圆锥及其侧面展开图剖析
圆柱和圆锥的侧面展开图

2010-9-5
5
新课
旋转一周, *矩形ABCD绕直线AB旋转一周,直线用叫做圆柱的 叫做圆柱的母线. 轴,CD叫做圆柱的母线.圆柱侧面上平行于轴的线 段都叫做圆柱的母线. AD、 段都叫做圆柱的母线.矩形的另一组对边AD、BC是 下底面的半径。 上、下底面的半径。 *圆柱一个底面上任意一点到另一底面的垂线 圆柱一个底面上任意一点到另一底面的垂线 段叫做圆柱的高, 段叫做圆柱的高,哪位同学发现圆柱的母线与 高有什么数量关系? 高有什么数量关系? *圆柱上、下底面圆有什么位置关系? 圆柱上、 圆柱上 下底面圆有什么位置关系? * A、B是两底面的圆心,直线 是轴.哪位同学 是两底面的圆心, 是轴. 是两底面的圆心 直线AB是轴 能叙述圆柱的轴的这一条性质? 能叙述圆柱的轴的这一条性质? *哪位同学能按轴、母线、底面的顺序归纳有关 哪位同学能按轴、 哪位同学能按轴 母线、 2010-9-5 圆柱的性质? 圆柱的性质?
6
新课
现在我把圆柱的侧面沿它的一条母线剪开, 现在我把圆柱的侧面沿它的一条母线剪开, 展在一个平面上, 展在一个平面上,观察这个侧面展开图是什 么图形? 么图形?
矩形
这个圆柱展开图——矩 矩 这个圆柱展开图 形的两边分别是圆柱中 的什么线段? 的什么线段? 归纳圆柱的侧面积公式? 归纳圆柱的侧面积公式?
S侧=底面圆周长×圆柱母 侧 底面圆周长 底面圆周长× 2010-9-5 线
7
例题
如图,把一个圆柱形木块沿它的轴剖开, [例1] 如图,把一个圆柱形木块沿它的轴剖开,得矩 已知AD=18CM AB=30CM。 AD=18CM, 形ABCD.已知AD=18CM,AB=30CM。求这个圆柱形木块 的表面积(精确到1C 1C㎡ 的表面积(精确到1C㎡). 解:AD是圆柱底面的直径,AB是圆 AD AB 柱母线,设圆柱的表面积为S,则 S=2S圆+S侧 所以S=2π(18/2)+2π*(18/2)*30 =162π+540π=2204(CM) 答:这个圆柱形木块的表面积约为 2204CM 2010-9-5
圆锥的侧面展开图

广东实验中学 张兴华
回顾
l
n RO
A
n
BLeabharlann ROn Rl 180
S扇形
n R2
360
对比扇形面积与弧长公式, 用弧长表示扇形面积:
S扇形 1 lR
2
回顾
1.已知扇形的半径为4,其圆心角为90°,则这个扇形
的弧长= 2 .
2.已知扇形的半径为2,其面积为 2 ,则这个扇形的
圆心角= 180 °
A
BO
C
2. 蒙古包可以近似地看作由圆锥和圆柱组成.如 图,是一个蒙古包的示意图,现在想用毛毡搭建1个 底面半径为2m,高为3.5m,外围高为2m的蒙古包,
至少需要多少平方米的毛毡?(结果保留π)
r
r
3. 已知圆锥的底面半径为1cm,母线长为4cm, 若一只甲虫从圆锥底面圆周上一点A出发,沿圆锥侧 面绕行到母线SA的中点B,它所走的最短路程是多 少?
行的最短距离为
cm
A
2. 高
3. 侧面积
4. 全面积;表面积 B O
C
1.圆锥的侧面展开图是扇形 2.母线的长=其侧面展开图扇形的半径 3.底面周长=侧面展开图扇形的弧长
2
为什么要展开圆锥的侧面?
1. 已知一个圆锥的底面半径为12cm,母线长为20cm,
则这个圆锥的侧面积为_2_4_0__c_m_2,全面积为_3_8_4__c_m_ 2
S
C
B.
A
A
O
3
如何还原圆锥的侧面展开图?
