请尝试用同底数幂的乘法法则推导出同底数幂的除法法则

合集下载

同底数幂乘除法

同底数幂乘除法

同底数幂的乘除法【课堂目标】1.能准确判断两个幂是不是同底数幂。

2.通过探索同底数幂的乘、除法和运算性质的过程,进一步体会幂的意义,培养推理能力和表达能力。

3. 掌握同底数幂的乘、除法和运算性质,提高他们的运算能力,并能解决一些实际问题。

4.使学生熟练地掌握科学记数法。

【新知精讲】1.同底数幂的乘法:(1)、也就是一般地,如果m ,n 都是正整数,那么a a a a a a a a a a am n m a n am n a ⋅=⋅⋅⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅+()()()个个个即a a a m n m n ⋅=+2.同底数幂的乘法法则:n m n m a a a +=• (m,n 都是正整数)说明:①底数必须相同,底数可以为任何单项式或多项式。

②积的底数不变,指数和作为积的指数。

③1a a =3.同底数幂的乘法法则的应用:(1)推广:同底数幂的乘法法则适用于三个或三个以上的同底数幂的乘法运算。

即n n m m m m m m a a a a +++=••• 2121(2)法则逆用:n m n m a a a •=+4.同底数幂的除法法则: ====÷585810101010()()()===个个个10101010101010101010101010101010⨯⨯⨯⨯⨯⨯⨯⨯⨯=÷n m n m即n m n m a a a -=÷ (m,n 都是正整数,且0≠a )说明:①底数必须相同且不为0,底数可以为任何单项式或多项式。

②商的底数不变,指数差作为商的指数。

5.零指数幂与负整数指数幂:(1)零指数幂:任何不等于0的数的0次幂都等于1。

即01()a a o =≠说明:0的0次幂无意义。

即:00无意义。

(2)负整数指数幂:任何不等于0的数的-p 次幂(p 是正整数)等于这个数的p 次幂的倒数。

即: p p p a a a ⎪⎭⎫ ⎝⎛==-11(0≠a ,p 是正整数)【典例分析】(一)同底数数幂相乘的法则例1.计算下列各题()()()()1101023222439753226⨯⋅⨯⨯⋅⋅ x x y y y例2.计算()()()()()12327321-⋅-⋅-⋅+a a x x y y m m例3.计算32(1).()()a b a b +⋅+; 23(2).()()a b b a -⋅-变式练习:1. 判断正误,错的请改正。

同底数幂的除法以及整式的乘法

同底数幂的除法以及整式的乘法

同底数幂的除法一、同底数幂的除法同底数幂除法法则:同底数幂相除,底数不变,指数相减。

即a m ÷a n ==a m -n(a ≠0,m ,n 都是正整数,且m >n ) 正确理解法则的含义应注意的问题:1. 在运算公式n m n m a a a -=÷中,0≠a ,因为当a=0时,a 的非零次幂都为0,而0不能作除数,所以0≠a2. 底数相同,如23)5(6-÷-是除法运算,但不是同底数幂相除,不能运用这个法则 3. 相除运算,如23a a +是同底数幂,但不是相除运算,不能运用这个法则 4. 运算结果是底数不变,指数相减,而不是指数相除例1 计算 (1)22243647)4();())(3(;)())(2(;b bxy xy x x a a m ÷÷-÷-÷+二、 同底数幂的除法应用例2 计算:(1)8322158213)())(2(;a a a x x x ÷-÷-÷÷三、零指数与负整数指数的意义(1)零指数 )0(10≠=a a 即任何不等于0的数的0次幂都等于1 (2)负整数指数=-p a (p 是正整数 )0(≠a )即任何不等于零的数的-p(p 是正整数)次幂,等于这个数的p 次幂的倒数。

规律点拔:(1) 零指数幂和负整数指数幂中,底数都不能为0,即0≠a(2) 规定了零指数和负整数指数的意义后,正整数指数幂的运算性质就可以推广到整数指数幂 四、用小数或分数表示绝对值较小的数 例3 (1)423106.1)3(;87)2(;10---⨯+【知能整合提升】一、选择题1、如果mnnm aA a =÷)(,那么A 的值为( )A 、m a ;B 、na ; C 、1; D 、mna 。

2、如果m mm n x=÷+2,那么x 的值为( )A 、n +3;B 、n +2;C 、n +1;D 、3-n .3、已知下列四个算式:①、-3.4×310-=-0.00034;②、313332=÷; ③、827)32(3-=-;④、0099988)100001(=-。

《同底数幂的除法》 讲义

《同底数幂的除法》 讲义

《同底数幂的除法》讲义一、同底数幂的除法的定义在数学中,同底数幂的除法是指底数相同的幂相除的运算。

例如:$a^m÷a^n$(其中$a≠0$,$m$、$n$为正整数,且$m>n$)二、同底数幂的除法法则同底数幂相除,底数不变,指数相减。

用公式表示为:$a^m÷a^n = a^{m n}$($a≠0$,$m$、$n$都是正整数,且$m>n$)我们来通过几个例子理解一下这个法则:例 1:$2^5÷2^3 = 2^{5 3} = 2^2 = 4$例 2:$x^8÷x^5 = x^{8 5} = x^3$需要注意的是,当底数为负数时,也要遵循这个法则。

