元素常用光谱特征线解析
3.光谱定性定量分析解读

光谱定性分析中注意问题
只有当元素含量低时,最后线也就是光谱中的最灵敏线,但 在含量高时,由于光谱线中谱线的自吸效应而影响其灵敏度 自吸现象:常规的光源其发光区域中间温度高而四周温度低, 发光层四周的蒸汽原子,一般比中心原子处于较低的能级, 因而当辐射能量通过这段路程时,将为其自身的原子所吸收, 而使谱线中心强度减弱 元素浓度低时,不出现自吸。 随浓度增加,自吸越严重,当 达到一定值时,谱线中心完全 吸收,如同出现两条线,这种 现象称为自蚀。
(3)摄谱过程
摄谱顺序:碳电极(空白)、铁谱、试样;
分段曝光法:先在小电流(5A)激发光源摄取易挥发元素光 谱调节光阑,改变暴光位置后,加大电流(10A),再次暴光 摄取难挥发元素光谱;
为了避免摄取光谱时感光板移 动机构带来的机械误差,而造
成分析时铁光谱与试样光谱的
波长位置不一,采用哈特曼光 阑,可多次暴光而不影响谱线
2. 光谱定量分析
(1) 发射光谱定量分析的基本关系式
在条件一定时,谱线强度I 与待测元素含量c关系为: I=ac a为常数(与蒸发、激发过程等有关),考虑到发射光谱中 存在着自吸现象,需要引入自吸常数 b ,则:
I a cb lg I b lgc lg a
发射光谱分析的基本关系式,称为塞伯-罗马金公式(经验 式)。自吸常数 b 随浓度c增加而减小,当浓度很小,自吸
消失时,b=1。
(2) 内标法基本关系式
影响谱线强度因素较多,直接测定谱线绝对强度计算难以 获得准确结果,实际工作多采用内标法(相对强度法)。 在被测元素的光谱中选择一条作为分析线(强度I),再 选择内标物的一条谱线(强度I0),组成分析线对。则:
I a cb
b0 I 0 a 0 c0
常见合金元素光谱分析(含线位置)

紫色区域、Fe1的右侧(4379.7) 20~30s/2mm
蓝绿色区域、双Fe线27、28右侧, 29左侧(4875.5)
20~30s/2mm 40s/2mm 40s/2mm 40s/2mm 40s/2mm 40s/2mm 17s/2mm 17s/2mm 17s/2mm
绿色区域Fe43、44左侧 (5035.4) 绿色区域Fe45、46右侧 (5053.3) 绿色区域Fe45、46右侧 (5054.6) 绿色区域、双铁线40、41左侧 (4990.5) 绿色区域、Fe37左侧第四根 (4961.7)
0.3~1.3%时出现 0.3~1.3%时出现 0.3~1.3%时出现
橙色区域、8根线Fe96、98 (6013.5) 橙色区域、8根线Fe96、98 (6016.6) 橙色区域、8根线Fe96、98 (6021.8)
常见合金元素分析
化学成分 出现条件
在含铬量在8%~31%时 出现
≤0.03%时Cr5不出现,表 示不含Cr
特征(谱线位置)
绿色区域、Fe31/32/35(4922.3) 黄绿色区域、Fe72/73/74 (5345.8) 黄绿色区域、Fe72/73/74 (5348.3) 黄绿色区域、铁线左侧 (5533.0) 黄绿色区域、几乎与Fe87重合 Fe83/84/88/89(5570.5) 橙色区域、Fe98 的右侧 (6030.7)
预燃/极距
10s/1.5mm 10s/1.5mm 10s/1.5mm 40s/2mm 40s/2mm 40s/2mm
Cr1 Cr5 Cr6 Mo3 Mo4 Mo5 V1 V8 Ni3 W2 W3 Ti3 Ti25%时出现 >0.4%时出现
>0.15%时出现 0.8~2.5%时出现 <1%时含量估计比较困 难 1.5~25%时出现 1.5~25%时出现 0.1~0.3%时出现
光谱定性定量分析