R
A
n
l
B Or C
n R
l 180
S扇形
n R2
360
圆锥的侧面展开图问题

圆锥的侧面展开图问题解决圆锥问题的关键是明确圆锥的侧面展开图各元素与圆锥各元素的关系——圆锥的侧面展开图是扇形,扇形的半径是圆锥的母线,弧长是圆锥的底面圆的周长.问题往往涉及圆锥的母线长、圆锥的高以及底面半径之间的关系,勾股定理则是架起三元素间的桥梁.如图1,设圆锥的底面半径为r ,母线AB 的长为l ,高为h ,则r 2+h 2=l 2,圆锥的侧面展开图是扇形ACD ,该扇形的半径为l ,设扇形ACD 的圆心角是θ,则扇形的弧CD 的长=2πr =180l θπ,圆锥的侧面积为S 侧=12×2πr ×l =πrl .一、计算圆锥的侧面积例1 (邵阳)如图2所示的圆锥主视图是一个等边三角形,边长为2,则这外圆锥的侧面积为______(结果保留π).分析:依题意,圆锥主视图是一个等边三角形,所以圆锥的母线长为2,底面半径为1,可以直接代入公式求得.解:依题意,r=1,l =2,所以S 侧=π×1×2=2π.二、求圆锥的母线长例2 (桂林)已知圆锥的侧面积为8πcm 2, 侧面展开图的圆心角为45°,则该圆锥的母线长为( ).(A )64cm (B )8cm (C )22cm (D )2cm 分析:圆锥的侧面积即其侧面展开图扇形的面积,由扇形的面积公式可求出圆锥的母线长(侧面展开图扇形的半径即为圆锥的母线长).解:由2360n l S π=扇形,即2360n l π=8π,解得l =8(cm ).故应选(B ). 三、计算圆锥的底面半径例3 (日照)将直径为60cm 的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的底面半径为( ).(A )10cm (B )30cm (C )40cm (D )300cm分析:依题意,将直径为60cm 的圆形铁皮分割成三个大小相等的扇形,这三个扇形即三个相同的圆锥容器的侧面展开图.根据“侧面展开图扇形的弧长是圆锥的底面圆的周长”可求每个圆锥容器的底面半径.解:直径为60cm 的圆形铁皮的周长为60πcm ,故将该铁皮分割成三个大小相等的扇形的弧长为20πcm .图1 图2设圆锥的底面半径为r ,则2πr =20π,解得r =10.故应选(A ).四、计算圆锥的高例4 (鸡西)如图3,小明想用图中所示的扇形纸片围成一个圆锥,已知扇形的半径为5cm ,弧长是6πcm ,那么围成的圆锥的高度是 cm . 分析:借助图1分析,知在r 2+h 2=l 2中,欲求h ,需知道r ,l ,显然这里l =5 cm ,故只需再求出r .解:设圆锥的底面半径为r ,则2πr =6π,解得r =3.所以h 2=l 2- r 2=52-32,所以h =4(cm ).五、计算侧面展开图中扇形圆心角的度数 例5 (成都)若一个圆锥的底面圆的周长是4πcm ,母线长是6cm ,则该圆锥的侧面展开图的圆心角的度数是( ).(A )40° (B )80° (C )120° (D )150°分析:设圆锥展开图的圆心角为n °,根据弧长公式可求出侧面展开图扇形的弧长为180n l π,再根据“侧面展开图扇形的弧长是圆锥的底面圆的周长”列方程可解. 解:设圆锥展开图的圆心角为n °,则4π=6180n πg . 解得n =120.所以选(C ).六、最短路径问题例6 (青岛)如图4是一个用来盛爆米花的圆锥形纸杯,纸杯开口圆的直径EF 长为10cm .母线OE (OF )长为10cm .在母线OF 上的点A 处有一块爆米花残渣,且FA =2cm ,一只蚂蚁从杯口的点E 处沿圆锥表面爬行到A 点.则此蚂蚁爬行的最短距离为 cm .分析:由于小蚂蚁只能在圆锥侧面上爬行,所以我们可考虑把圆锥侧面展开,将问题转化为平面图形解决.将圆锥沿母线OE 剪开,如图7所示的展开图,根据“两点之间线段最短”,知EA 即为最短路径.解:设圆锥侧面展开后扇形的圆心角为n °,因为底面的周长等于展开后扇形的弧长,所以180n OE π⋅=π E F ,即10180n π⋅=10π,解得n °=180°. 此圆锥的侧面展开图为扇形(如图5),在Rt △AEO 中, OA =OF -AF =8(cm ),O B A 图3 5cm 图5 A F E O 图4。
