助我们分析信号在频域上的能量分布情况,从而了解信号的频率成分和能量分布情况。
其基本语法为:Pxx = periodogram(X),其中 X 表示输入的信号。
通过 periodogram 命令,我们可以得到信号在不同频率上的功率谱密度估计值,以及相应的频率坐标。
这些信息对于分析信号的频谱特性非常有帮助,可以用于识别信号的主要频率成分和频率分布规律。
3. spectrogramspectrogram 命令用于计算信号的短时傅立叶变换,并绘制信号的时频谱图像。
它可以帮助我们观察信号在时间和频率上的变化规律,从而发现信号的时变特性和频率变化趋势。
其基本语法为:S = spectrogram(X),其中 X 表示输入的信号。
通过 spectrogram 命令,我们可以得到信号的时频谱图像,其中横轴表示时间,纵轴表示频率,颜色表示信号强度。
matlab行列式运算的命令

matlab行列式运算的命令Matlab是一种功能强大的数值计算和科学计算软件,可以进行各种矩阵和行列式运算。
在本文中,我们将介绍一些常用的Matlab命令,用于进行行列式运算。
一、计算行列式的值在Matlab中,可以使用det()函数来计算一个矩阵的行列式值。
该函数的语法为:det(A)其中,A表示待计算行列式的矩阵。
下面是一个示例:A = [1 2; 3 4];d = det(A);这段代码将计算一个2×2矩阵A的行列式的值,并将结果保存在变量d中。
二、计算矩阵的逆逆矩阵是指对于一个n×n的矩阵A,存在一个n×n的矩阵B,使得A×B = B×A = I,其中I是单位矩阵。
在Matlab中,可以使用inv()函数来计算矩阵的逆。
该函数的语法为:B = inv(A)其中,A表示待计算逆矩阵的矩阵,B表示计算得到的逆矩阵。
下面是一个示例:A = [1 2; 3 4];B = inv(A);这段代码将计算一个2×2矩阵A的逆矩阵,并将结果保存在变量B 中。
需要注意的是,不是所有的矩阵都有逆矩阵。
如果一个矩阵没有逆矩阵,那么在Matlab中计算逆矩阵时会出现错误。
三、计算矩阵的转置矩阵的转置是指将矩阵的行和列进行交换得到的新矩阵。
在Matlab 中,可以使用transpose()函数或者'运算符来计算矩阵的转置。
下面是一个示例:A = [1 2 3; 4 5 6];B = transpose(A);C = A';这段代码将计算一个3×2矩阵A的转置,并将结果分别保存在变量B和C中。
四、计算矩阵的秩矩阵的秩是指矩阵中线性无关的行或列的最大个数。
在Matlab中,可以使用rank()函数来计算矩阵的秩。
该函数的语法为:r = rank(A)其中,A表示待计算秩的矩阵,r表示计算得到的秩。
下面是一个示例:A = [1 2 3; 4 5 6; 7 8 9];r = rank(A);这段代码将计算一个3×3矩阵A的秩,并将结果保存在变量r中。
MATLAB操作命令大全

MATLAB操作命令大全1.基本操作:- clear: 清除工作区中的所有变量。
- clc: 清除命令窗口的内容。
- close all: 关闭所有图形窗口。
- help function-name: 显示与函数相关的帮助文档。
- who: 显示当前工作区中的所有变量。
- save file-name: 保存当前工作区中的所有变量到指定的文件。
- load file-name: 从文件中加载变量到当前工作区。
2.变量操作:-=:赋值操作符,将右边的值赋给左边的变量。
-+:加法操作符。
--:减法操作符。
-*:乘法操作符。
-/:除法操作符。
-^:幂运算操作符。
- sqrt(x): 计算 x 的平方根。
- abs(x): 计算 x 的绝对值。
- max(x): 返回 x 中的最大值。
- min(x): 返回 x 中的最小值。
- sum(x): 计算 x 中所有元素的和。
3.数组操作:- zeros(m, n): 创建一个 m 行 n 列的全零数组。
- ones(m, n): 创建一个 m 行 n 列的全一数组。
- eye(n): 创建一个 n 行 n 列的单位矩阵。
- size(x): 返回 x 的维度。
- length(x): 返回 x 的长度。
- reshape(x, m, n): 将 x 重新排列为一个 m 行 n 列矩阵。
- transpose(x): 将 x 的行和列互换。
4.控制流程:- if-else: 条件语句,根据条件执行不同的代码块。
- for loop: 循环语句,执行指定次数的代码块。
- while loop: 循环语句,根据条件反复执行代码块。
- break: 在循环中使用,用来跳出当前循环。
- continue: 在循环中使用,用来跳过当前循环的剩余部分。
5.统计分析:- mean(x): 计算 x 的平均值。
- median(x): 计算 x 的中位数。
- std(x): 计算 x 的标准差。
Maple常用计算命令
Maple常用计算命令常用计算命令《Maple 指令》7.0版本第1xx xx数1.1 复数Re,Im - 返回复数型表达式的实部/虚部abs - 函数argument - 复数的幅角函数conjugate - 返回共轭复数csgn - 实数和复数表达式的符号函数signum - 实数和复数表达式的sign 函数5 1.2 MAPLE 常数已知的变量名称指数常数(以自然对数为底)I - x^2 = -1 的根infinity 无穷大1.3 整数函数! - 阶乘函数irem, iquo - 整数的余数/商isprime - 素数测试isqrfree - 无整数平方的因数分解max, min - 数的最大值/最小值mod, modp, mods - 计算对m 的整数模rand - 随机数生成器randomize - 重置随机数生成器1.4 素数Randpoly, Randprime - 有限域的随机多项式/首一素数多项式ithprime - 确定第i 个素数nextprime, prevprime - 确定下一个最大/最小素数1.5 数的进制转换convert/base - 基数之间的转换convert/binary - 转换为二进制形式convert/decimal - 转换为10 进制convert/double - 将双精度浮点数由一种形式转换为另一种形式convert/float - 转换为浮点数convert/hex - 转换为十六进制形式convert/metric - 转换为公制单位convert/octal - 转换为八进制形式1.6 数的类型检查type - 数的类型检查函数第2xx 初等数学2.1 初等函数product - 确定乘积求和不确定乘积exp - 指数函数sum - 确定求和不确定求和sqrt - 计算xx算术运算符+, -, *, /, ^add, mul - 值序列的加法/乘法2.2 三角函数arcsin, arcsinh, . - 反三角函数/反双曲函数sin, sinh, . - 三角函数/双曲函数2.3 LOGARITHMS 函数dilog - Dilogarithm 函数ln, log, log10 - 自然对数/一般对数,常用对数2.4 类型转换convert/`+`,convert/`*` - 转换为求和/乘积convert/hypergeom - 将求和转换为超越函数convert/degrees - 将弧度转换为度convert/expsincos - 将trig 函数转换为exp, sin, cos convert/Ei - 转换为指数积分convert/exp - 将trig 