例 3:$(-3)^7÷(-3)^4 =(-3)^{7 4} =(-3)^3 =-27$三、同底数幂的除法的特殊情况1、当$m = n$时$a^m÷a^n = a^{m n} = a^0$因为任何非零数的 0 次幂都等于 1,所以$a^0 = 1$($a≠0$)例如:$5^3÷5^3 = 5^{3 3} = 5^0 = 1$但 0 的 0 次幂没有意义。

2、当$m < n$时$a^m÷a^n = a^{m n}$此时指数为负数。

例如:$2^2÷2^5 = 2^{2 5} = 2^{-3} =\frac{1}{2^3} =\frac{1}{8}$四、同底数幂的除法的应用1、简化计算在进行复杂的数学运算时,运用同底数幂的除法法则可以将式子简化,从而更方便地计算出结果。

例如:计算$16^8÷4^8$因为$16 = 2^4$,$4 = 2^2$所以原式可以转化为$(2^4)^8÷(2^2)^8 = 2^{32}÷2^{16} =2^{32 16} = 2^{16}$2、解决实际问题在一些实际问题中,也会用到同底数幂的除法。

比如,某种细胞每过 30 分钟便由 1 个分裂成 2 个。

2023年中考数学一轮复习满分突破专题04 整式的乘除-【题型方法解密】

2023年中考数学一轮复习满分突破专题04 整式的乘除-【题型方法解密】

专题04 整式的乘除【热考题型】【知识要点】 知识点一 幂的运算同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加。

n m n m a a a +=·(其中m 、n 为正整数) 【注意事项】1)当底数为负数时,先用同底数幂乘法法则计算,再根据指数的奇偶来确定结果的正负,并且化简到底。

2)不能疏忽指数为1的情况。

例:a ·a 2=a1+2=a 33)乘数a 可能是有理数、单项式或多项式。

4)如果底数互为相反数时可先变成同底后再运算。

5)逆用公式:n m n m a a a ·=+(m,n 都是正整数) 【扩展】三个或三个以上同底数幂相乘时,也具有这一性质, 即p n m p n m a a a a ++=··(m ,n ,p 都是正整数) 考查题型一 同底数幂的乘法典例1.(2022·浙江嘉兴·中考真题)计算a 2·a ( ) A .aB .3aC .2a 2D .a 3变式1-1.(2022·河南·中考真题)《孙子算经》中记载:“凡大数之法,万万曰亿,万万亿曰兆.”说明了大数之间的关系:1亿=1万×1万,1兆=1万×1万×1亿,则1兆等于( ) A .810B .1210C .1610D .2410变式1-2.(2022·内蒙古包头·中考真题)若42222m ⨯=,则m 的值为( )A .8B .6C .5D .2变式1-3.(2022·湖南邵阳·中考真题)5月29日腾讯新闻报道,2022年第一季度,湖南全省地区生产总值约为11000亿元,11000亿用科学记数法可表示为1210a ⨯,则a 的值是( ) A .0.11 B .1.1 C .11 D .11000易错点总结:幂的乘方法则:幂的乘方,底数不变,指数相乘.mnn m a a =)((其中m ,n 都是正整数).【注意事项】1)负号在括号内时,偶次方结果为正,奇次方为负,负号在括号外结果都为负。