Ⅱ显线法
元素含量低时,仅出现少数灵敏线,随元素含量增加, 谱线随之出现。可编成一张谱线出现与含量关系表,依此估 计试样中该元素的大致含量。
应用:用于钢材、合金等的分类、矿石品位分级等大批 量试样的快速测定。
(3)摄谱过程
摄谱顺序:碳电极(空白)、铁谱、试样; 分段暴光法:先在小电流(5A)激发光源摄取易挥发元素 光谱调节光阑,改变暴光位置后,加大电流(10A),再次暴光 摄取难挥发元素光谱;
采用哈特曼光阑,可多 次暴光而不影响谱线相对位 置,便于对比。
二、 光谱定量分析
1. 光谱半定量分析
Ⅰ谱线黑度比较法
一、 光谱定性分析
定性依据:元素不同→电子结构不同→光谱不同→特征光谱 元素的原子结构不同时,产生不同的光谱,也就是说,通过 谱线存在否,确某元素可否存在。 1.元素的分析线、最后线、灵敏线 分析线:复杂元素的谱线可能多至数千条,只选择其中几条 特征谱线检验,称其为分析线; 最后线:浓度逐渐减小,谱线强度减小,最后消失的谱线; 灵敏线:最易激发的能级所产生的谱线,每种元素都有一条 或几条谱线最强的线,即灵敏线。最后线也是最灵敏线; 共振线:由第一激发态回到基态所产生的谱线;通常也是最 灵敏线、最后线;
例如,铅的光谱
Pb % 0.001
0.003
0.01 0.03 0.10
0.30
谱线特征 2833.069 清晰可见 2614.178和2802.00弱
2833.069 清晰可见 2614.178增强2802.00变清晰
上述谱线增强,2663.17和2873.32出现 上述谱线都增强 上述谱线更增强,没有出现新谱线
发射光谱诊断铯-概述说明以及解释

发射光谱诊断铯-概述说明以及解释1.引言1.1 概述铯是一种化学元素,属于第五族元素,原子序数为55,化学符号为Cs。
它是一种软银白色的金属,在自然界中比较稀少,主要存在于矿石中。
铯在工业生产中具有广泛的应用,特别在电子设备、光电子器件和医学诊断等领域发挥着重要作用。
光谱诊断是一种常用的分析方法,通过观察样品发射光谱谱线的特征,可以识别物质的成分及浓度。
对于铯元素的诊断和分析,发射光谱是一种有效的手段。
本文旨在探讨发射光谱在铯元素诊断中的应用,通过详细阐述铯元素的特性和光谱诊断原理,探讨发射光谱在铯元素分析中的重要性和应用价值。
同时,展望未来研究方向,为铯元素的光谱诊断研究提供一定的参考和指导。
1.2文章结构文章结构部分是对整篇文章的布局和组织进行概括和说明。
在本文中,文章结构部分应该包括对整个文章中各个部分的简要介绍,指引读者了解整篇文章的结构和内容,为读者提供清晰的导航和阅读方向。
下面是文章结构部分的内容:"1.2 文章结构:本文将首先介绍铯元素的基本特性和重要性,然后详细解释发射光谱诊断的原理和方法。
接着,将探讨发射光谱在铯元素诊断中的具体应用,并分析其优势和局限性。
最后,总结发射光谱诊断铯的重要性,并展望未来研究的方向。
通过全面深入地讨论,本文旨在为读者提供关于发射光谱诊断铯的全面了解,促进该领域的研究和进展。
"1.3 目的本文旨在探讨发射光谱诊断铯元素的重要性和应用,通过对铯元素的简介、光谱诊断原理及在铯元素诊断中的具体应用进行详细阐述,旨在为读者提供对于该诊断方法的全面了解。
同时,通过总结发射光谱诊断铯的重要性,并展望未来研究方向,希望能够激发更多科研人员对于发射光谱在铯元素诊断中的研究兴趣,推动该领域的快速发展。
最终目的是为铯元素的诊断提供更准确、快捷的方法,为相关领域的发展和应用提供有力支持。
2.正文2.1 铯元素简介铯是一种化学元素,位于周期表的第五周期第一族元素,原子序数为55,原子量为132.91。
光谱定性、定量分析