函数转换为指数函数convert/ln - 将arctrig 转换为对数函数polar - 转换为极坐标形式convert/radians - 将度转换为弧度convert/sincos - 将trig 函数转换为sin, cos, sinh, cosh convert/tan - 将trig 函数转换为tanconvert/trig - 将指数函数转换为三角函数和双曲函数第3xx 求值3.1 假设功能3.2 求值Eval - 对一个表达式求值eval - 求值evala - 在代数数(或者函数)域求值evalb - 按照一个求值evalc - 在复数域上符号求值evalf - 使用浮点算法求值evalhf - 用硬件浮点数算法对表达式求值evalm - 对矩阵表达式求值evaln - 求值到一个名称evalr, shake - 用区间算法求表达式的值和计算范围evalrC - 用复数区间算法对表达式求值value - 求值的惰性函数第4xx 求根,xx4.1 数值解fsolve - 利用浮点数算法求解solve/floats - 包含浮点数的表达式4.2 最优化extrema - 寻找一个表达式的相对极值minimize, maximize - 计算最小值/最大值maxnorm - 一个多项式无穷大范数4.3 求根allvalues -计算含有RootOfs的表达式的所有可能值isqrt, iroot - 整数的xx/第n 次根realroot - 一个多项式的实数根的隔离区间root - 一个代数表达式的第n 阶根RootOf - 方程根的表示surd - 非主根函数roots - 一个多项式对一个变量的精确根turm, sturmseq - 多项式在区间上的实数根数和实根序列4.4 xx eliminate - 消去一个方程组中的某些变量isolve - 求解方程的整数解solvefor - 求解一个方程组的一个或者多个变量isolate - 隔离一个方程左边的一个子表达式singular - 寻找一个表达式的极点solve/identity - 求解包含属性的表达式solve/ineqs - 求解不等式solve/linear - 求解线性方程组solve/radical - 求解含有未知量根式的方程solve/scalar - 标量情况(单变量和方程)solve/series - 求解含有一般级数的方程solve/system - 解方程组或不等式组第5xx 操作表达式5.1 处理表达式Norm - 代数数(或者函数) 的标准型Power - 惰性幂函数Powmod -带余数的惰性幂函数Primfield - 代数域的原始元素Trace - 求一个代数数或者函数的迹charfcn - 表达式和集合的特征函数Indets - 找一个表达式的变元invfunc - 函数表的逆powmod - 带余数的幂函数Risidue - 计算一个表达式的代数余expand - 表达式展开Expand - 展开表达式的惰性形式expandoff/expandon - 抑制/不抑制函数展开5.2 因式分解Afactor - 绝对因式分解的惰性形式Afactors - 绝对因式分解分解项列表的惰性形式Berlekamp - 因式分解的Berlekamp 显式度factor - 多元的多项式的因式分解factors - 多元多项式的因式分解列表Factor - 函数factor 的惰性形式Factors - 函数factors 的惰性形式polytools[splits] - 多项式的完全因式分解第6xx 化简6.1 表达式化简118simplify - 给一个表达式实施化简规则simplify/@ - 利用运算符化简表达式simplify/Ei - 利用指数积分化简表达式simplify/GAMMA - 利用GAMMA 函数进行化简simplify/RootOf - 用RootOf 函数化简表达式simplify/wronskian - 化简含wronskian 的表达式simplify/hypergeom - 化简超越函数表达式simplify/ln - 化简含有对数的表达式simplify/piecewise - 化简分段函数表达式simplify/polar - 化简含有极坐标形式的复数型表达式simplify/power - 化简含幂次的表达式simplify/radical - 化简含有根式的表达式simplify/rtable - 化简rtable 表达式simplify/siderels - 使用关系式进行化简simplify/sqrt - 根式化简simplify/trig - 化简trig 函数表达式simplify/zero - 化简含嵌入型实数和虚数的复数表达式6.2 其它化简操作Normal - normal 函数的惰性形式convert - 将一个表达式转换成不同形式radnormal - 标准化一个含有根号数的表达式rationalize - 分母有理化第7xx 操作多项式7.0 MAPLE 中的多项式简介7.1 提取coeff - 提取一个多项式的系数coeffs - 提取多元的多项式的所有系数coeftayl - 多元表达式的系数lcoeff, tcoeff - 返回多元多项式的首项和末项系数7.2 多项式约数和根gcd, lcm - 多项式的最大公约数/最小公倍数psqrt, proot - 多项式的xx和第n次根rem,quo - 多项式的余数/商7.3 操纵多项式convert/horner - 将一个多项式转换成Horner形式collect - 象幂次一样合并系数convert/polynom - 将级数转换成多项式形式convert/mathorner - 将多项式转换成Horner矩阵形式convert/ratpoly - 将级数转换成有理多项式sort - 将值的列表或者多项式排序sqrfree - 不含平方项的因数分解函数7.4 多项式运算discrim - 多项式的判别式fixdiv - 计算多项式的固定除数norm - 多项式的标准型resultant - 计算两个多项式的终结式bernoulli - Bernoulli 数和多项式bernstein - 用Bernstein多项式近似一个函数content, primpart - 一个多元的多项式的内容和主部degree, ldegree - 一个多项式的最高次方/最低次方divide - 多项式的精确除法euler - Euler 数和多项式icontent - 多项式的整数部分interp - 多项式的插值prem, sprem - 多项式的pseudo 余数和稀疏pseudo 余数randpoly - 随机多项式生成器spline - 计算自然样条函数第8xx 有理表达式8.0 有理表达式简介8.1 操作有理多项式numer,denom - 返回一个表达式的分子/分母frontend - 将一般的表达式处理成一个有理表达式normal - 标准化一个有理表达式convert/parfrac - 转换为部分分数形式convert/rational - 将浮点数转换为接近的有理数ratrecon - 重建有理函数第9xx 微积分9.1 取极限Limit, limit - 计算极限limit[dir] - 计算方向极限limit[multi] - 多重方向极限limit[return] - 极限的返回值9.2 连续性测试discont - 寻找一个函数在实数域上的间断点fdiscont - 用数值法寻找函数在实数域上的间断点iscont - 测试在一个区间上的连续性9.3 微分计算D - 