初中物理,电学与磁学知识点梳理(全)
(完整版)初中物理-电和磁-知识点

用右手握住螺线管,让四指指向螺线管中电 流的方向,则拇指所指的那端就是螺线管的N极。
ห้องสมุดไป่ตู้
第三节 电磁铁电磁继电器
一、电磁铁
➢一根条形磁体,它的周围存在着磁场,这种磁体是一种永久磁体。 ➢如果把一根导线绕成螺线管,再在螺线管内插入铁芯,当有电流通过 时,它会有较强的磁性,没有电流时就失去磁性。我们把这种磁铁叫做 电磁铁。 ➢家里的一些电器,如电冰箱、吸尘器;工厂、码头上的电磁起重机, 都有应用电磁铁。
如果把小磁针拿到一个磁体附近,它会发生偏转。磁针和磁体并 没有接触,怎么会有力的作用呢? ➢磁体周围存在着一种物质,能使磁针偏转。这种物质看不见、摸不 着,我们把它叫做磁场。
在物理学中,许多看不叫、摸不着的物质,都可以通过它对其他 物体的作用来认识。像磁场这种物质,我们也可以用实验来感知它。 ➢在条形磁体周围的不同地方,小磁针静止时指示着不同的方向。物 理学中把小磁针静止时北极所指的方向规定为该点磁场的方向。
实验结论:匝数一定时,通入的电流越大,电磁铁的磁性越强;
电流一定时,外形相同的螺线管,匝数越多,电磁铁的磁性越强。
第三节 电磁铁电磁继电器
三、电磁继电器
大型机器的电流可能高达几十、几百安,而在工厂里, 利用按钮来控制机器,难道强大的电流就在按钮下面流过?
➢当然不是! ➢用手直接控制强大的电流或操作高压电路是很危险的,是否可 以利用电磁铁的原理来解决这个问题呢?在实际中,按钮控制的 只是继电器的开关,而电源的接通和断开是由继电器来控制的。
二、电磁铁的磁性
➢我们自制的电磁铁只可以吸引曲别针,而工厂里的电磁起重机却可 以吸引很重的钢铁。那么电磁铁磁性的强弱与哪些因素有关呢? ➢ 第一,电磁铁只有在线圈中通电时才有磁性,那么电流的大小应 该会影响电磁铁磁性的强弱。 ➢ 第二,构成电磁铁的主要部件是线圈,那么线圈的形状和匝数可 能也会影响电磁铁的磁性强弱。
九年级物理全一册“第二十章 电与磁”必背知识点

九年级物理全一册“第二十章电与磁”必背知识点一、磁现象与磁场1.磁性:物体具有吸引铁、钴、镍等物质的性质叫做磁性。
具有磁性的物体叫做磁体。
2.磁极:磁体上磁性最强的部分叫磁极,分为南极 (S极)和北极 (N极)。
任何磁体都有两个磁极,且同名磁极相斥,异名磁极相吸。
3.磁场:磁体周围存在一种看不见、摸不着,但客观存在的物质叫做磁场。
磁场的基本性质是对放入其中的磁体产生磁力的作用。
磁场有方向,规定小磁针静止时北极所指的方向为该点的磁场方向。
4.磁感线:为了形象地描述磁场的方向和分布情况,我们在磁场中画一些有方向的曲线,这些曲线叫做磁感线。
磁感线的方向就是小磁针在该点的受力方向,也是该点的磁场方向。
磁感线在磁体外部从N极出发回到S极,在磁体内部从S极到N极。
磁感线的疏密程度表示磁场的强弱。
二、电生磁与磁生电1.电生磁:奥斯特实验表明,通电导线周围存在磁场,且磁场方向与电流的方向有关。
通电螺线管外部的磁场与条形磁体的磁场相似,其两端的磁场方向跟电流方向有关,关系由安培定则判断。
2.磁生电:闭合电路的一部分导体在磁场中做切割磁感线运动时,导体中会产生感应电流,这种现象叫做电磁感应现象,产生的电流叫做感应电流。
感应电流的方向与导体运动方向和磁场方向都有关。
发电机就是根据电磁感应现象制成的,它将机械能转化为电能。
三、电磁铁与电磁继电器1.电磁铁:内部带有铁芯的通电螺线管叫做电磁铁。