c.标准加入法 无合适内标物时,采用该法。 取若干份体积相同的试液(cX),依次按比例加入不同量的 待测物的标准溶液(cO),浓度依次为: cX , cX +cO , cX +2cO , cX +3cO , cX +4 cO …… 在相同条件下测定:RX,R1,R2,R3,R4……。 以R对浓度c做图得一直线,图中cX点即待测溶液浓度。 R=Acb b=1时,R=A(cx+ci ) R=0时, cx = – ci
三、原子发射光谱分析法的应用
原子发射光谱分析在鉴定金属元素方面(定性分析)具 有较大的优越性,不需分离、多元素同时测定、灵敏、快捷 ,可鉴定周期表中约70多种元素,长期在钢铁工业(炉前快 速分析)、地矿等方面发挥重要作用; 在定量分析方面,原子吸收分析有着优越性; 80年代以来,全谱光电直读等离子体发射光谱仪发展迅 速,已成为无机化合物分析的重要仪器。
(3)摄谱过程 )
摄谱顺序:碳电极(空白)、铁谱、试样; 摄谱顺序 分段暴光法:先在小电流(5A)激发光源摄取易挥发元素 分段暴光法 光谱调节光阑,改变暴光位置后,加大电流(10A),再次暴光 摄取难挥发元素光谱; 采用哈特曼光阑,可多 次暴光而不影响谱线相对位 置,便于对比。
二、 光谱定量分析
§1-3 光谱定性、定量分析 光谱定性、
一、 光谱定性分析
定性依据:元素不同 电子结构不同 光谱不同→特征光谱 电子结构不同→光谱不同 定性依据:元素不同→电子结构不同 光谱不同 特征光谱 元素的原子结构不同时,产生不同的光谱,也就是说, 元素的原子结构不同时,产生不同的光谱,也就是说,通过 谱线存在否,确某元素可否存在。 谱线存在否,确某元素可否存在。 1.元素的分析线、最后线、灵敏线 元素的分析线、最后线、 分析线: 分析线:复杂元素的谱线可能多至数千条,只选择其中几条 特征谱线检验,称其为分析线; 最后线: 最后线:浓度逐渐减小,谱线强度减小,最后消失的谱线; 灵敏线: 灵敏线:最易激发的能级所产生的谱线,每种元素都有一条 或几条谱线最强的线,即灵敏线。最后线也是最灵敏线; 共振线:由第一激发态回到基态所产生的谱线;通常也是最 共振线 灵敏线、最后线;
常用元素分析方法

X射线荧光光谱
X射线荧光光谱法在化学分析中的应用 主要使用X射线束激发荧光辐射,第一次是在1928年由格洛克尔和施雷伯提出的。到了现在,该方法作 为非破坏性分析技术,并作为过程控制的工具,广泛应用于采掘和加工工业。原则上,最轻的元素,可分析 出铍(z=4),但由于仪器的局限性和轻元素的低X射线产量,往往难以量化,所以针对能量分散式的X射线 荧光光谱仪,可以分析从轻元素的钠(z=11)到铀,而波长分散式则为从轻元素的硼到铀。
电子探针在表面材料分析中的应用
电子探针显微分析
14
X射线能谱分析
X光电子能谱分析的基本原理:一定能量的X光照射 到样品表面,和待测物质发生作用,可以使待测物质原 子中的电子脱离原子成为自由电子。该过程可用下式表 示: hn=Ek+Eb+Er 其中: hn:X光子的能量; Ek:光电 子的能量;Eb:电子的结合能;Er:原子的反冲能量。 其中Er很小,可以忽略。
5
原子吸收光谱
应用: 原子吸收光谱法已成为实验室的常规方法,
能分析70多种元素,广泛应用于石油化工、环 境卫生、冶金矿山、材料、地质、食品、医药 等各个领域中。
如图是我们实验室光催化降解染料所测的光谱图, 主要是对污染物的降解,运用原子吸收光谱仪来测其 吸光度的降解。
6
原子发射光谱
原子发射光谱法,是指利用被激发原子 发出的辐射线形成的光谱与标准光谱比较, 识别物质中含有何种物质的分析方法。用电 弧、火花等为激发源,使气态原子或离子受 激发后发射出紫外和可见区域的辐射。某种 元素原子只能产生某些波长的谱线,根据光 谱图中是否出现某些特征谱线,可判断是否 存在某种元素。根据特征谱线的强度,可测 定某种元素的含量。一次检验可把被检物质 中的元素全部在图谱上显现出来,再与标准 图谱比较。可测量元素种类有七十多种。灵 敏度髙,选择性好,分析速度快。在司法鉴 定中,主要用于泥土、油漆、粉尘类物质及 其他物质中微量金属元素成份的定性分析。 定量分析较复杂且不准确。
元素常用光谱特征线解析