微分算子D, diff - 运算符D 和函数diffdiff, Diff - 微分或者偏微分convert/D - 将含导数表达式转换为D运算符表达式convert/diff- 将D(f)(x)表达式转换为diff(f(x),x)的形式implicitdiff - 由一个方程定义一个函数的微分9.4 积分计算Si, Ci … - 三角和双曲积分Dirac, Heaviside - Dirac 函数/Heaviside阶梯函数Ei - 指数积分Elliptic -FresnelC, … - Fresnel 正弦,xx积分和辅助函数int, Int - 定积分和不定积分LegendreP, … - Legendre 函数及其第一和第二类函数Li - 对数积分student[changevar] - 变量代换dawson - Dawson 积分ellipsoid - 椭球体的表面积evalf(int) - 数值积分intat, Intat - 在一个点上积分求值第10xx 微分方程10.1 微分方程分类odeadvisor - ODE-求解分析器DESol - 表示微分方程解的pdetest - 测试pdsolve 能找到的偏微分方程(PDEs)解10.2 常微分方程求解dsolve - 求解常微方程(ODE)dsolve - 用给定的求解ODE 问题dsolve/inttrans - 用积分变换方法求解常微分方程dsolve/numeric - 常微方程数值解dsolve/piecewise - 带分段系数的常微方程求解dsolve - 寻找ODE 问题的级数解dsolve - 求解ODEs 方程组odetest - 从ODE 求解器中测试结果是显式或者隐式类型10.3 偏微分方程求解pdsolve - 寻找偏微分方程(PDEs) 的解析解第11xx 数值计算11.1 MAPLE 中的数值计算环境IEEE 标准和Maple数值计算数据类型特殊值环境变量11.2 算法标准算法复数算法含有0,无穷和未定义数的算法11.3 数据构造器254Float, … - 浮点数及其构造器Fraction - 分数及其的构造器integer - 整数和整数构造器11.4 MATLAB 简介11.5 “”区间类型表达式第12xx级数12.1 幂级数的阶数Order - 阶数项函数order - 确定级数的截断阶数12.2 常见级数展开series - 一般的级数展开taylor - Taylor 级数展开mtaylor - 多元Taylor级数展开poisson - Poisson级数展开.26812.3 其它级数eulermac - Euler-Maclaurin求和piecewise - 分段连续函数asympt - 渐进展开第13xx 特殊函数AiryAi, AiryBi - Airy 波动函数AiryAiZeros, AiryBiZeros - Airy函数的实数零点AngerJ,WeberE - Anger函数和Weber函数BesselI, HankelH1, … - Bessel 函数和Hankel函数BesselJZeros, … - Bessel函数实数零点Beta - Beta函数EllipticModulus - 模数函数k(q)GAMMA, lnGAMMA - 完全和不完全Gamma函数GaussAGM - Gauss 算术的几何平均数JacobiAM, ., - Jacobi 振幅函数和JacobiTheta1, JacobiTheta4 - Jacobi theta函数JacobiZeta - Jacobi 的Zeta函数KelvinBer, KelvinBei - Kelvin函数KummerM, - Kummer M函数和U函数LambertW - LambertW函数LerchPhi - 一般的Lerch Phi函数LommelS1, LommelS2 - Lommel函数MeijerG - 一个xx的Meijer G函数Psi - Digamma 和Polygamma函数StruveH, StruveL - Struve函数WeierstrassP - Weierstrass P函数及其导数WhittakerM - Whittaker 函数Zeta - Zeta 函数erf, … - 误差函数,补充的误差函数和虚数误差函数harmonic - 调和函数hypergeom - xx的超越函数pochhammer - 一般的pochhammer函数polylog - 一般的polylogarithm函数第14xx 线性代数14.1 ALGEBRA(代数)中矩阵,矢量和14.2 LINALG 软件包简介14.3 数据结构矩阵matrices(小写)矢量vectors(矢量)convert/matrix - 将数组,列表,Matrix 转换成matrixconvert/vector - 将列表,数组或Vector 转换成矢量vectorlinalg[matrix] - 生成矩阵matrix(小写)linalg[vector] - 生成矢量vector(小写)14.4 惰性函数Det - 惰性行列式运算符Eigenvals - 数值型矩阵的特征值和特征向量Hermite, Smith - 矩阵的Hermite 和Smith 标准型14.5 LinearAlgebra函数Matrix 定义矩阵Add 加/减矩阵Adjoint 伴随矩阵BackwardSubstitute 求解A . X = B,其中A 为上三角型行阶梯矩阵BandMatrix 带状矩阵Basis 返回向量空间的一组基SumBasis 返回向量空间直和的一组基IntersectionBasis 返回向量空间交的一组基BezoutMatrix 构造两个多项式的Bezout 矩阵BidiagonalForm 将矩阵约化为双对角型CharacteristicMatrix 构造特征矩阵CharacteristicPolynomial 构造矩阵的特征多项式CompanionMatrix 构造一个首一(或非首一)多项式或矩阵多项式的xx (xx)ConditionNumber 计算矩阵关于某范数的条件数ConstantMatrix 构造常数矩阵ConstantVector 构造常数向量Copy 构造矩阵或向量的一份复制CreatePermutation 将一个NAG 主元向量转换为一个置换向量或矩阵CrossProduct 向量的叉积`&x` 向量的叉积DeleteRow 删除矩阵的行DeleteColumn 删除矩阵的列Determinant 行列式Diagonal 返回从矩阵中得到的向量序列DiagonalMatrix 构造(分块)Dimension 行数和列数DotProduct 点积BilinearForm 向量的双线性形式EigenConditionNumbers 计算数值特征值制约问题的特征值或特征向量的条件数Eigenvalues 计算矩阵的特征值Eigenvectors 计算矩阵的特征向量Equal 比较两个向量或矩阵是否相等ForwardSubstitute 求解A . X = B,其中A 为下三角型行阶梯矩阵FrobeniusForm 将一个方阵约化为Frobenius 型(有理标准型)GaussianElimination 对矩阵作消元ReducedRowEchelonForm 对矩阵作xx-约当消元GetResultDataType 返回矩阵或向量运算的结果数据类型GetResultShape 返回矩阵或向量运算的结果形状GivensRotationMatrix 构造Givens 旋转的矩阵GramSchmidt 