电磁铁的磁性有无可以由电流的通断来控制,磁性强弱可以由电流大小和线圈匝数的多少来控制,磁极方向可以由电流方向来控制。
2.电磁继电器:电磁继电器是一种利用电磁铁来控制工作电路通断的开关。
它由电磁铁、衔铁、弹簧、触点等部分组成,可以实现用低电压、弱电流电路的通断来间接控制高电压、强电流电路的通断,还可以实现远距离操纵和自动化控制。
四、电动机与扬声器1.电动机:电动机是将电能转化为机械能的装置。
它的工作原理是通电线圈在磁场中受到力的作用而发生转动。
九年级物理电与磁知识点大全

九年级物理电与磁知识点大全一、电的产生与作用电的产生是由于电荷之间的相互作用而产生的。
静电现象是指电荷在物体中的积聚和分离所导致的现象。
而静电现象又可以通过摩擦、感应、接触等方式来实现。
静电和动电的区别在于,静电是指电荷的分离和积聚,而动电是指电荷的流动和移动。
电流是电荷发生移动产生的现象,也是电的一种基本形式。
通过导线中的电子的流动,电能可以传输到其他设备中,从而实现电的作用。
二、电流与电压电路中的电流是由于电荷的流动产生的。
电路中的电压则是由电源提供的推动电荷流动的力。
欧姆定律揭示了电流、电压和电阻之间的关系。
根据这个定律,电流与电压成正比,与电阻成反比。
当电阻增大时,电流减小;当电压增大时,电流增大。
三、串并联电路在电路中,电器设备可以通过串联和并联的方式进行连接。
串联电路是指电器设备按照一条线路连接,电流顺序流动;并联电路是指电器设备按照多条线路连接,电流分流。
串并联电路在电路中的应用非常广泛。
例如,在家庭中的电灯就是串联电路,电灯按照一条线路连接,电流顺序流动;而在家庭中的电插座就是并联电路,每个插孔都可以连接电器设备,电流可以分流。
四、电阻与电功率在电路中,电阻是指电器设备对电流流动的阻碍程度。
电阻的单位是欧姆(Ω)。
电功率是指电流通过电器设备时所做的功。
电功率的计算公式为P=UI,其中P代表功率,U代表电压,I代表电流。
在电路中,功率越大,电能转化的速度就越快。
五、电容与电感电容是指电荷在电场中积聚的能力。
电容器是利用静电效应制造的一种电子元件,可以存储电荷。
电感是指导体中感应出的电生磁场的现象。
电感的作用是抵抗电流的变化,可以用于变压器、电感器等电子元件中。
六、磁场与磁感线磁场是指磁铁或电流所产生的力和作用区域。
磁感线是用来表示磁场方向和磁场强度的线条。
磁场的产生是由于电荷的移动和电流的流动产生的。
磁铁是一种典型的产生磁场的物体,磁铁的两极分别是南极和北极。
七、电磁感应及应用电磁感应是指磁场的变化导致电场变化的现象。
初中物理电与磁知识点总结归纳

初中物理电与磁知识点总结归纳电与磁是初中物理的一个重要内容,主要涉及到电流、电磁感应和电磁场等知识点。
下面是电与磁的知识点总结归纳。
一、电流和电路1.电流的概念:电荷在导体中的定向运动形成的电流称为电流。
2.电流的单位:安培(A)。
3.电流的测量仪器:安培计。
4.电路的基本要素:电源、导体和用电器。
5.电路的分类:串联电路和并联电路。
6.串联电路:电流只有一条路径,总电流等于分流之和,总电压等于各个元件电压之和。
7.并联电路:电流有多条路径,总电流等于分流之和,总电压等于各个元件电压相同。
二、电阻和电阻率1.电阻的概念:阻碍电流通过的物质称为电阻,用R表示。
2.电阻的单位:欧姆(Ω)。
3.电阻的测量仪器:欧姆表。
4.电阻的影响因素:导体材料、导体长度、导体截面积以及温度等。
5.电阻率的概念:单位体积内电阻的大小称为电阻率,用ρ表示。