元素常用光谱特征线解析元素的光谱特征线是指在元素的光谱中具有较强的发射或吸收强度的特定频率的谱线。
每种元素都具有一组独特的光谱特征线,这些特征线可以用来鉴定元素的存在和测量其浓度。
本文将对元素常用的光谱特征线进行解析。
元素的光谱特征线可以分为两类:发射谱特征线和吸收谱特征线。
发射谱特征线是指当元素被加热或激发时,电子从高能级跃迁到低能级时产生的辐射。
这种辐射的频率和波长是特定的,由元素原子的电子能级结构决定。
每个元素都有一组特定的发射谱特征线,可以用来确定元素的存在和浓度。
以氢为例,氢原子的电子能级结构简单,只有一个电子。
当氢原子的电子从高能级跃迁到低能级时,会产生一系列的发射谱特征线。
其中最常见的是氢原子的巴尔末系列,包括巴尔末系、帕舍特系、布拉开特系等。
吸收谱特征线是指当元素被辐射物质(如气体或溶液)或固体吸收辐射时产生的谱线。
这些吸收谱特征线通常是元素的发射谱特征线的反向谱线,即在原子吸收谱中出现的吸收峰对应于原子发射谱中的发射峰。
以钠为例,钠原子的光谱中有两个重要的吸收谱特征线,分别是在波长为589.0纳米(黄线)和589.6纳米(黄线)的位置。
这两个吸收谱特征线被广泛用于测量钠的浓度,特别是在食品、环境和药物等领域。
除了上述的发射和吸收谱特征线,还有一些元素具有其他特殊的光谱特征线,如锂的谱线在紫外和蓝光区域,铝的谱线在紫外和红外区域,铜的谱线在绿光区域等。
光谱特征线的解析可以通过光谱仪进行。
光谱仪是一种将光谱分解为不同波长的光线的仪器。
常用的光谱仪包括光栅光谱仪、衍射光谱仪和干涉光谱仪等。
总之,光谱特征线是元素光谱中具有较强发射或吸收强度的特定频率的谱线。
各元素的光谱特征线是由其原子的电子能级结构决定的,可以用于鉴定元素的存在和测量其浓度。
了解和解析元素的光谱特征线对于理解和应用光谱学在化学分析、物质检测和新材料研究等领域具有重要意义。
莫塞莱定律图解用于选择X射线特征线

元素Mo K能级的激发电位示意图
在钼的K系激发电位20KV以下, 仅能产生连续谱,当电压为20KV 时,连续谱上迭加着微弱的钼的 K系特征谱线。
参考文献:
[1] 杨福家. 原子物理学(第三版). 北京:高等教育出版社, 1999
[2]杨福家. 原子物理学(第三版). 北京:高等教育出版社, 1999
以钼为例, 取吸收边理论值,高速电子的能量 等于K层被移走一个电子并使其脱离原子的能 量.
计算结果即为查资料得到钼的K谱线激发电位 理论值为20.02KV.
电子轰击出的X射线,早先出现的是能量较小的 Kα射线,是靶原子的电子从L层跃迁到K层放出的X 光,所以选取探测Kα射线.经NaCl晶体衍射,发 射谱中Kα特征谱出现在β=7.2°,可以根据在β =7.2°处是否出现峰值,判断钼靶是否发射特 征谱,以此判断钼靶是否产生X光K系列特征波。
Thank you!
如果把各元素的特征X射线的频率的平方根对 原子序数作标绘,就会得到线性关系。这就 是莫塞莱当年得出的规律,称为莫塞莱定律。
各元素的特征X射线能量值(或波长值)各不相 同,被用来作为元素的标识,所以又可以称为 元素的标识谱。
特征线的波长相当于高层电子填充该能级空位 时所释放的能量,谱线的波长必然大于吸收边 的波长,谱线的能量必然小于吸收限的能量。
钼靶上打出的X射线发射谱 横坐标为X射线经NaCl晶体的入射角
纵坐标为收集极记录X射线强度
吸收限的波长等价于产生内层轨道空位 所吸收的能量,等价于从该能级上移走 一个电子并使其脱离原子的能量。
产生K系X射线的阈能大于K系X射线本身的能量
图二为钼吸收片的透射率与 X射线能量的关系。Kα和Kβ 是钼的标识K系X射线的能量.