同底数幂的除法__同底数幂的除法 知识讲解

同底数幂的除法__同底数幂的除法 知识讲解

同底数幂的除法责编:赵炜【学习目标】1. 会用同底数幂的除法性质进行计算.2. 掌握零指数幂和负整数指数幂的意义.3.掌握科学记数法.【要点梳理】要点一、同底数幂的除法法则同底数幂相除,底数不变,指数相减,即(≠0,都是正整mnm na a a-÷=a m n 、数,并且)m n >要点诠释:(1)同底数幂乘法与同底数幂的除法是互逆运算.(2)被除式、除式的底数相同,被除式的指数大于除式指数,0不能作除式.(3)当三个或三个以上同底数幂相除时,也具有这一性质. (4)底数可以是一个数,也可以是单项式或多项式.要点二、零指数幂任何不等于0的数的0次幂都等于1.即(≠0)1a =a 要点诠释:底数不能为0,无意义.任何一个常数都可以看作与字母0次方的积.a 00因此常数项也叫0次单项式.要点三、负整数指数幂任何不等于零的数的(为正整数)次幂,等于这个数的次幂的倒数,即n -n n (≠0,是正整数).1n n a a-=a n 引进了零指数幂和负整数指数幂后,指数的范围已经扩大到了全体整数,以前所学的幂的运算性质仍然成立.(、为整数,);m n m n a a a +=m n 0a ≠(为整数,,)()mm m ab a b =m 0a ≠0b ≠(、为整数,).()nm mn a a =m n 0a ≠要点诠释:是的倒数,可以是不等于0的数,也可以是不等于0的()0naa -≠n a a 代数式.例如(),().()1122xy xy -=0xy ≠()()551a b a b -+=+0a b +≠要点四、科学记数法的一般形式(1)把一个绝对值大于10的数表示成的形式,其中是正整数,10na ⨯n 1||10a ≤<(2)利用10的负整数次幂表示一些绝对值较小的数,即的形式,其中是10na -⨯n 正整数,.1||10a ≤<用以上两种形式表示数的方法,叫做科学记数法.【典型例题】类型一、同底数幂的除法1、计算:(1);(2);(3);(4).83x x ÷3()a a -÷52(2)(2)xy xy ÷531133⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭【思路点拨】利用同底数幂相除的法则计算.(2)、(4)两小题要注意符号.【答案与解析】解:(1).83835x x xx -÷==(2).3312()a a aa --÷=-=-(3).5252333(2)(2)(2)(2)8xy xy xy xy x y -÷===(4).535321111133339-⎛⎫⎛⎫⎛⎫⎛⎫-÷-=-=-= ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭【总结升华】(1)运用法则进行计算的关键是看底数是否相同.(2)运算中单项式的系数包括它前面的符号.【高清课堂399108 整式的除法 例1】2、计算下列各题:(1) (2)5()()x y x y -÷-125(52)(25)a b b a -÷-(3) (4)6462(310)(310)⨯÷⨯3324[(2)][(2)]x y y x -÷-【思路点拨】(1)若被除式、除式的底数互为相反数时,先将底数变为相同底数再计算,尽可能地去变偶次幂的底数,如.(2)注意指数为1的多项1212(52)(25)a b b a -=-式.如的指数为1,而不是0. x y -【答案与解析】解:(1).5514()()()()x y x y x y x y --÷-=-=-(2)1251257(52)(25)(25)(25)(25)a b b a b a b a b a -÷-=-÷-=-(3).64626426212(310)(310)(310)(310)910-⨯÷⨯=⨯=⨯=⨯(4).3324[(2)][(2)]x y y x -÷-9898(2)(2)(2)2x y x y x y x y -=-÷-=-=-【总结升华】底数都是单项式或多项式,把底数作一个整体利用同底数幂的除法法则进行计算.【高清课堂 整式的除法 例2】3、已知,,求的值.32m =34n =129m n+-【答案与解析】解: .121222222221222244449(3)33333(3)399(3)33(3)(3)m m m m m m m nn n n n n n ++++-======A A A 当,时,原式.32m=34n=224239464⨯==【总结升华】逆用同底数除法公式,设法把所求式转化成只含,的式子,再代入求3m 3n值.本题是把除式写成了分数的形式,为了便于观察和计算,我们可以把它再写成除式的形式.举一反三:【变式】(2015春•苏州)已知以=2,=4,=32.则的值为 .ma na ka 32m n ka +-【答案】解: ==8,==16,3ma322n a 24=•÷=8×16÷32=4,32m n k a +-3m a 2n a k a 故答案为:4.类型二、负整数次幂的运算4、计算:(1);(2).223-⎛⎫- ⎪⎝⎭23131()()a b a b ab ---÷【答案与解析】解:(1);222119434293-⎛⎫-=== ⎪⎝⎭⎛⎫- ⎪⎝⎭(2).2313123330()()a b a b ab a b a b ab a b b -----÷===A A 【总结升华】要正确理解负整数指数幂的意义.举一反三:【变式】计算:.4513012222( 3.14)2π----⎛⎫++⨯⨯+- ⎪⎝⎭【答案】解: 4513012222( 3.14)2π----⎛⎫++⨯⨯+- ⎪⎝⎭45311111122116212223228=++⨯⨯+=++⨯⨯+1151611732832=+++=5、 已知,,则的值=________.1327m =1162n⎛⎫= ⎪⎝⎭n m 【答案与解析】解: ∵ ,∴ .331133273m-===3m =-∵ ,,∴ ,.122n n-⎛⎫= ⎪⎝⎭4162=422n -=4n =-∴ .4411(3)(3)81nm -=-==-【总结升华】先将变形为底数为3的幂,,,然后确定、的127122nn-⎛⎫= ⎪⎝⎭4162=m n 值,最后代值求.nm 举一反三:【变式】计算:(1);(2);1232()a b c --3232312b c b c ---⎛⎫⨯ ⎪⎝⎭【答案】解:(1)原式.424626b a b c a c--==(2)原式.8236981212888b b c b c b cc---=⨯==类型三、科学记数法6、(2014秋•福州)观察下列计算过程:(1)∵÷=,÷==,∴=3353332231333=⨯3353353-23-23-(2)当a≠0时,∵÷===,÷==,=,2a 7a 27a a 225a a a ⨯51a 2a 7a 27a -5a -5a -51a 由此可归纳出规律是:=(a≠0,P 为正整数)pa-1p a请运用上述规律解决下列问题:(1)填空:= ;= .103-259x x x ⨯÷(2)用科学记数法:3×= .(写成小数形式)410-(3)把0.00000002写成如(2)的科学记数法的形式是: .10na ⨯【答案与解析】 解:(1)=;103-1013 ==;259x x x ⨯÷259x +-221x x-=(2)3×=0.0003,410-(3)0.00000002=2×.810-【总结升华】本题考查用科学记数法表示较小的数,一般形式为,其中1≤|a|<10na ⨯10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.。

同底数幂除法(解析版)

同底数幂除法(解析版)