计算一个正交向量集HankelMatrix 构造一个Hankel 矩阵HermiteForm 计算一个矩阵的Hermite 正规型HessenbergForm 将一个方阵约化为上Hessenberg 型HilbertMatrix 构造xx Hilbert 矩阵HouseholderMatrix 构造Householder 反射矩阵IdentityMatrix 构造一个单位矩阵IsDefinite 检验矩阵的正定性,负定性或不定性IsOrthogonal 检验矩阵是否正交IsUnitary 检验矩阵是否为酉矩阵IsSimilar 确定两个矩阵是否相似JordanBlockMatrix 构造约当块矩阵JordanForm 将矩阵约化为约当型KroneckerProduct 构造两个矩阵的Kronecker xxLeastSquares 方程的最小二乘解LinearSolve 求解线性方程组A . x = bMap 将一个程序映射到一个表达式上,对矩阵和向量在原位置上进行处理MatrixAdd 计算两个矩阵的线性组合VectorAdd 计算两个向量的线性组合MatrixExponential 确定一个矩阵A 的矩阵指数exp(A)MatrixFunction 确定方阵A 的函数F(A)MatrixInverse 计算方阵的逆或矩阵的Moore-Penrose 伪逆MatrixMatrixMultiply 计算两个矩阵的乘积MatrixVectorMultiply 计算一个矩阵和一个列向量的乘积VectorMatrixMultiply 计算一个行向量和一个矩阵的乘积MatrixPower 矩阵的幂MinimalPolynomial 构造矩阵的最小多项式Minor 计算矩阵的子式Multiply 矩阵相乘Norm 计算矩阵或向量的p-范数MatrixNorm 计算矩阵的p-范数VectorNorm 计算向量的p-范数Normalize 向量正规化NullSpace 计算矩阵的零度零空间。
matlab的常用指令及其含义
matlab的常用指令及其含义1、清除命令窗口clc2、清除变量clear3、清除figureclf4、生成一个图层figure()figure(1)figure('name','实例')gwin=figure('MenuBar','none','NumberTitle','off','Name','菜单创建演示','Position',[(rect(3)-N)/2,(rect(4)-N)/2,N,N],'Resize','off','Color','red');5、打印disp(a)fprintf('the value of pi is%6.2f\n',pi)6、字符串和数字转换str2num(123)num2str('123')7、取整函数floor(2.3)==2 %为向下取整ceil(2.3)==3 %为向上取整round(2.3)==2 %为取最接近的整数fix(-3.5)==-3 %为向0取整8、复数运算temp = complex(1,2) %构造函数,==2+5ireal(temp) == 1 %返回实部imag(temp)==5 %返回虚部abs(temp)==5.3852 %返回模conj(temp)==2-5i %返回共轭复数9、快速生成矩阵A=zeros(5) %5行5列的0矩阵B=ones(5) %5行5列的1矩阵A=zeros(m,n) %m行n列0矩阵B=ones(m,n) %m行n列1矩阵A=eye(5) %5行5列的单位矩阵B=rand(3,5) %3行5列的0~1之间的随机矩阵A=magic(5) %5行5列的魔方矩阵,注意这里行和列必须相同10、生成随机矩阵rand(1,5) %生成一个1行5列的矩阵,即行向量11、求最大值max12、数据库结果转矩阵data_mat = cell2mat(data_cell);data_cell是数据库返回的结果,data_mat是矩阵13、求转置矩阵a=[1; 2; 3];b=a.'; %点+单引号b->{1 2 3}14、打印时间disp(datestr(datetime('now')));15、将矩阵转化为列向量,即列矩阵B=A(:); %A是矩阵16、读取矩阵取前N行或N列A(1:2,:) %读取矩阵A的1~2行A(:,1:3) %读取矩阵A的1~3列17、矩阵运算(加、减、乘、除、点乘、点除等)(1)A+B; 表示矩阵A和矩阵B相加(各个元素对应相加);(2)A-B; 表示矩阵A和矩阵B相减(各个元素对应相减);(3)A*B; 表示矩阵A和矩阵B相乘;(4)A.*B; 表示矩阵A和矩阵B对应元素相乘(点乘);(5)A/B; 表示矩阵A与矩阵B相除法;(6)A./B; 表示矩阵A和矩阵B对应元素相除(点除);(7)A^B; 表示矩阵A的B次幂;(8)A.^B; 表示矩阵A的每个元素的B次幂18、获取数组的行数和列数[rows,colums]=size(cell_data); %cell_data是2行3列的数组,rows==2 colums==319、获取数组的指定行和指定列first = cell_data(1,:); %第一行所有列first = cell_data(:,1); %第一列所有行。
Maple常用计算命令
常用计算命令《Maple 指令》7.0版本第1xx xx数1.1 复数Re,Im - 返回复数型表达式的实部/虚部abs - 函数argument - 复数的幅角函数conjugate - 返回共轭复数csgn - 实数和复数表达式的符号函数signum - 实数和复数表达式的sign 函数5 1.2 MAPLE 常数已知的变量名称指数常数(以自然对数为底)I - x^2 = -1 的根infinity 无穷大1.3 整数函数! - 阶乘函数irem, iquo - 整数的余数/商isprime - 素数测试isqrfree - 无整数平方的因数分解max, min - 数的最大值/最小值mod, modp, mods - 计算对 m 的整数模rand - 随机数生成器randomize - 重置随机数生成器1.4 素数Randpoly, Randprime - 有限域的随机多项式/首一素数多项式ithprime - 确定第 i 个素数nextprime, prevprime - 确定下一个最大/最小素数1.5 数的进制转换convert/base - 基数之间的转换convert/binary - 转换为二进制形式convert/decimal - 转换为 10 进制convert/double - 将双精度浮点数由一种形式转换为另一种形式convert/float - 转换为浮点数convert/hex - 转换为十六进制形式convert/metric - 转换为公制单位convert/octal - 转换为八进制形式1.6 数的类型检查type - 数的类型检查函数第2xx 初等数学2.1 初等函数product - 确定乘积求和不确定乘积exp - 指数函数sum - 确定求和不确定求和sqrt - 计算xx算术运算符+, -, *, /, ^add, mul - 值序列的加法/乘法2.2 三角函数arcsin, arcsinh, . - 反三角函数/反双曲函数sin, sinh, . - 三角函数/双曲函数2.3 LOGARITHMS 函数dilog - Dilogarithm 函数ln, log, log10 - 自然对数/一般对数,常用对数2.4 类型转换convert/`+`,convert/`*` - 转换为求和/乘积convert/hypergeom - 