圆锥的侧面展开图及相关计算

合集下载

圆锥的侧面展开图-九年级数学下册同步教学课件(沪科版)

圆锥的侧面展开图-九年级数学下册同步教学课件(沪科版)

24.7.2 圆锥的侧面展开图
知识要点 1、圆锥侧面展开图的面积
(1)其侧面展开图扇形的半径 = 母线的长l (2)侧面展开图扇形的弧长= l
底面周长 2 r
圆锥S扇的形 侧 12面lR积计算S侧公式12 2πr l πrl 圆锥的全面积计算公式
l
侧面 展开 图
or
C 2r
S全=S侧+S底=πrl+πr2=πr(其中l是圆锥的母线长,
∵ 2πr=5 2π
A


r 5 2. 2
B
OC

24.7.2 圆锥的侧面展开图 课堂小结 重要图形
重要结论
圆锥的高 S
l
母 线
A
h Or B
侧面 展开
l图
or
底面
r2+h2=l2
S圆锥侧=πrl.
①其侧面展开图扇形的半径=母线的长l ②侧面展开图扇形的弧长=底面周长
24.7.2 圆锥的侧面展开图
也是圆锥侧面展开图扇形的半径).
24.7.2 圆锥的侧面展开图
如图:
24.7.2 圆锥的侧面展开图
例1 如图,圆锥形的烟囱帽,它的底面直径为 80 cm,母线 为 50 cm.在一块大铁皮上剪裁时,如何画出这个烟囱帽 的侧面展开图?求出该侧面展开图的面积.
24.7.2 圆锥的侧面展开图
解:烟囱帽的侧面展开图是扇形,如图,设该扇形的
A.24 B.12 C.6 D.3
24.7.2 圆锥的侧面展开图
4.如图所示的扇形中,半径R =10,圆心角θ
=(114) 4这°个,圆用锥这的个底扇面形半围径成一r =个圆4锥的.侧面.
(2) 这个圆锥的高h= 2 21.
A

圆锥的侧面展开图

圆锥的侧面展开图
圆锥的侧面展开图
广东实验中学 张兴华
回顾
l
n RO
A
n
BLeabharlann ROn Rl 180
S扇形
n R2
360
对比扇形面积与弧长公式, 用弧长表示扇形面积:
S扇形 1 lR
2
回顾
1.已知扇形的半径为4,其圆心角为90°,则这个扇形
的弧长= 2 .
2.已知扇形的半径为2,其面积为 2 ,则这个扇形的
圆心角= 180 °
A
BO
C
2. 蒙古包可以近似地看作由圆锥和圆柱组成.如 图,是一个蒙古包的示意图,现在想用毛毡搭建1个 底面半径为2m,高为3.5m,外围高为2m的蒙古包,
至少需要多少平方米的毛毡?(结果保留π)
r
r
3. 已知圆锥的底面半径为1cm,母线长为4cm, 若一只甲虫从圆锥底面圆周上一点A出发,沿圆锥侧 面绕行到母线SA的中点B,它所走的最短路程是多 少?
行的最短距离为
cm
A
2. 高
3. 侧面积
4. 全面积;表面积 B O
C
1.圆锥的侧面展开图是扇形 2.母线的长=其侧面展开图扇形的半径 3.底面周长=侧面展开图扇形的弧长
2
为什么要展开圆锥的侧面?
1. 已知一个圆锥的底面半径为12cm,母线长为20cm,
则这个圆锥的侧面积为_2_4_0__c_m_2,全面积为_3_8_4__c_m_ 2
S
C
B.
A
A
O
3
如何还原圆锥的侧面展开图?
R
A
n
l
B Or C
n R
l 180
S扇形
n R2
360

扇形、圆柱、圆锥面积公式及计算

扇形、圆柱、圆锥面积公式及计算

扇形面积公式、圆柱、圆锥侧面展开图
1.弧长公式:
n

÷
=R
180
n是圆心角,R是扇形半径,L是扇形中圆心角所对应的弧长;
在半径是R的圆中,因为360°的圆心角所对的弧长就等于圆周长C=2πR,所以n°圆心角所对的弧长为L=nπR÷180。

2. 扇形面积公式:
3.圆柱
圆柱的侧面展开图是两邻边分别为圆柱的高和圆柱底面周长的矩形。

圆柱的侧面积等于底面周长乘以圆柱的高。

4.圆锥
圆锥是由一个底面和一个侧面组成的。

圆锥的底面是一个圆,侧面是一个曲面,这个曲面在一个平面上展开后是一个扇形,这个扇形
的半径是圆锥的母线(把圆锥底面圆周上的任意一点与圆锥顶点的连线叫做圆锥的母线),扇形的弧长是圆锥底面的周长。