6.电阻率的单位:欧姆·米(Ω·m)。
7.电阻与电阻率的关系:R=ρ*(L/A),其中R为电阻,ρ为电阻率,L为导体长度,A为导体截面积。
三、电磁感应原理1.磁感线的概念:描绘磁场分布的虚线称为磁感线。
2.判断磁场方向的经验法则:右手定则和左手定则。
3.电磁感应的定义:磁场发生变化时,导线中会产生感生电动势,导线两端将出现感生电流的现象。
4.法拉第电磁感应定律:感应电动势的大小与导线上的感应磁通量的变化率成正比,方向由左手定则确定。
5.感应电动势计算公式:ε=-N*ΔΦ/Δt,其中ε为感应电动势,N为线圈匝数,ΔΦ为磁通量的变化量,Δt为时间的变化量。
四、电磁感应的应用1.电磁铁:通过通电将铁芯磁化产生磁力,断电则消失。
2.发电机:通过转动磁场与线圈产生磁感应产生电流,转动磁极为电刷,线圈为转子。
3.电动机:通过通电产生磁场与磁场产生力矩导致转动,用途广泛。
4.变压器:利用电磁感应原理,将一交流电压转换成另一交流电压。
五、电磁场1.磁场的概念:周围有磁力作用的区域称为磁场。
初中物理电与磁所有知识点全整理

初中物理电与磁所有知识点全整理1.电荷与电场:-电荷的性质:正电荷和负电荷,电荷守恒定律。
-电流和电量:电流的定义,电量的计算,电流的方向。
-静电力:库仑定律,电场的概念和性质,电场强度的计算。
-电荷在电场中的运动:等电势面、电势差、电势能、电势的计算。
2.电阻与电路:-电阻的基本概念:电阻的定义和单位,电阻的材料和几何结构对电阻的影响。
-欧姆定律:电流、电压和电阻之间的关系,欧姆定律的应用。
-串联和并联电阻:串联和并联电阻的计算。
-电功和功率:电功的计算,功率的定义和计算,电能的转化和损失。
-电路的基本概念:电流路、支路和节点,闭合电路和开放电路。
-简单电路元件:电池、导线、电阻、开关、灯泡等的符号和基本特性。
-简单电路的分析:基尔霍夫定律,串、并联电路的分析,电流分配和电压分配。
3.电磁感应:-磁场的特性:磁场的定义、磁场线、磁感应强度的计算。
-安培力和洛伦兹力:安培定律,洛伦兹力的定义和计算,电子在磁场中的运动。
-法拉第电磁感应定律:法拉第电磁感应定律的表述和应用,感应电动势和感应电流的计算。
-电磁感应产生交流电:电磁感应产生的电动势和电流的特点,交流电的基本概念和特点。
-电感和感应电动势:电感的概念和特性,感应电动势的产生和计算。
-互感和变压器:互感的概念和计算,变压器的原理和应用。
4.电磁波:-电磁波的基本特性:电磁波的定义和性质,电磁波的分类。
-光的性质:光的波动性和粒子性,光的传播速度和介质的折射。
-光的反射和折射:光的反射定律,光的折射定律,光的全反射。
-光的色散和光的干涉:光的色散现象,干涉的概念和条件,干涉的应用。
-光的衍射和光的偏振:光的衍射现象,光的偏振现象和偏振光的特性。
-镜子和透镜:平面镜和球面镜的特性和成像规律,凸透镜和凹透镜的特性和成像规律。
5.静电场与磁场之间的关系:-静电场的通量和电场强度:静电场的通量和计算,高斯定理。
-静磁场和电磁感应:磁场和电流的关系,麦克斯韦方程组。
初中物理电与磁知识点总结

初中物理电与磁知识点总结
一、电的基本概念
1. 电荷:电的基本属性之一,分为正电荷和负电荷。
2. 电场:由电荷所形成的区域,在该区域内,其他电荷会受到电场力的作用。
3. 电流:电荷在导体中移动所形成的现象,单位是安培(A)。
4. 电压:单位电荷在电场中所具有的能量,也被称为电位差或电势差,单位是伏特(V)。