将求和转换为超越函数convert/degrees - 将弧度转换为度convert/expsincos - 将trig 函数转换为exp, sin, cos convert/Ei - 转换为指数积分convert/exp - 将trig 函数转换为指数函数convert/ln - 将arctrig 转换为对数函数polar - 转换为极坐标形式convert/radians - 将度转换为弧度convert/sincos - 将trig 函数转换为sin, cos, sinh, cosh convert/tan - 将trig 函数转换为tanconvert/trig - 将指数函数转换为三角函数和双曲函数第3xx 求值3.1 假设功能3.2 求值Eval - 对一个表达式求值eval - 求值evala - 在代数数(或者函数)域求值evalb - 按照一个求值evalc - 在复数域上符号求值evalf - 使用浮点算法求值evalhf - 用硬件浮点数算法对表达式求值evalm - 对矩阵表达式求值evaln - 求值到一个名称evalr, shake - 用区间算法求表达式的值和计算范围evalrC - 用复数区间算法对表达式求值value - 求值的惰性函数第4xx 求根,xx4.1 数值解fsolve - 利用浮点数算法求解solve/floats - 包含浮点数的表达式4.2 最优化extrema - 寻找一个表达式的相对极值minimize, maximize - 计算最小值/最大值maxnorm - 一个多项式无穷大范数4.3 求根allvalues -计算含有RootOfs的表达式的所有可能值isqrt, iroot - 整数的xx/第n 次根realroot - 一个多项式的实数根的隔离区间root - 一个代数表达式的第n 阶根RootOf - 方程根的表示surd - 非主根函数roots - 一个多项式对一个变量的精确根turm, sturmseq - 多项式在区间上的实数根数和实根序列4.4 xxeliminate - 消去一个方程组中的某些变量isolve - 求解方程的整数解solvefor - 求解一个方程组的一个或者多个变量isolate - 隔离一个方程左边的一个子表达式singular - 寻找一个表达式的极点solve/identity - 求解包含属性的表达式solve/ineqs - 求解不等式solve/linear - 求解线性方程组solve/radical - 求解含有未知量根式的方程solve/scalar - 标量情况(单变量和方程)solve/series - 求解含有一般级数的方程solve/system - 解方程组或不等式组第5xx 操作表达式5.1 处理表达式Norm - 代数数 (或者函数) 的标准型Power - 惰性幂函数Powmod -带余数的惰性幂函数Primfield - 代数域的原始元素Trace - 求一个代数数或者函数的迹charfcn - 表达式和集合的特征函数Indets - 找一个表达式的变元invfunc - 函数表的逆powmod - 带余数的幂函数Risidue - 计算一个表达式的代数余combine - 表达式合并(对tan,cot不好用) expand - 表达式展开Expand - 展开表达式的惰性形式expandoff/expandon - 抑制/不抑制函数展开5.2 因式分解Afactor - 绝对因式分解的惰性形式Afactors - 绝对因式分解分解项列表的惰性形式Berlekamp - 因式分解的Berlekamp 显式度factor - 多元的多项式的因式分解factors - 多元多项式的因式分解列表Factor - 函数factor 的惰性形式Factors - 函数factors 的惰性形式polytools[splits] - 多项式的完全因式分解第6xx 化简6.1 表达式化简118simplify - 给一个表达式实施化简规则simplify/@ - 利用运算符化简表达式simplify/Ei - 利用指数积分化简表达式simplify/GAMMA - 利用GAMMA 函数进行化简simplify/RootOf - 用RootOf 函数化简表达式simplify/wronskian - 化简含wronskian 的表达式simplify/hypergeom - 化简超越函数表达式simplify/ln - 化简含有对数的表达式simplify/piecewise - 化简分段函数表达式simplify/polar - 化简含有极坐标形式的复数型表达式simplify/power - 化简含幂次的表达式simplify/radical - 化简含有根式的表达式simplify/rtable - 化简rtable 表达式simplify/siderels - 使用关系式进行化简simplify/sqrt - 根式化简simplify/trig - 化简trig 函数表达式simplify/zero - 化简含嵌入型实数和虚数的复数表达式6.2 其它化简操作Normal - normal 函数的惰性形式convert - 将一个表达式转换成不同形式radnormal - 标准化一个含有根号数的表达式rationalize - 分母有理化第7xx 操作多项式7.0 MAPLE 中的多项式简介7.1 提取coeff - 提取一个多项式的系数coeffs - 提取多元的多项式的所有系数coeftayl - 多元表达式的系数lcoeff, tcoeff - 返回多元多项式的首项和末项系数7.2 多项式约数和根gcd, lcm - 多项式的最大公约数/最小公倍数psqrt, proot - 多项式的xx和第n次根rem,quo - 多项式的余数/商7.3 操纵多项式convert/horner - 将一个多项式转换成Horner形式collect - 象幂次一样合并系数compoly - 确定一个多项式的可能合并的项数convert/polynom - 将级数转换成多项式形式convert/mathorner - 将多项式转换成Horner矩阵形式convert/ratpoly - 将级数转换成有理多项式sort - 将值的列表或者多项式排序sqrfree - 不含平方项的因数分解函数7.4 多项式运算discrim - 多项式的判别式fixdiv - 计算多项式的固定除数norm - 多项式的标准型resultant - 计算两个多项式的终结式bernoulli - Bernoulli 数和多项式bernstein - 用Bernstein多项式近似一个函数content, primpart - 一个多元的多项式的内容和主部degree, ldegree - 一个多项式的最高次方/最低次方divide - 多项式的精确除法euler - Euler 数和多项式icontent - 多项式的整数部分interp - 多项式的插值prem, sprem - 多项式的pseudo 余数和稀疏pseudo 余数randpoly - 随机多项式生成器spline - 计算自然样条函数第8xx 有理表达式8.0 有理表达式简介8.1 操作有理多项式numer,denom - 返回一个表达式的分子/分母frontend - 将一般的表达式处理成一个有理表达式normal - 标准化一个有理表达式convert/parfrac - 转换为部分分数形式convert/rational - 将浮点数转换为接近的有理数ratrecon - 重建有理函数第9xx 微积分9.1 取极限Limit, limit - 计算极限limit[dir] - 计算方向极限limit[multi] - 多重方向极限limit[return] - 极限的返回值9.2 连续性测试discont - 寻找一个函数在实数域上的间断点fdiscont - 用数值法寻找函数在实数域上的间断点iscont - 测试在一个区间上的连续性9.3 微分计算D - 微分算子D, diff - 运算符D 和函数diffdiff, Diff - 微分或者偏微分convert/D - 将含导数表达式转换为D运算符表达式convert/diff - 将D(f)(x)表达式转换为diff(f(x),x)的形式implicitdiff - 由一个方程定义一个函数的微分9.4 积分计算Si, Ci … - 三角和双曲积分Dirac, Heaviside - Dirac 函数/Heaviside阶梯函数Ei - 指数积分Elliptic -FresnelC, … - Fresnel 正弦,xx积分和辅助函数int, Int - 定积分和不定积分LegendreP, … - Legendre 函数及其第一和第二类函数Li - 对数积分student[changevar] - 变量代换dawson - Dawson 积分ellipsoid - 椭球体的表面积evalf(int) - 数值积分intat, Intat - 在一个点上积分求值第10xx 微分方程10.1 微分方程分类odeadvisor - ODE-求解分析器DESol - 表示微分方程解的pdetest - 测试pdsolve 能找到的偏微分方程(PDEs)解10.2 常微分方程求解dsolve - 求解常微方程 (ODE)dsolve - 用给定的求解ODE 问题dsolve/inttrans - 用积分变换方法求解常微分方程dsolve/numeric - 常微方程数值解dsolve/piecewise - 带分段系数的常微方程求解dsolve - 寻找ODE 问题的级数解dsolve - 求解ODEs 方程组odetest - 从ODE 求解器中测试结果是显式或者隐式类型10.3 偏微分方程求解pdsolve - 寻找偏微分方程 (PDEs) 的解析解第11xx 数值计算11.1 MAPLE 中的数值计算环境IEEE 标准和Maple数值计算数据类型特殊值环境变量11.2 算法标准算法复数算法含有0,无穷和未定义数的算法11.3 数据构造器254complex - 复数和复数构造器Float, … - 浮点数及其构造器Fraction - 分数及其的构造器integer - 整数和整数构造器11.4 MATLAB 简介11.5 “”区间类型表达式第12xx级数12.1 幂级数的阶数Order - 阶数项函数order - 确定级数的截断阶数12.2 常见级数展开series - 一般的级数展开taylor - Taylor 级数展开mtaylor - 多元Taylor级数展开poisson - Poisson级数展开.26812.3 其它级数eulermac - Euler-Maclaurin求和piecewise - 分段连续函数asympt - 渐进展开第13xx 特殊函数AiryAi, AiryBi - Airy 波动函数AiryAiZeros, AiryBiZeros - Airy函数的实数零点AngerJ, WeberE - Anger函数和Weber函数BesselI, HankelH1, … - Bessel函数和Hankel函数BesselJZeros, … - Bessel函数实数零点Beta - Beta函数EllipticModulus - 模数函数k(q)GAMMA, lnGAMMA - 完全和不完全Gamma函数GaussAGM - Gauss 算术的几何平均数JacobiAM, ., - Jacobi 振幅函数和JacobiTheta1, JacobiTheta4 - Jacobi theta函数JacobiZeta - Jacobi 的Zeta函数KelvinBer, KelvinBei - Kelvin函数KummerM, - Kummer M函数和U函数LambertW - LambertW函数LerchPhi - 一般的Lerch Phi函数LommelS1, LommelS2 - Lommel函数MeijerG - 一个xx的Meijer G函数Psi - Digamma 和Polygamma函数StruveH, StruveL - Struve函数WeierstrassP - Weierstrass P函数及其导数WhittakerM - Whittaker 函数Zeta - Zeta 函数erf, … - 误差函数,补充的误差函数和虚数误差函数harmonic - 调和函数hypergeom - xx的超越函数pochhammer - 一般的pochhammer函数polylog - 一般的polylogarithm函数第14xx 线性代数14.1 ALGEBRA(代数)中矩阵,矢量和14.2 LINALG 软件包简介14.3 数据结构矩阵matrices(小写)矢量vectors(矢量)convert/matrix - 将数组,列表,Matrix 转换成matrix convert/vector - 将列表,数组或Vector 转换成矢量vectorlinalg[matrix] - 生成矩阵matrix(小写)linalg[vector] - 生成矢量vector(小写)14.4 惰性函数Det - 惰性行列式运算符Eigenvals - 数值型矩阵的特征值和特征向量Hermite, Smith - 矩阵的Hermite 和Smith 标准型14.5 LinearAlgebra函数Matrix 定义矩阵Add 加/减矩阵Adjoint 伴随矩阵BackwardSubstitute 求解 A . X = B,其中 A 为上三角型行阶梯矩阵BandMatrix 带状矩阵Basis 返回向量空间的一组基SumBasis 返回向量空间直和的一组基IntersectionBasis 返回向量空间交的一组基BezoutMatrix 构造两个多项式的 Bezout 矩阵BidiagonalForm 将矩阵约化为双对角型CharacteristicMatrix 构造特征矩阵CharacteristicPolynomial 构造矩阵的特征多项式CompanionMatrix 构造一个首一(或非首一)多项式或矩阵多项式的xx(xx)ConditionNumber 计算矩阵关于某范数的条件数ConstantMatrix 构造常数矩阵ConstantVector 构造常数向量Copy 构造矩阵或向量的一份复制CreatePermutation 将一个 NAG 主元向量转换为一个置换向量或矩阵CrossProduct 向量的叉积`&x` 向量的叉积DeleteRow 删除矩阵的行DeleteColumn 删除矩阵的列Determinant 行列式Diagonal 返回从矩阵中得到的向量序列DiagonalMatrix 构造(分块)Dimension 行数和列数DotProduct 点积BilinearForm 向量的双线性形式EigenConditionNumbers 计算数值特征值制约问题的特征值或特征向量的条件数Eigenvalues 计算矩阵的特征值Eigenvectors 计算矩阵的特征向量Equal 比较两个向量或矩阵是否相等ForwardSubstitute 求解 A . X = B,其中 A 为下三角型行阶梯矩阵FrobeniusForm 