圆弧长和扇形的面积圆锥的侧面展开图

2023圆弧长和扇形的面积圆锥的侧面展开图CATALOGUE 目录•圆弧长和扇形的面积•圆锥的侧面展开图•从圆弧长和扇形的面积看圆锥的侧面展开图01圆弧长和扇形的面积圆弧长的正投影长度等于圆心角的大小根据圆的周长公式 C=2πr,圆弧长的公式为 L=C/θ,其中θ为圆心角的大小若已知圆弧所在圆的半径为r,则圆弧长的计算公式为 L=θr扇形的面积是指扇形所占圆心角大小和半径平方的比值若已知扇形的半径为r,圆心角的大小为θ,则扇形的面积计算公式为 S=1/2θr^2若已知扇形的半径为r,则扇形的面积计算公式为S=πr^2/360°•圆弧长和扇形的面积有着密切的联系,若已知扇形的半径为r,圆心角的大小为θ,则扇形的面积与圆弧长的关系为 S=1/2θr^2=1/2Lr,其中L为圆弧长圆弧长和扇形面积的关系02圆锥的侧面展开图圆锥的侧面展开图是扇形圆锥的侧面展开图由一个圆心角和弧长组成圆心角是扇形的角度,弧长是扇形的半径圆锥的侧面展开图定义圆锥的侧面展开图的画法确定圆锥的母线和圆心角画出扇形的弧长标注出扇形的角度和弧长计算圆锥的表面积求圆锥的侧面积圆锥的侧面展开图的应用03从圆弧长和扇形的面积看圆锥的侧面展开图圆锥侧面展开图是扇形,其圆弧长度等于圆锥底面圆的周长。
扇形的半径等于圆锥母线长,扇形的圆心角等于圆锥底面圆的圆心角。
圆锥的侧面展开图与圆弧长的关系圆锥侧面展开图面积等于扇形面积,即 S=1/2 × 圆弧长 × 半径。
当圆锥母线长和底面圆半径确定时,圆锥侧面展开图面积与底面圆周长成正比。
圆锥的侧面展开图与扇形面积的关系圆锥的侧面展开图的应用实例展示制作圆锥通过圆锥的侧面展开图,可以制作圆锥,只需要将扇形分成若干份,然后按照顺序折叠即可。
计算圆锥体积和表面积通过圆锥的侧面展开图,可以计算出圆锥的表面积和体积,只需要将扇形面积相加即可。
设计旋转体通过圆锥的侧面展开图,可以设计旋转体,只需要将扇形分成若干份,然后按照顺序旋转即可。
圆锥体的侧面展开图

—“以圆心和半径作圆”,选中点A ,B ,“构造”—“垂线”,在垂线上取一点C ,作线段AC ,AC ,“构造”—“平行线”,交DB 于F ,双击—“固定比1/2”,得到E ’,选中点E 和E “构造”直线,垂线,平行线,点E ,E ’,F 。
计算圆锥体的圆心角3. 选中线段AB ,“度量”—“长度”,同样度量线段BC 。
“度量”—“计算”出现对话框后按点击mAB = 2.70厘米,输入“/”点击mCB = 5.38厘米。
得到4. 在页面画线段GH ,并在线段上任取一点I ,分别按顺序选中点G ,H ,I ,“度量”—“比”得到GIGH= 0.63;“度量”—“计算”,出现对话框后点击比值GIGH= 0.63,输入“*”,点击mAB,输入“*360”单位选“度”得到GI GH ⋅360︒ = 114.47︒,右击度数值“标记角度”,双击点C ,选中点A ,B ,“变换”—“旋转”--“标记角度”得到点A’,B’。
GH⋅360︒ = 114.47︒GIGH= 0.63mCB = 4.27厘米mAB = 2.14厘米B'A'G HI“度量”—“计算”出现对话框后点击GIGH= 0.63输入“*365.98”单位“度”输入“-359.99”单位“度”得到GI GH ⋅359.98︒-359.99︒ = -131.75︒。
右击GIGH⋅359.98︒-359.99︒ = -131.75︒“标记角度”。
双击点A’,选中点B’“变换”—“旋转”—“标记角度”得到点B’’。
构造轨迹5.分别按顺序选中A’,B’’,B’,“构造”—“圆上的弧”。
作直线A’B’,在弧上任取一点P,过点P作线段A’B’的垂线,双击垂足,选中点P,“变换”—“缩放”—“缩放比1/2”,选中点P和新得到的点P’,“构造”—“轨迹”。
6.—“图象”—;7.,颜色为黄色。