5. 电阻:导体对电流的阻碍程度,单位是欧姆(Ω)。
二、电路基础知识
1. 电路图符号:例如,电源表示为长线和短线相连的图形,电灯表示为一个实心的圆圈等。
2. 并联电路:电流在不同分支间分流,电压相同。
3. 串联电路:电流在不同元件间流过,电压依次相加。
4. 电阻和电流的关系:欧姆定律,电阻等于电压除以电流。
5. 电功率:表示电路中单位时间内消耗的能量,单位是瓦特(W)。
三、磁场基础知识
1. 磁铁的特性:磁铁有两个极,一个是北极,一个是南极。
2. 磁场的表示方法:磁力线,从磁南极指向磁北极,并形成一
个完整的闭合曲线。
3. 磁场的力作用:当电流通过导线时,产生的磁场会受到力的
作用。
4. 磁场对电流的影响:洛伦兹力定律,电流元素在磁场中会受
到一个力矩作用。
5. 电磁铁的应用:电磁铁通过通电而产生磁场,广泛应用于各
个领域。
四、电磁感应
1. 电磁感应现象:当导体与磁场相对运动时,导体中会产生感
应电动势。
物理电学和磁学等中考重点知识点的梳理与总结

物理电学和磁学等中考重点知识点的梳理与总结物理学是自然科学的一门重要学科,其中的电学和磁学是物理学的核心内容之一,也是中考中经常涉及的重点知识点。
本文将对物理电学和磁学的重点知识点进行梳理与总结,以帮助同学们更好地备考。
一、电学的重点知识点1. 电荷与电流电荷是物质的一种基本性质,可以分为正电荷和负电荷。
相同电荷互相排斥,不同电荷互相吸引。
电流是电荷在导体中传输的现象,其大小可以用单位时间内通过导体截面的电荷量来描述。
2. 电流回路及其特性电流必须在回路中存在才能产生,被称为闭合回路。
开关可以控制电路的通断,电流只在闭合回路中流动。
串联电路和并联电路是常见的电流回路形式。
3. 电阻与电压电阻是物质抵抗电流流动的特性,单位是欧姆。
电阻的大小与导体的材料、长度和截面积有关。
电压是电路中存在的形式,是电能转化为其他形式能量的动力。
4. 欧姆定律欧姆定律是描述电压、电流和电阻之间关系的重要定律。
它表明电流与电压成正比,与电阻成反比。
5. 电功与电功率电功是电能的转化与传递过程中所做的功。
电功率是单位时间内电功的转化率,单位是瓦特。
二、磁学的重点知识点1. 磁场和磁铁磁场是磁力的载体,磁铁是可以产生磁场的物体。
磁铁有两个极,即南极和北极。
同类磁极相互排斥,异类磁极相互吸引。
2. 磁场的产生和性质电流通过导线时会产生磁场,称为电磁铁。
磁场的大小与导线长度、电流强度和距离有关。
磁场中的磁力线是沿着磁场方向的连续曲线。
3. 电磁感应当磁通量发生变化时,周围会产生感应电动势。
这就是电磁感应的基本原理。
根据法拉第电磁感应定律,感应电动势的大小与磁通量变化的速率成正比。
4. 电磁感应的应用电磁感应广泛应用于发电机、变压器和电磁铁等设备中。
它们的基本原理都是利用磁场与导体之间的相互作用。
5. 磁场对电流的作用磁场对电流有两种作用方式:洛伦兹力和磁感应强度。
洛伦兹力是指电流在磁场中受到的力的作用,而磁感应强度是指磁场对电流产生的力的作用。
初三物理电与磁知识点

初三物理电与磁知识点初三物理——电与磁知识点初三物理课程中,电与磁是一个非常重要的知识点。
它不仅涉及到生活中实际应用的电路原理,还与未来发展的科学技术密切相关。
下面将从电和磁的基本概念、电路原理、磁场和电磁感应四个方面进行介绍。
一、电的基本概念电是物质传递的一种能量形式,是带电粒子的运动以及电力的表现形式。