同底数幂除法【知识梳理】一、同底数幂的除法法则同底数幂相除,底数不变,指数相减,即m n m na a a −÷=(a ≠0,m n 、都是正整数,并且m n >)要点诠释:(1)同底数幂乘法与同底数幂的除法是互逆运算.(2)被除式、除式的底数相同,被除式的指数大于除式指数,0不能作除式. (3)当三个或三个以上同底数幂相除时,也具有这一性质. (4)底数可以是一个数,也可以是单项式或多项式. 二、零指数幂任何不等于0的数的0次幂都等于1.即01a =(a ≠0)要点诠释:底数a 不能为0,00无意义.任何一个常数都可以看作与字母0次方的积.因此常数项也叫0次单项式.【考点剖析】 题型一、同底数幂的除法例1、计算:(1)83x x ÷;(2)3()a a −÷;(3)52(2)(2)xy xy ÷;(4)531133⎛⎫⎛⎫−÷− ⎪ ⎪⎝⎭⎝⎭.【思路点拨】利用同底数幂相除的法则计算.(2)、(4)两小题要注意符号. 【答案与解析】解:(1)83835x x x x −÷==.(2)3312()a a a a −−÷=−=−.(3)5252333(2)(2)(2)(2)8xy xy xy xy x y −÷===. (4)535321111133339−⎛⎫⎛⎫⎛⎫⎛⎫−÷−=−=−=⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭.【总结升华】(1)运用法则进行计算的关键是看底数是否相同.(2)运算中单项式的系数包括它前面的符号. 【变式1】(2021•上海)计算:x 7÷x 2= .【分析】根据同底数幂的除法法则进行解答即可. 【解答】解:x7÷x2=x7﹣2=x5, 故答案为:x5.【点评】此题考查了同底数幂的除法,熟练掌握同底数幂相除,底数不变指数相减是解题的关键. 【变式2】(2022•浦东新区二模)计算:(﹣a 6)÷(﹣a )2= . 【分析】根据同底数幂相除的法则:底数不变,指数相减即可得出答案. 【解答】解:(﹣a6)÷(﹣a )2=﹣(a6÷a2)=﹣a4. 故答案为:﹣a4.【点评】本题考查了同底数幂的除法,同底数幂相除的法则:底数不变,指数相减. 【变式3】计算:(1)()()151233−÷−;(2)853377⎛⎫⎛⎫÷− ⎪ ⎪⎝⎭⎝⎭;(3)10010099÷.【答案】(1)27−;(2)27343−;(3)1.【解析】(1)()()()()151215123333327−−÷−=−=−=−;(2)858533333277777343−⎛⎫⎛⎫⎛⎫⎛⎫÷−===⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭; (3)100100100100099991−÷===.【总结】本题考查了同底数幂的除法,m n m na a a −÷=(0a ≠,m ,n 都是正整数),规定()010a a =≠.【变式4】计算: (1)107a a ÷;(2)102102x x −÷;(3)()()75a a −÷−.【答案】(1)3a ;(2)1−;(3)2a .【解析】(1)1071073a a aa −÷==; (2)10210210210201x x x x −−÷=−=−=−;(3)()()()()757522a a a a a −−÷−=−=−=.【总结】本题考查了同底数幂的除法,同底数幂相除,底数不变,指数相减. 【变式5】计算:(1)()()105x y x y +÷+;(2)()()97a b b a −÷−.【答案】(1)()5x y +;(2)222a ab b −+−.【解析】(1)()()()()1051055x y x y x y x y −+÷+=+=+;(2)()()()()()()9797972222a b b a b a b a b a b a a ab b −−÷−=−−÷−=−−=−−−+−.【总结】本题主要考查了同底数幂的除法. 题型二、科学记数法有关的同底数幂的除法例2.下雨时,常常是“先见闪电、后闻雷鸣”,这是因为光速比声速快的缘故.已知光在空气中的传播速度为8310⨯米每秒,而声音在空气中的传播速度约为300米每秒,你知道光速是声速的多少倍吗? 【答案】610.【解析】8631030010⨯÷=.【总结】本题考查了整式的除法,解题的关键是根据题意列出代数式,再根据除法运算法则求出答案. 【变式】月球距离地球大约53.8410⨯千米,一架飞机的速度约为2810⨯千米/时.如果乘坐此飞机飞行这么远的距离,大约需要多少时间? 【答案】480小时.【解析】()()()()52523.8410810 3.8481010480⨯÷⨯=÷⨯÷=(小时)【总结】本题考查了单项式除以单项式,用整式乘除法解决实际问题时要注意分清量与量之间存在的数量关系.题型三、同底数幂的除法的逆用例3、已知32m =,34n=,求129m n +−的值.【答案与解析】解:121222222221222244449(3)33333(3)399(3)33(3)(3)m m m m m m m nn n n n n n ++++−======.当32m =,34n=时,原式224239464⨯==. 【总结升华】逆用同底数除法公式,设法把所求式转化成只含3m ,3n的式子,再代入求值.本题是把除式写成了分数的形式,为了便于观察和计算,我们可以把它再写成除式的形式. 【变式1】(2020秋•宝山区期末)如果2021a =7,2021b =2.那么20212a﹣3b= .【分析】根据幂的乘方以及同底数幂的除法法则计算即可,幂的乘方法则:底数不变,指数相乘;同底数幂的除法法则:底数不变,指数相减. 【解答】解:∵2021a =7,2021b =2.∴20212a ﹣3b =20212a ÷20213b =(2021a )2÷(2021b )3=72÷23=.故答案为:.【点评】本题主要考查了同底数幂的除法以及幂的乘方,熟记相关运算法则是解答本题的关键.