将一个方阵约化为 Frobenius 型(有理标准型)GaussianElimination 对矩阵作消元ReducedRowEchelonForm 对矩阵作xx-约当消元GetResultDataType 返回矩阵或向量运算的结果数据类型GetResultShape 返回矩阵或向量运算的结果形状GivensRotationMatrix 构造 Givens 旋转的矩阵GramSchmidt 计算一个正交向量集HankelMatrix 构造一个 Hankel 矩阵HermiteForm 计算一个矩阵的 Hermite 正规型HessenbergForm 将一个方阵约化为上 Hessenberg 型HilbertMatrix 构造xx Hilbert 矩阵HouseholderMatrix 构造 Householder 反射矩阵IdentityMatrix 构造一个单位矩阵IsDefinite 检验矩阵的正定性,负定性或不定性IsOrthogonal 检验矩阵是否正交IsUnitary 检验矩阵是否为酉矩阵IsSimilar 确定两个矩阵是否相似JordanBlockMatrix 构造约当块矩阵JordanForm 将矩阵约化为约当型KroneckerProduct 构造两个矩阵的 Kronecker xx LeastSquares 方程的最小二乘解LinearSolve 求解线性方程组 A . x = bLUDecomposition 计算矩阵的 Cholesky,PLU 或 PLU1R 分解Map 将一个程序映射到一个表达式上,对矩阵和向量在原位置上进行处理MatrixAdd 计算两个矩阵的线性组合VectorAdd 计算两个向量的线性组合MatrixExponential 确定一个矩阵 A 的矩阵指数 exp(A)MatrixFunction 确定方阵 A 的函数 F(A)MatrixInverse 计算方阵的逆或矩阵的 Moore-Penrose 伪逆MatrixMatrixMultiply 计算两个矩阵的乘积MatrixVectorMultiply 计算一个矩阵和一个列向量的乘积VectorMatrixMultiply 计算一个行向量和一个矩阵的乘积MatrixPower 矩阵的幂MinimalPolynomial 构造矩阵的最小多项式Minor 计算矩阵的子式Multiply 矩阵相乘Norm 计算矩阵或向量的p-范数MatrixNorm 计算矩阵的p-范数VectorNorm 计算向量的p-范数Normalize 向量正规化NullSpace 计算矩阵的零度零空间OuterProductMatrix 两个向量的外积Permanent 方阵的不变量Pivot 矩阵元素的主元消去法PopovForm Popov 正规型QRDecomposition QR 分解RandomMatrix 构造RandomVector 构造随机向量Rank 计算Row 返回矩阵的一个行向量序列Column 返回矩阵的一个列向量序列RowOperation 对矩阵作初等行变换ColumnOperation 对矩阵作出等列变换RowSpace 返回矩阵行空间的一组基ColumnSpace 返回矩阵列空间的一组基ScalarMatrix 构造一个单位矩阵的数量倍数ScalarVector 构造一个单位向量的数量倍数ScalarMultiply 矩阵与数的乘积MatrixScalarMultiply 计算矩阵与数的乘积VectorScalarMultiply 计算向量与数的乘积SchurForm 将方阵约化为 Schur 型SingularValues 计算矩阵的奇异值SmithForm 将矩阵约化为 Smith 正规型StronglyConnectedBlocks 计算方阵的强连通块SubMatrix 构造矩阵的子矩阵SubVector 构造向量的子向量SylvesterMatrix 构造两个多项式的 Sylvester 矩阵ToeplitzMatrix 构造 Toeplitz 矩阵Trace 计算方阵的迹TransposeHermitianTranspose 共轭转置矩阵TridiagonalForm 将方阵约化为三对角型UnitVector 构造单位向量VandermondeMatrix 构造一个 Vandermonde 矩阵VectorAngle 计算两个向量的夹角ZeroMatrix 构造一个零矩阵ZeroVector 构造一个零向量Zip 将一个具有两个参数的程序作用到一对矩阵或向量上LinearAlgebra[Generic] 子函数包 [Generic] 子函数包提供作用在场,域,积分域和环上的线性代数算法。
数学建模常用的matlab求解命令
一、数学规划模型的matlab求解1.线性规划问题MATLAB中,线性规划问题(Linear Programming)的求解使用的是函数linprog。
函数 linprog 格式 x = linprog(f,A,b)%求min f ' *x sub.to A*x<=b 线性规划的最优解。
x = linprog(f,A,b,Aeq,beq)%等式约束Aeq*x=beq。
x = linprog(f,A,b,Aeq,beq,lb,ub)%指定x的范围LB <= X <= UBx = linprog(f,A,b,Aeq,beq,lb,ub,x0) %设置初值x0x = linprog(f,A,b,Aeq,beq,lb,ub,x0,options)% options为指定的优化参数[x,fval] = linprog(…)% 返回目标函数最优值,即fval= f ' *x。
[x,fval,lambda] = linprog(…)% lambda为解x的Lagrange乘子。
[x, fval,lambda,exitflag] = linprog(…)% exitflag为终止迭代的错误条件。
[x,fval, lambda,exitflag,output] = linprog(…)% output为关于优化的一些信息说明 :若exitflag>0表示函数收敛于解x,exitflag=0表示超过函数估值或迭代的最大数字,exitflag<0表示函数不收敛于解x;若lambda=lower 表示下界lb,lambda=upper表示上界ub,lambda=ineqlin表示不等式约束,lambda=eqlin表示等式约束,lambda中的非0元素表示对应的约束是有效约束;output=iterations表示迭代次数,output=algorithm表示使用的运算规则,output=cgiterations表示PCG迭代次数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Matlab常用计算命令(部分)
by sunny_疑似天人
1.多项式运算:
poly2sym函数,将给定的多项式系数向量转化为符号表达式,以降幂排序。
poly函数,得到矩阵的特征多项式(首项系数为1)的系数向量,然后也可以用poly2sym函数转化为多项式的符号表达式。
roots函数,得到方程的根,调用形式为roots(a),其中a 为多项式的系数;也可以直接调用roots([1 2 1])。
compan函数与eig函数,通过compan函数建立多项式的伴随矩阵再通过eig函数求伴随矩阵特征值以得到多项式的所有根。
效果与roots函数相同;同时这两个函数也可单独使用:
compan函数,建立多项式的伴随矩阵,如:a=[1 2 3 ];compan(a) ans = -2 -3
1 0
eig函数,求矩阵的特征值。