8.隐藏直线,垂线,弧,点P,P’,A’,B’,线段CP’。
圆锥的侧面展开图课件

旋转体制造
在建筑设计领域,圆锥的侧面展开图常被用于设计一些具有曲线形状的建筑元素,如穹顶、拱门等。通过将圆锥侧面展开,可以更好地理解其形状和尺寸,从而更好地进行建筑设计。
建筑设计
在建筑结构分析中,圆锥的侧面展开图可以用于分析建筑结构的受力情况。通过将建筑结构中的受力部分展开成平面图形,可以更直观地理解其受力情况,从而更好地进行结构设计和优化。
在实际应用中,圆锥的侧面展开图可用于建筑设计、机械制造等领域,例如在设计旋转机械或计算风力发电机的功率时,需要使用圆锥的侧面展开图来计算相关参数。
在艺术领域,圆锥的侧面展开图也常被用于创作雕塑、绘画等艺术作品,以表现立体感、空间感和流动感。
02
圆锥的侧面展开图的绘制方法
Chapter
确定圆锥的底面半径和高度
圆锥的侧面展开图具有连续性,即展开后的图形是一个连续的平面区域。
圆锥的侧面展开图在几何形状上与原圆锥侧面相同,但在平面上表现为一个二维图形。
圆锥的侧面展开图可以用于计算圆锥侧面积和表面积,以及用于解决一些几何问题。
在几何教学中,圆锥的侧面展开图常用于帮助学生理解圆锥的几何性质和侧面积的计算方法。
建筑结构分析
包装设计
在包装设计中,圆锥的侧面展开图可以用于设计一些具有曲线形状的包装容器,如饮料瓶、洗发水瓶等。通过将圆锥侧面展开,可以更好地理解其形状和尺寸,从而更好地进行包装设计。
艺术创作
在艺术创作中,圆锥的侧面展开图可以用于创作一些具有曲线形状的艺术作品,如雕塑、绘画等。通过将圆锥侧面展开,可以更好地理解其形状和尺寸,从而更好地进行艺术创作。
,. which on,:xe%\xe guide on have!1 – the8\ans: the! speech! havemo揍
圆锥的侧面展开图

圆锥的侧面展开图圆锥的侧面展开图圆锥是一种立体图形,由一个圆形底面和一个顶点连接的直线组成。
在几何学中,我们经常使用侧面展开图来描述立体图形的形状和结构。
侧面展开图是将立体图形展开,使我们能够更好地理解其构造和组成。
首先,我们来看一下圆锥的基本特征。
圆锥的底面是一个圆形,用于提供稳定的支撑面。
圆锥的侧面是由从顶点连接到底面边缘的直线组成,这些直线被称为母线。
圆锥的顶点是连接底面和侧面的中心点。
为了绘制圆锥的侧面展开图,我们需要将圆锥展开成一个平面图形。
这可以通过将侧面按照一定顺序剪开,并展开到一个平面上来实现。
在展开的过程中,我们需要保持底面的圆形形状不变,并确保侧面的母线与底面保持相对位置不变。
展开后的侧面图是由一系列直线段构成的。
这些直线段代表了圆锥的侧面母线。
从顶点开始,我们可以看到侧面的直线段逐渐向底面延伸,并最终连接到底面边缘上。
展开后的侧面图呈现出一种锥形的形状,底面呈圆形,顶点在图形的中心位置。
圆锥的侧面展开图能够帮助我们更好地理解圆锥的结构和构造。
通过展开图,我们可以清晰地看到圆锥的母线如何连接到底面,并形成一个锥形的形状。
展开图还可以帮助我们计算圆锥的表面积和体积,以及分析其特性和功能。
在实际应用中,圆锥的侧面展开图被广泛应用于制作纸模、设计建筑物、制作工艺品等领域。
通过将圆锥展开成一个平面图形,我们可以更方便地制作和操作这些物品,并确保其形状和结构的准确性。
总结一下,圆锥的侧面展开图是将圆锥展开成一个平面图形以展示其构造和形状的方法。
通过展开图,我们可以更好地理解圆锥的特征和结构,并在应用中应用展开图进行设计和制作。
展开图提供了一种直观和清晰的方式来描述圆锥的形状和组成,对于学习和应用圆锥的几何学非常有帮助。
圆锥的侧面展开图

例1、圆锥形烟囱帽(如图)的母线长为80cm,高
为38.7cm,求这个烟囱帽的面积( 取3.14,结
果保留2个有效数字)
l h
r
解:∵l=80,h=38.7 ∴r= l2 h2 802 38.72 70 ∴S侧=πrl≈3.14×70×80≈1.8×104(cm2)
答:烟囱帽的面积约为1.8×104cm2。
例2:如图所示的扇形中,半径R=10,圆心 角θ=144°用这个扇形围成一个圆锥的侧面.