【变式2】已知2552m m⨯=⨯,求m 的值.【答案】解:由2552m m ⨯=⨯得1152m m −−=,即11521m m −−÷=,1512m −⎛⎫= ⎪⎝⎭,∵ 底数52不等于0和1,∴ 15522m −⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,即10m −=,1m =.题型四、同底数幂的除法有关的混合运算例4.(2020秋•浦东新区期末)计算:a •a 7﹣(﹣3a 4)2+a 10÷a 2.【分析】分别根据同底数幂的乘除法法则以及积的乘方运算法则化简后,再合并同类项即可. 【解答】解:a •a7﹣(﹣3a4)2+a10÷a2=a8﹣9a8+a8=﹣7a8.【点评】本题主要考查了同底数幂的乘除法以及幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.【变式1】(2022y 3•y 5÷(﹣y )4= . 【分析】利用同底数幂的乘除法运算法则进行计算. 【解答】解:原式=﹣y3•y5÷y4=﹣y3+5﹣4=﹣y4, 故答案为:﹣y4.【点评】本题考查同底数幂的乘除法,掌握同底数幂的乘法(底数不变,指数相加),同底数幂的除法(底数不变,指数相减)的运算法则是解题关键. 【变式2】计算: (1)()623x x x ÷⋅;(2)()1243x x x ⋅÷.【答案】(1)x ;(2)13x . 【解析】(1)()6236236565x x x x x x x x x+−÷⋅=÷=÷==;(2)()124312*********x x x x x x x x x −+⋅÷=⋅=⋅==.【总结】本题考查了同底数幂的乘法与除法,m n m n a a a +⋅=,m n m na a a −÷=(0a ≠,m ,n 都是正整数),规定()010a a =≠.【变式3】.计算: (1)()()4334a a −÷−;(2)()()22237a a a a ⋅÷⨯−.【答案】(1)1−;(2)5a .【解析】(1)()()()433412121a a a a −÷−=÷−=−;(2)()()()22223757210725a a a a a a a a a −+⋅÷⨯−=÷⋅==.【总结】本题考查了同底数幂的乘法与除法,m nm na a a +⋅=,()nm mna a =,m n m na a a −÷=(0a ≠,m ,n 都是正整数),规定()010a a =≠,注意负数的奇次幂还是负数.【变式4】计算:(1)()3232942x x x x x ⋅−+÷;(2)54189t t t t ⋅−÷.【答案】(1)5628x x −;(2)0.【解析】(1)()3232942323945655628828x x x x x x x x x x x x x +⨯−⋅−+÷=−+=−+=−;(2)5418954189990t t t t t tt t +−⋅−÷=−=−=. 【总结】本题考查了同底数幂的乘法与除法以及幂的乘方,注意法则的准确运用.【过关检测】一、单选题1.(2022秋·上海·七年级专题练习)下列计算正确的是( )A .235a a ()=B .3232a b a b −−()= C .448a a a += D .532a a a ÷=【答案】D【分析】利用合并同类项的法则,同底数幂的除法的法则,幂的乘方的法则,单项式乘多项式的法则对各项进行运算即可.【详解】解:A 、623a a ()=,故A 不符合题意;B 、3(a ﹣2b )=3a ﹣6b ,故B 不符合题意;C 、4442a a a +=,故C 不符合题意;D 、532a a a ÷=,故D 符合题意;故选:D .【点睛】本题主要考查幂的乘方,同底数幂的除法,单项式乘多项式,合并同类项,解答的关键是对相应的运算法则的掌握.2.(2023·上海·七年级假期作业)在下列运算中,计算正确的是( ) A .3262()x y x y −= B .339x x x ⋅= C .224x x x += D .62322x x x ÷=【答案】A【分析】按照幂的乘方、积的乘方、合并同类项、同底数幂相乘、同底数幂相除的运算法则.【详解】解:3262x y x y =(-),故A 正确,符合题意; 336x x x ⋅=,故B 错误,不符合题意; 2222x x x +=,故C 错误,不符合题意; 62422x x x ÷=,故D 错误,不符合题意;故选:A .【点睛】本题考查了幂的乘方、积的乘方、合并同类项、同底数幂相乘、同底数幂相除等运算,熟练掌握相关运算法则是解题关键.【答案】B【分析】根据幂的公式逆运算即可求解.【详解】∵3,2m nx x ==,∴23m nx−=(mx )2÷(nx )3=32÷23=98故选B【点睛】此题主要考查幂的运算,解题的关键是熟知幂的运算公式.4.(2021秋·上海浦东新·七年级期末)下列运算中,正确的是( ) A .(﹣m )6÷(﹣m )3=﹣m 3 B .(﹣a 3)2=﹣a 6 C .(xy 2)2=xy 4 D .a 2•a 3=a 6【答案】A【分析】根据同底数幂的除法,幂的乘方,积的乘方,同底数幂的乘法逐项分析判断即可. 【详解】解:A 、(﹣m )6÷(﹣m )3=﹣m3,故本选项符合题意; B 、(﹣a3)2=a6,故本选项不符合题意; C 、(xy2)2=x2y4,故本选项不符合题意; D 、a2•a3=a5,故本选项不符合题意; 故选:A .【点睛】本题考查了幂的运算,掌握幂的运算是解题的关键. 5.(2023·上海·七年级假期作业)下列计算结果中,正确的是( ) A .a 3+a 3=a 6 B .(2a )3=6a 3 C .(a ﹣7)2=a 2﹣49 D .a 7÷a 6=a .【答案】D【分析】根据合并同类项法则、积的乘方的运算法则、完全平方公式、同底数幂的除法的运算法则逐项计算得出结果即可得出答案.