因此,圆锥的侧面积是圆锥的母线与底面周长积的一半。

如图所示,若圆锥的底面半径为r,母线长为l,则。

圆锥的侧面展开图问题

圆锥的侧面展开图问题

圆锥的侧面展开图问题解决圆锥问题的关键是明确圆锥的侧面展开图各元素与圆锥各元素的关系——圆锥的侧面展开图是扇形,扇形的半径是圆锥的母线,弧长是圆锥的底面圆的周长.问题往往涉及圆锥的母线长、圆锥的高以及底面半径之间的关系,勾股定理则是架起三元素间的桥梁.如图1,设圆锥的底面半径为r ,母线AB 的长为l ,高为h ,则r 2+h 2=l 2,圆锥的侧面展开图是扇形ACD ,该扇形的半径为l ,设扇形ACD 的圆心角是θ,则扇形的弧CD 的长=2πr =180l θπ,圆锥的侧面积为S 侧=12×2πr ×l =πrl .一、计算圆锥的侧面积例1 (邵阳)如图2所示的圆锥主视图是一个等边三角形,边长为2,则这外圆锥的侧面积为______(结果保留π).分析:依题意,圆锥主视图是一个等边三角形,所以圆锥的母线长为2,底面半径为1,可以直接代入公式求得.解:依题意,r=1,l =2,所以S 侧=π×1×2=2π.二、求圆锥的母线长例2 (桂林)已知圆锥的侧面积为8πcm 2, 侧面展开图的圆心角为45°,则该圆锥的母线长为( ).(A )64cm (B )8cm (C )22cm (D )2cm 分析:圆锥的侧面积即其侧面展开图扇形的面积,由扇形的面积公式可求出圆锥的母线长(侧面展开图扇形的半径即为圆锥的母线长).解:由2360n l S π=扇形,即2360n l π=8π,解得l =8(cm ).故应选(B ). 三、计算圆锥的底面半径例3 (日照)将直径为60cm 的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的底面半径为( ).(A )10cm (B )30cm (C )40cm (D )300cm分析:依题意,将直径为60cm 的圆形铁皮分割成三个大小相等的扇形,这三个扇形即三个相同的圆锥容器的侧面展开图.根据“侧面展开图扇形的弧长是圆锥的底面圆的周长”可求每个圆锥容器的底面半径.解:直径为60cm 的圆形铁皮的周长为60πcm ,故将该铁皮分割成三个大小相等的扇形的弧长为20πcm .图1 图2设圆锥的底面半径为r ,则2πr =20π,解得r =10.故应选(A ).四、计算圆锥的高例4 (鸡西)如图3,小明想用图中所示的扇形纸片围成一个圆锥,已知扇形的半径为5cm ,弧长是6πcm ,那么围成的圆锥的高度是 cm . 分析:借助图1分析,知在r 2+h 2=l 2中,欲求h ,需知道r ,l ,显然这里l =5 cm ,故只需再求出r .解:设圆锥的底面半径为r ,则2πr =6π,解得r =3.所以h 2=l 2- r 2=52-32,所以h =4(cm ).五、计算侧面展开图中扇形圆心角的度数 例5 (成都)若一个圆锥的底面圆的周长是4πcm ,母线长是6cm ,则该圆锥的侧面展开图的圆心角的度数是( ).(A )40° (B )80° (C )120° (D )150°分析:设圆锥展开图的圆心角为n °,根据弧长公式可求出侧面展开图扇形的弧长为180n l π,再根据“侧面展开图扇形的弧长是圆锥的底面圆的周长”列方程可解. 解:设圆锥展开图的圆心角为n °,则4π=6180n πg . 解得n =120.所以选(C ).六、最短路径问题例6 (青岛)如图4是一个用来盛爆米花的圆锥形纸杯,纸杯开口圆的直径EF 长为10cm .母线OE (OF )长为10cm .在母线OF 上的点A 处有一块爆米花残渣,且FA =2cm ,一只蚂蚁从杯口的点E 处沿圆锥表面爬行到A 点.则此蚂蚁爬行的最短距离为 cm .分析:由于小蚂蚁只能在圆锥侧面上爬行,所以我们可考虑把圆锥侧面展开,将问题转化为平面图形解决.将圆锥沿母线OE 剪开,如图7所示的展开图,根据“两点之间线段最短”,知EA 即为最短路径.解:设圆锥侧面展开后扇形的圆心角为n °,因为底面的周长等于展开后扇形的弧长,所以180n OE π⋅=π E F ,即10180n π⋅=10π,解得n °=180°. 此圆锥的侧面展开图为扇形(如图5),在Rt △AEO 中, OA =OF -AF =8(cm ),O B A 图3 5cm 图5 A F E O 图4。