初步学习物理时,我们首先要了解电所具备的基本特性:电荷的性质和基本规律。
电荷分为正电荷和负电荷,同性电荷相互排斥,异性电荷相互吸引;电荷守恒定律指出,在一个孤立系统中,电荷的总量保持不变。
此外,电流、电压、电阻也是电的基本概念。
电流是电荷通过导体断面的流动,单位是安培;电压是电场力对电荷进行作用的力量,单位是伏特;电阻是电流通过导体时受到的阻碍,单位是欧姆。
二、电路原理电路是电流在导体中的路径。
根据电阻和电压的分布,电路可分为串连电路和并连电路。
串联电路中,电流只有一条路径通过多个电阻;而并联电路中,电流分为多个路径流经各个电阻。
串并联具有不同的特性,通过学习它们的性质我们可以更好地理解电流和电压的变化。
在电路中,我们还要学会应用欧姆定律、基尔霍夫定律、功率公式等来解决实际问题。
欧姆定律指出电流强度与电压成正比,与电阻成反比;基尔霍夫定律是电流法则和电压法则的应用,用于解决复杂的电路问题;功率公式则告诉我们电流和电压的相互转化关系。
三、磁场磁场是磁性物质在某一区域内的作用范围。
磁场可以通过磁铁、线圈、电流等方式产生。
磁场的性质包括磁力线、磁感应强度和磁力等。
磁力线是表示磁场分布的曲线,它从南极指向北极,密集表示磁场强度大。
磁感应强度则表示单位面积内通过垂直于该面的磁力线的数量,单位是特斯拉。
通过学习磁场的原理,我们可以了解电磁铁、电磁感应和电机等的工作原理。
四、电磁感应电磁感应是指磁场变化时产生感应电动势的现象。
当磁感线穿过一个闭合线圈时,会在线圈中产生感应电动势。
这个现象被应用于发电机、变压器等电力设备中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、磁现象
1.磁体:具有磁性(具有吸引铁、钴、镍等物质的性质)的物体。
(1)磁体性质分类:天然磁体,人造磁体;
(2)磁体的形状分类:条形磁体、蹄形磁体、针形磁体等;
(3)磁体磁性长短分类:硬磁体(永磁体)、软磁体(磁性容易消失)
2.磁极:磁体上磁性最强的部分。
磁体有两个磁极,分别叫南极(S极)和北极(N极)。
(1)自然界中不存在单个磁极的磁体,磁体上的磁极总是成对出现;
(2)多个条形磁体相连接,有几个磁极?
3.磁极间相互作用规律
(1)同名磁极相互排斥,异名磁极相互吸引。
(2)如果让磁体在水平位置上自由转动,静止时总是一端指南,一端指北。
指南的一端叫南极(S极),指北的一端叫北极(N极)。
(3)如何判断一个物体是磁体:
①让其吸引铁屑
②让其自然吊起,看其是否发生偏转;
③运用磁极之间相互作用力进行判断;
4.磁化现象
(1)
二、磁场
1.定义:磁体周围存在的一种看不见、摸不着的物质称为磁场;
(1)磁场是真实存在的。
(2)基本性质:对放入其中的磁体有力的作用。
(3)方向判定:在磁场中的某一点放入小磁针,小磁针静止时北极所指的方向即为该点的磁场方向。
2.磁感线:用来描述磁场强弱和方向的曲线。
磁感线不是真实存在的。
(1)定义:仿照铁屑排布,在磁场中画出一些有方向的曲线,曲线
上的任意一点的切线方向跟小磁针静止时候的N极的指向一致,这样的
曲线叫做磁感线;
(2)磁感线的方向:磁感线在磁体的外部,总是从磁体的N极发出,
最终回到S极,磁感线的箭头是由N极指向S极;
(3)磁感线的疏密程度;磁体的强度越大,磁感线越密集;
(4)磁感线与磁场
①磁场是真实存在的,但是磁感线是人为定义,为了方便科
学研究;引入的一种物理模型;
②磁感线分布是立体的,并不是平面的;
③在空间内,任意两条磁感线永远不会相交;