【详解】解:A 、3332a a a +=,原计算错误,故此选项不符合题意;B 、33(2)8a a =,原计算错误,故此选项不符合题意;C 、22(7)1449a a a =−−+,原计算错误,故此选项不符合题意;D 、76a a a ÷=,原计算正确,故此选项符合题意.故选:D .【点睛】本题考查合并同类项、积的乘方、完全平方公式和同底数幂的除法.掌握各运算法则是解题关键. 6.(2023·上海·七年级假期作业)下列运算正确的是( ) A .()323a a = B .623a a a ÷= C .235a a a += D .235a a a ⋅=【答案】D【分析】根据幂的乘方,同底数幂的乘法和除法,以及合并同类项法则,逐一进行计算即可.【详解】解:A 、()326a a =,选项错误,不符合题意;B 、624a a a ÷=,选项错误,不符合题意;C 、235a a a +≠,选项错误,不符合题意;D 、235a a a ⋅=,选项正确,符合题意;故选D .【点睛】本题考查幂的乘方,同底数幂的乘法和除法,以及合并同类项法.熟练掌握相关法则,是解题的关键.二、填空题7.(2023·上海·七年级假期作业)42()()n n y y −÷−=________;4232()()()a b a b a b ⎡⎤⎡⎤−⨯−÷−=⎣⎦⎣⎦___________.【答案】 2n y 9()a b −【分析】利用同底数幂的乘法、除法、幂的乘方化简,先算乘方,再算乘除.【详解】解:42()()n n y y −÷−=42()n n y −−=2()ny −=2n y ,4232()()()a b a b a b ⎡⎤⎡⎤−⨯−÷−⎣⎦⎣⎦=124()()()a a b a b −⨯−÷−=124()()()a b a b a b −⨯−÷−=1214()a b +−−=9()a b −.故答案为:2n y ,9()a b −.【点睛】此题考查了同底数幂的乘法、除法、幂的乘方运算,解题的关键是掌握同底数幂的乘法、除法、幂的乘方的运算法则.8.(2023·上海·七年级假期作业)计算:结果用幂的形式表示94()()a b b a −÷−=_____. 【答案】5()a b −【分析】利用同底数幂的除法的法则进行运算即可.【详解】解:94()()a b b a −÷−94()()a b a b =−÷−5()a b =−.故答案为:5()a b −.【点睛】本题主要考查同底数幂的除法,解答的关键是对同底数幂除法法则的掌握.9.(2023秋·上海青浦·七年级校考期末)计算:()()2333142a b a b b −−−⋅÷=____________.(结果只含有正整数指数幂) 【答案】934b a【分析】根据幂的运算法则和整式的混合运算法则计算可得.【详解】解:()()2333142a b a b b −−−⋅÷293464a b a b b −−=⋅÷()492634a b +−−−=934a b −=394b a =.【点睛】本题主要考查整式的混合运算,解题的关键是熟练掌握幂的运算法则和整式的混合运算法则.10.(2022秋·上海·七年级专题练习)计算:62a a ÷(-)(-)=______. 【答案】4a −【分析】先依据公式得出正确的符号,再利用幂的除法公式计算.【详解】62624a a a a a −÷−−÷−()()=()=.故答案为:4a −.【点睛】本题考查幂的运算,正确运用公式是解题的关键.11.(2019秋·上海·七年级上海市张江集团中学校考期中)已知3m a =,5n a =,则32m n a +=_______________ 【答案】675【分析】根据幂的乘方以及同底数幂的乘法法则解答即可. 【详解】∵am=3,an=5,∴a3m+2n=(am)3•(an)2=33×52=27×25=675. 故答案为:675.【点睛】本题考查了幂的乘方与积的乘方以及同底数幂的乘法,熟记幂的运算法则是解答本题的关键.【答案】9【分析】根据同底数幂除法的逆用、幂的乘方的逆用进行计算即可得.【详解】解:因为102a =,109b=,所以112210100100b aa b −=÷1222(10)(10)b a=÷1222(10)10b a ⨯=÷2210b=÷49=÷49=,故答案为:49.【点睛】本题考查了同底数幂除法的逆用、幂的乘方的逆用,熟练掌握各运算法则是解题关键.13.(2023秋·上海静安·七年级新中初级中学校考期末)若15m x =,5n x =,则m n x −等于_____. 【答案】3【分析】逆向运算同底数幂的除法法则计算即可.同底数幂的除法法则:同底数幂相除,底数不变,指数相减.【详解】解:∵xm=15,xn=5, ∴xm-n=xm÷xn=15÷5=3. 故答案为:3.【点睛】本题考查了同底数幂的除法,掌握幂的运算法则是解答本题的关键.14.(2023·上海·七年级假期作业)已知5m a =,5n b =,则25m n +=______,235m n −=______.(请用含有a ,b 的代数式表示)【答案】 2a b /2ba 23a b【分析】逆用同底数幂的乘法,幂的乘方,同底数幂的除法运算法则,进行计算即可.【详解】解:∵5m a =,5nb =,∴()222255555m n m n m n a b+=⋅=⋅=;()()223232323355555m nmnm n a a b b −=÷=÷=÷=.故答案为:2a b ;23a b .【点睛】本题主要考查了同底数幂的乘法,同底数幂的除法,幂的乘方,解题的关键是熟练掌握同底数幂的乘法,幂的乘方,同底数幂的除法运算法则.15.(2023·上海·七年级假期作业)已知2m a =,3n a =,那么3m n a −=___________. 【答案】83【分析】根据同底数幂的除法底数不变指数相减,可得答案. 【详解】解:2m a =,3n a =,∴3m na−3mnaa =÷3()m na a =÷323=÷83=.故答案为:83.【点睛】本题考查了同底数幂的除法,逆用同底数幂除法的计算法则是解题关键.16.