conv函数,求多项式的乘积,如:pd=conv(p,d),其中p和d均为多项式系数向量,得到的同样也是多项式的系数向量。
deconv函数,求多项式的除法。
polyder函数,求多项式的微分。
即求一阶导数,如果要求多项式的高阶微分,可以通过循环实现。
polyfit 函数,对数据拟合得到多项式,这个多项式即可大致代表数据变化规律。
例如:
x=0:pi/20:pi/2; y=sin(x);
p=polyfit(x,y,5) x1=0:pi/30:pi*2; y1=sin(x1);
y2=polyval(p,x1);
plot(x1,y1,'b-',x1,y2,'r*') legend('原曲线','拟合曲线') axis([0 7 -1.2 4])
p =
0.0057 0.0060 -0.1721 0.0021 0.9997 0.0000
1
2
3
4
5
6
7
-1-0.500.511.522.533.54
原曲线拟合曲线
2.向量及其运算
x=linspace(a,b,n),生成一个向量x ,其中a ,b 分别是生成矢量的第一个和最后一个元素,n 是采样总点数。
当n 缺省时默认生成100维的向量。
x=logspace(a,b,n) 。
生成数组的第一个元素值为10a,最后一个元素值为10b,n为采样总点数,缺省时,生成50维的行矢量。
rand('state',0),把均匀分布伪随机发生器置为初始状态。
x=rand(1,5) %产生(1×5)的均匀分布随机数组
x(3) %引用数组x的第三个元素
y=x([1 2 5]) %引用数组x的第一、二、五个元素
z=x(1:3) %引用数组x的前三个元素
w=x(3:end) %引用数组x的从第三个元素以后的元素
v=x(3:-1:1) %由数组x的前3个元素倒排构成的了数组
u=x(find(x>0.5)) %数组x中大于0.5的元素构成的子数组
t=x([1 2 3 4 4 3 2 1]) %重复引用数组x中的元素构成的数组
3.矩阵及其运算
zeros函数,zeros(N)生成N×N阶全0矩阵,zeros(M,N)生成M ×N阶全0矩阵,zeros(size(A))生成与A同阶的0矩阵。
当有大型矩阵需要得到时,可以提前给它赋0,得到存储空间,以便于节省计算时间。
eye函数,创建单位矩阵,用法与zeros函数类似;而eye(3,2)则表示生成三行两列的矩阵,即 1 0
0 1
0 0
hilb(N) 生成N×N阶Hilbert矩阵。
rand(M,N) 生成M×N阶均匀分布的随机阵。
rand('state',0) %把均匀分布伪随机发生器置为初始状态。
矩阵元素的抽取:
抽取行
A([1 3],:) %抽取矩阵A的第一行和第三行
B=A([3 1],:) %抽取矩阵A的第三行和第一行赋值给B
C=A(3:end,:) %抽取矩阵A的第三行至最后一行赋值给B
抽取列
rand('state',0) %把均匀分布伪随机发生器置为初始状态
A(:,3) %抽取矩阵A的第三列
A(:,[1 3]) %抽取矩阵A的第一列和第三列
B=A(:,[3 1]) %抽取矩阵A的第三列和第一列赋值给B
C=A(:,3:end) %抽取矩阵A的第三行至最后一行赋值给B
抽取块
B=A([1 2],[2 3]) %抽取矩阵A的第一、二行与第二、三列交叉的元素赋值给B
抽取对角线上元
V=diag(A) %抽取矩阵A的主对角线上的元素赋值给向量V,得到的向量V %是一个列矩阵
D=diag(V) %以向量V为对角线元素生成对角矩阵
D1=diag(V,1) %以列向量V为对角构成对角阵后再在第一列前和最后一行下添0构成多一阶的矩阵
% 例如:v=[1 1 1]';diag(v,1)
% ans =
% 0 1 0 0
% 0 0 1 0
% 0 0 0 1
% 0 0 0 0
D2=diag(V,-1)
% diag(v,-1)
% ans =
% 0 0 0 0
% 1 0 0 0
% 0 1 0 0
% 0 0 1 0
U=diag(A,1) %抽取矩阵A的主对角线上方第一条对角线的元素赋值给向量U
L=diag(A,-1) %抽取矩阵A的主对角线下方第一条对角线的元素赋值给向量L
抽取上三角和下三角部分
U=triu(A,1) %从矩阵A的主对角线上方第一条对角线开始抽取A的上三角部分
U=triu(A,-1) %从矩阵A的主对角线下方第一条对角线开始抽取A的上三角部分
L1=tril(A,1)
L2=tril(A,-1)
矩阵的基本运算:.+ .- .* ./. \ .^
inv函数,求矩阵的逆。
det函数,求矩阵的行列式。
expm (A)函数,求矩阵的指数,由Pade近似计算矩阵指数,也可以用函数exp m1,由Taylor级数计算矩阵指数用expm2,由特征值法计算矩阵指数expm3。
logm函数,是expm函数的逆运算。
log函数,求以e为底数的对数函数即自然对数;若用log函数直接处理矩阵,则可以认为是直接计算矩阵内各个数的自然对数。
Sqrtm与sqrt函数,求开方的运算,用法与上面logm、log类似。
B=reshape(A,m,n),将矩阵或向量A的元素依次返回到一个m×n 的矩阵B。
如果A中不是m×n个元素则返回错误,即A中元素个数必须等于m×n。
rot90(A,k) %将A逆时针方向旋转(90*k),k可以为正负,缺省时k=1。
fliplr(A) ,将A左右翻转
flipud(A),将A上下翻转
flipdim(A,dim),dim的值为1或2,当dim=1时,对行翻转,dim=2时,对列翻转。
D=[A B;C],表示将AB矩阵自然横向连接后再一起纵向连接C。
4. 利用plot函数绘制二维曲线图
如果作出含有虚部的函数的图像,一个变量与两个变量有较大区别:如果y为复数向量,则将以该向量的实部作为点的横坐标、虚部
作为点的纵坐标来绘制图形。
但须注意,当输入变量不止一个时,plot 函数将忽略变量的虚部而直接绘制各参数实部间的图形。
例如:
clear;clc;
x=0:0.05:8*pi;
y=(cos(x)+i*sin(x)).*exp(-0.05*x)+0.01*x; plot(y);
%同于plot(real(y),imag(y)); xlabel('Re(y)');ylabel('Im(y)');
-1
-0.8-0.6-0.4-0.2
00.20.40.60.81
-0.8-0.6-0.4-0.200.20.40.60.81Re(y)
I m (y )
这个图表现的是实部与虚部
plot(x,y);
5
10
15
20
25
30
-1-0.8-0.6-0.4-0.200.20.40.60.81
这个图只是表现出了实部的变化
调用函数plot 时,当两个输入变量x 和y 同为向量时,它们的维数必须相同,且必须同为行向量或列向量;当两个输入变量x 和y 是同阶的矩阵时,将按矩阵的行或列进行操作,其中,y 可以包含多个符合要求的向量,这时将在同一幅图中绘出所有图形。
例如:
clear;clc;
x=0:0.01:2*pi;
y=[sin(x'),cos(x')];
plot(x',y); %同于plot([x',x'],y);
1
2
3
4
5
6
7
-1-0.8-0.6-0.4-0.200.20.40.60.81
MATLAB语言中的图形设置选项表选项说明选项说明- 实线。
点
: 点线o 圆
-. 点划线x x符号
-- 虚线+ +号
y 黄色* 星号
m 紫色s 方形
c 青色
d 菱形
r 红色v 下三角
g 绿色^ 上三角
b 蓝色< 左三角
w 白色> 右三角
k 黑色p 正五边形。