3.地磁场
(1)地球本身就是一个巨大磁体,地球周围的磁场叫做地磁场;
(2)地磁的两极与物理的南北两极正好相反;且地磁的两极和地理的两极并不重合,而是存在磁偏角;
(3)地磁场为保护地球做出了巨大的贡献;阻碍高能带电粒子对地球的干扰;
三、电流的磁效应
1.奥斯特实验
(1)该现象在1820年被丹麦物理学家奥斯特发现。
(2)表明通电导线周围存在磁场,电流周围磁场方向跟电流方向有关。
①解释:任何导体中通过电流时,周围空间均会产生磁场,这种现象叫做电流的磁效应;
②奥斯特是第一位揭示电现象和磁现象有关密切关系的人;
③试验中导线应该南北放置,这样有利于相处地磁场对于试验的干扰;
④直线电流中磁场的分布:
应用右手定则;大拇指指向电流方向,手指的指向为磁感线的方向;
2.通电螺线管的磁场
(1)试验演示:
①试验方法:转换法-----通过小磁针的偏转和铁屑排布,反应磁场
②
(2)通电螺线管外部的磁场与条形磁铁的磁场相似。
(3)它两端的磁极跟电流方向有关,可以用安培定则判定。
3.安培定则:用右手握住通电螺线管,使四指弯曲与电流方向一致,那么大拇指所指的那一端是通电螺线管的N极。
4.螺线管的绕制方法:重点
(1)标
(2)定
(3)画
4.电磁铁
(1)构成:通电螺线管和里面的铁芯。
(2)影响磁性强弱的因素
a.同一个电磁铁,电流越大,磁性越强。
b.当电流相同螺线管外形一样时,线圈的匝数越多,磁性越强。
c.通电螺线管中有铁芯比无铁芯时磁性强。
(3)优点:电磁铁磁性的有无、强弱及磁场的方向可分别由电流的有无、大小及方向来控制。
(4)应用:电磁继电器。
四、磁场对电流的作用(电动机)
1.作用:通电导线在磁场中会受到力的作用。
2.力的方向:跟磁感线方向和电流方向有关。
左手定则:手指是电流方向,磁感线穿过手心,拇指是力的方向;
3.说明:若导体中电流的方向或磁感线的方向有一个改变,则导体的受力方向也随之改变;若上述两个方向同时改变,则导体的受力方向不变。
4.能的转化:电能转化为机械能。
5.应用:直流电动机
(1)构造:由磁极、线圈、换向器和电刷组成。
(2)工作原理:利用通电线圈在磁场里受力而转动的原理工作的。
五、电能产生
1、化学能转化为电能:
1.干电池
2.蓄电池
2、太阳能电池
3、发电机
(1)火力发电:燃料的化学能转化水的内能转化为机械能发电机电能
(2)水力发电:水的机械能转化为水轮机的机械能,转化发电机的机械能发电机电能
(3)核电:核能转化为机械能发电机转化为电能
(4)风力发电:风能转化为机械能,转化为电机的机械能发电机转化为电能
(5)地热能发电:地热能转化为机械能发电机转化为电能
(6)潮汐发电:潮汐能转化为机械能发电机,转化为电能
考点五电磁感应(发电机)
1.现象:闭合电路的一部分导体在磁场中做切割磁感线运动时,导体中有电流产生,这种现象叫做电磁感应,
产生的电流叫做感应电流。
2.感应电流的方向:跟切割磁感线的方向和磁场方向有关。
3.能的转化:将机械能转化为电能。
4.应用:发电机
5.(1)构造:主要由线圈、磁极、换向器和电刷组成。
(2)工作原理:利用了电磁感应来工作的。
考点六电磁波
1.产生:由迅速变化的电流产生,它是传递各种信息的载体。
2.分类:电磁波家族按波长由大到小可分为长波、中波、短波、微波、红外线、可见光、紫外线、X射线、γ射线。
3.传播:(1)传播不需要介质。
(2)c=λf
4.作用:广播、电视及移动通信,都是靠电磁波传递声音、图像信息。