(2022秋·上海·七年级阶段练习)﹣y 3•y 5÷(﹣y )4=_____.【答案】﹣y4【分析】先计算幂的乘方,再计算同底数幂的乘、除法,注意负号的作用.【详解】解:﹣y3•y5÷(﹣y )4=﹣y8÷y4=﹣y4故答案为:﹣y4【点睛】本题考查幂的乘方、同底数幂的乘除法等知识,是基础考点,掌握相关知识是解题关键.17.(2022秋·七年级单元测试)已知5230x y −−=,则324x y ÷=________.【答案】8【分析】先求出523x y −=,然后逆用幂的乘方法则对所求式子变形,再根据同底数幂的除法法则计算.【详解】解:∵5230x y −−=,∴523x y −=,∴5253228324222x y x y x y −===÷=÷, 故答案为:8.【点睛】本题考查了代数式求值,涉及幂的乘方的逆用,同底数幂的除法,有理数的乘方运算,熟练掌握运算法则是解题的关键.18.(2023·上海·七年级假期作业)已知2320x y −−=,则927x y ÷的值为________.【答案】9【分析】先变形,再根据同底数幂的除法进行计算,最后整体代入求出即可.【详解】解:∵2320x y −−=,∴232x y −=,∴927x y ÷2333x y =÷233x y −=23=9= 故答案为9.【点睛】本题考查了同底数幂的除法、幂的乘方等知识点,能正确根据法则进行变形是解此题的关键.三、解答题19.(2023·上海·七年级假期作业)计算:(1)()()105x y x y +÷+;(2)()()97a b b a −÷−. 【答案】(1)()5x y +(2)222a ab b −+− 【分析】(1)利用同底数幂的除法进行运算;(2)先将底数均化为a b −,再利用同底数幂的除法运算.【详解】(1)解:1055()()()x y x y x y +÷+=+;(2)解:97()()a b b a −÷−97()()a b a b ⎡⎤=−÷−−⎣⎦2()a b =−−222a ab b =−+−. 【点睛】本题考查了同底数幂的除法,熟练掌握相关运算规则是解题的关键.20.(2022秋·上海·七年级校考期中)计算:()()222334222a a a a a a +−−÷ 【答案】6a【分析】根据同底数幂乘法的法则,积的乘方的运算法则,同底数幂除法的运算法则先化简计算,然后合并同类项即可.【详解】解:()()222334222a a a a a a +−−÷668244a a a a =+−÷66644a a a =+−6a = 【点睛】本题考查了整式的混合运算,解题的关键是掌握相关公式并灵活运用.幂的乘方法则:底数不变,指数相乘.积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘. 21.(2023·上海·七年级假期作业)计算:(1)()()4334a a −÷−; (2)()()22237a a a a ⋅÷⨯−. 【答案】(1)1−(2)5a【分析】(1)先计算幂的乘方,再计算同底数幂的除法;(2)先计算同底数幂的乘法、乘方,再计算同底数幂的乘法与除法.【详解】(1)解:()()()433412121a a a a −÷−=÷−=−;(2)解:()()()22223757210725a a a a a a a a a −+⋅÷⨯−=÷⋅==.【点睛】本题考查了同底数幂的乘法与除法,m n m n a a a +⋅=,()n m mn a a =,m n m n a a a −÷=(0a ≠,m ,n 都是正整数),注意负数的奇次幂还是负数.22.(2022秋·上海·七年级专题练习)已知3m =4,3n =5,分别求3m +n 与32m ﹣n 的值.【答案】20,165【分析】利用同底数幂的乘法的逆用法则,同底数幂的除法的逆用法则,幂的乘方的逆用法则对所求的式子进行整理,再代入运算即可.【详解】解:3334520m m n n +=⋅=⨯=;222233316(53)534m n m n m n −=÷=÷=÷=.【点睛】本题考查同底数幂的乘法的逆用,同底数幂的除法的逆用,幂的乘方的逆用.掌握各运算法则是解题关键.23.(2022秋·上海·七年级专题练习)已知34m =,35n =,分别求3m n +与23m n −的值.【答案】20,165【分析】同底数幂的除法的逆用法则,幂的乘方的逆用法则对所求的式子进行整理,再代入运算即可.【详解】解:3m n +33m n =⋅45=⨯20=;23m n −233m n =÷()233m n =÷245=÷165=.【点睛】本题考查同底数幂的乘法的逆用,同底数幂的除法的逆用,幂的乘方的逆用.掌握各运算法则是解题关键.24.(2022秋·上海·七年级校考期中)已知96,32b a ==,求323a b −的值. 【答案】43【分析】先根据幂的乘方求出3336,38b a ==,再逆用同底数幂的除法计算即可. 【详解】∵96,32b a ==, ∴233396,328b b a ====,∴3243863a b −=÷=.【点睛】本题考查了幂的乘方,同底数幂的除法,熟练掌握运算法则是解题的关键.25.(2021秋·上海浦东新·七年级期末)计算:a •a 7﹣(﹣3a 4)2+a 10÷a 2.【答案】﹣7a8【分析】根据同底数幂的乘除法,积的乘方运算法则,幂的乘方运算,最后合并同类项即可【详解】解:a•a7﹣(﹣3a4)2+a10÷a2=a8﹣9a8+a8=﹣7a8.【点睛】本题考查了同底数幂的乘除法,积的乘方运算法则,幂的乘方运算,掌握幂的运算是解题的关键.26.(2023·上海·七年级假期作业)若32x =,35y =,求23x y −的值. 【答案】45【分析】逆用幂的乘方,除法法则计算即可.【详解】()22233333x y x y x y −=÷=÷,把32x =,35y =代入得()224333455x y x y −=÷=÷=.【点睛】本题考查了同底数幂的乘方与除法,熟练掌握运算法则是解题的关键.。