(1)求这个圆锥的底面半径r; r=4
(2)求这个圆锥的高. 2 21
A
r
C
B
O
1.圆锥的底面直径为80cm.母线长为90cm, 求它的全面积.
S全=5200 cm2
2.扇形的半径为30,圆心角为120°用它做一个 圆锥模型的侧面,求这个圆锥的底面半径和高.
A
BO
C
圆锥的侧面展开图是扇形
A
l
BO
C
其侧面展开图扇形的半径=母线的长l
侧面展开图扇形的弧长=底面周长2r
S
A
Or
B
做一做
(1)已知一个圆锥的高为6cm,半径为8cm,则这
个圆锥的母长为_1_0_c_m___
(2)已知一个圆锥的底面半径为12cm,母线长为20cm,
则这个圆锥的侧面积为_2_4_0___c_m__2,全面积为_3_8_4___c_m2
C. 28cm2
B.30cm2 D. 15cm2
例2.蒙古包可以近似地看成由圆锥
和圆柱组成的.如果想用毛毡搭建
20个底面积为16πm2,高为4.5 m,外 围高1.5 m的蒙古包,至少需要多少
m2的毛毡?
解:如图是一个蒙古包的示意图 依题意,下部圆柱的底面积16πm2,高为1.5m;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例:蒙古包可以近似地看成由圆锥和圆柱组 成的.如果想用毛毡搭建20个底面积为35 m2,高为3.5 m,外围高1.5 m的蒙古包,至 少需要多少m2的毛毡? (结果取整数).
h1 r
h2 r
1、圆锥的底面直径为80cm.母线长为90cm,求 它的全面积.
2、扇形的半径为30,圆心角为120°用它做一 个圆锥模型的侧面,求这个圆锥的底面半径 和高.
(r表示圆锥底面的半径, l 表示圆锥的母线长 )
s全 s侧 s底 rl r2
课堂作业:
1.把课本第114页第4题、115页第8题写 到作业本上;
2.完成《启东作业本》圆锥一节
请你欣赏
连接圆锥的顶点C和底面圆上任一点的连
线CA,CB等叫做圆锥的母线.
连接顶点C与底面圆的圆心O、高
线、母线长三者之间的关系
母线 l h l :_l_2_=__h_2 +__r_2
A Or B
根据下列条件求值(其中r、h、 分别是l圆锥
3、如图,一个直角三角形两直角边分别 为4cm和3cm,以它的一直角边为轴旋转 一周得到一个几何体,求这个几何体的 表面积。
4、如图,圆锥的底面半径为1,母线长为6,一只 蚂蚁要从底面圆周上一点B出发,沿圆锥侧面爬 行一圈再回到点B,问它爬行的最短路线是多少?
B’
A
6
B1
C
小结
S 侧 =πr l
面展开图扇形的弧长。
l
圆锥的母线就是其侧面展 开图扇形的半径。
l
S侧=S扇形
r
1 2 r l rl
2
圆锥的全面积:
圆锥的全面积=圆锥的侧面积+底面积.
S全=S侧+S底 rl r2
(1)已知一个圆锥的高为6cm,半径为8cm, 则这个圆锥的母长为_1_0_c_m___. (2)已知一个圆锥的底面半径为12cm,母线 长为20cm,则这个圆锥的侧面积为 __2_4_0__c_m_2_,全面积为_38_4___cm__2.
的底面半径、高线、母线长)
(1) l = 2,r=1 则 h=____3___ (2) h =3, r=4 则 l =___5____ (3) l = 10, h = 8 则r=___6____
l
图 23.3.6
:圆锥的侧面积和全面积
把圆锥模型沿着母线剪开,观察圆锥的展 开图.
l
圆锥的侧面积: 圆锥的底面周长就是其侧