同底数幂的乘法、幂的乘方和积的乘方、同底数幂的除法

同底数幂的乘法、幂的乘方和积的乘方、同底数幂的除法
类型三逆用积的乘方法则
例1 计算 (1)82004×0.1252004; (2)(-8)2005×0.1252004.
随堂练习
0.2520×240-32003·( )2002+
类型四积的乘方在生活中的应用
例1地球可以近似的看做是球体,如果用V、r分别代表球的体积和半径,那么V= πr3。地球的半径约为 千米,它的体积大约是多少立方千米?
知识点一
同底数幂的乘法法则:同底数幂相乘
am·an=(m、n都是正整数)
当三个或三个以上同底数幂相乘时,也具有这一性质,用公式表示为
am·an·ap= am+n+p(m、n、p都是正整数)
知识点精讲
1.同底数幂相乘法则要注重理解“同底、相乘、不变、相加”这八个字.
2.解题时要注意a的指数是1.
3.解题时,是什么运算就应用什么法则.同底数幂相乘,就应用同底数幂的乘法法则;整式加减就要合并同类项,不能混淆.
4.-a2的底数a,不是-a.计算-a2·a2的结果是-(a2·a2)=-a4,而不是(-a)2+2=a4.
5.若底数是多项式时,要把底数看成一个整体进行计算
4、拓展:
(1)已知n为正整数,且x2n=4.求(3x3n)2-13(x2)2n的值.
(2)已知xn=5,yn=3,求(xy)2n的值
(3)若m为正整数,且x2m=3,求(3x3m)2-13(x2)2m的值.
知识点四
同底数幂相除, 底数,指数.
即:am÷an=( ,m,n都是正整数,并且m>n)
规定:a0=1(a≠0)即:任何非0的数的0次幂都等于1
典型例题讲解
例一、填一填
⒈ =;
⒉ =;
⒊ ;

同底数幂的乘除法

同底数幂的乘除法

同底数幂的乘除法与幂的乘方教学内容:同底数幂的乘除法教学目标: 通过学习,使学生理解同底数幂的乘除法,并能根据相应的运算法则进行问题的求解。

教学重点难点: 1、同底数幂的乘法;2、同底数幂的除法3、幂的乘方和积的乘方难点:在实际问题中,如何找出同底数;教学过程:1、 运算法则:同底数幂的乘法,底数不变,指数相加;(a m ·a n =a m+n )同底数幂的除法,底数不变,指数相减(a m /a n =a m —n )幂的乘方,底数不变,指数相乘;注:1、这里一定要分清“底数”和“指数”2、谓的同底数,是指底数必须完全一样。

(如: 2a : 底数使a ,指数是2)2、10=a (0≠a ) 3、 mm m a a a )1(1==-(0≠a ,m 为正整数) 精选例题例1 计算:(1)-a 2·a 6; (2)(-x)·(-x)3 ;(3)y m ·y m+1. (4)432)2()(-∙b a例2、计算:(1)()ab ab ÷4 (2)()()()y x x y y x -⋅-÷-48精选习题一、填空:(1)=⋅24x x (2)2()=33a (3)=⎪⎭⎫ ⎝⎛-22332c b (4)=÷a a 5 (5)()()=-÷-25x x (6)÷16y =11y (7)÷25b b =(8)()()=-÷-69y x y x二、计算:(1)()323322y y y -⋅(2)()()23322416xy y x -+(3)()z y x z y x 22243412-÷-(4)c a c b a 346241÷-(5) ()123182++÷n n m m(6)()()35316b a b a -÷-(7)x 3·x 9(8)10·102·104;(9)y 4·y 3·y 2·y ;(10)x 5·x 6·x 3.(11)(-a)2·(-a)3·(-a) (12)(-x)·x 2·(-x)4;(13)()b a b a 32383÷⋅ (14)()()⎪⎭⎫ ⎝⎛-⋅÷2332343228bc a b a c b a三、 提高练习:1、已知的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档