圆锥的侧面展开图课件青岛版九年级数学下册

圆锥的侧面展开图课件青岛版九年级数学下册

导入
圆锥的侧面积与底面积的和叫做圆锥的全面积(或表面积).
S侧 =prl S全 = S侧S 底 = prl p r2
(r表示圆锥底面的半径, l表示圆锥的母线长 )
导入
弧长与扇形面积计算 圆锥的侧面积计算
R l
l=n1π8R0 S=n3π6R02=12lR
2πr l
r
S = prl
例3 如图7-38,将半径为1、圆心角为90°的扇形薄铁片
2.把圆锥底面圆周上的任意一点与圆锥顶点 的连线叫做圆锥的母线
问题:圆锥的母线有几条?
3.连接顶点与底面圆心的线段
叫做圆锥的高 .
R h
r
观察与思考
图中 R 是圆锥的母线 h 就是圆锥的高 r 是底面圆的半径
R h
r
观察与思考
圆锥的底面半径、高线、母线长 三者之间有什么关系?
R2 = h2 r2
例4 如图7-40,一顶帐篷的上半部是圆锥形,下半部是圆
柱形,已知圆柱的底面半径为、母线长,圆锥的高为1m. (1)制作一项这样的账篷(接缝不计)大约需要用多少帆布 (精确到0.1m²)? (2)帐篷的容积大约是多少(精确到01m³)?
例4 解: (1)圆柱底面周长l≈,
∴S圆柱侧 = lh≈15.07 1.6 = 24.11
解: (2) ∴V圆柱 = p r 2h 3.14 2.42 1.6 28.95.
V圆锥 =
1p
3
r2h
1 3
3.14
2.42
1
6.03.
∴V圆柱 V圆锥 28.95 6.03 35.0.
所以,帐篷的容积大约35.0m².
练习
1、若圆锥的底面半径r =4 cm,高线h =3 cm,则它的侧面展开 图中扇形的圆心角是 288 度.

圆锥的侧面积

圆锥的侧面积
表 底
例4、根据圆锥的下面条件,求它的侧面积和表面积
(1)r=12cm, l=20cm (2)h=12cm, r=5cm
解:由s rl 2 20 240 (cm2 ) s表 s s底 rl r 240 144
2
解:由l 2 h 2 r 2得 l 122 52 13 s rl 5 13 65 (cm 2 ) s表 s s底 65 25 90 (cm 2 )
例6、如图,圆锥的底面半径为1,母线长为3,一只蚂 蚁要从底面圆周上一点B出发,沿圆锥侧面爬到过母线 AB的轴截面上另一母线AC上,问它爬行的最短路线 是多少?
将圆锥沿AB展开成扇形ABB’ A , 解 : 将圆锥沿 将圆锥沿 AB 展开成扇形 AB 则点 CB 是 解: 将圆锥沿AB展开成扇形ABB ,解 则点 C是BB 的中点 ,:过点 B 作 BD AC ,是 解 将圆锥沿 展开成 B : AB 展开成扇形 AB B ,AB 则点 C , :: 将圆锥沿 AB 展开成扇形 AB B C是 , 则点 解 将圆锥沿 AB 展开成扇形 AB B 则点 , 则点 C 解 :B 将圆锥沿 AB 展开成扇形 AB B C B 的中点 , 垂足为 D . 垂足为 D .是 垂足为 D .BD 成扇形 AB B B 的中点,解 过点 B 作 AC , 垂足为 D . , 则点C是 垂足为 DD .r 垂足为 .r 垂足为 D . r r BA B 360 360 120 BA B 120 BAB 360 120 BAB 360 120 l r r BAB l r l 360 120 l C B BA B 360 120 中, BAD 60, A BAB 360 BAD 120 60 BAD 60 . 在 Rt ABC . 在 Rt ABC 中 , 60 BAD Rt 60 ABC , AB l BAD . 在 l l BAD 60.在RtABC中, BAD 60, AB 3. BAD 60 ., 在 Rt ABC 中 ,, BAD 60 ,A 3 3 BAD 60 . 在 Rt ABC 中 BAD 60 3 BAD 60 . 在 Rt ABC 中 BAD 60 , AB 3 . BD BD 3 3 C中, BAD 60, AB 3. 3 BD 3 2 2 3 BD 3 2 33 3 BD 2 BD 3 BD 2 3 33 答 : 它爬行的最短路线是 3.3. 它爬行的最短路线是 2 2 答 : 它爬行的最短路线 3 2 32 答: 它爬行的最短路线是 3. 答: 它爬行的最短路线是 3 33. 3 答: 它爬行的最短路线是 3. 答: 它爬行的最短路线是 3. 2 2 线是 3. 2 2 2

《圆锥的侧面展开图》教案设计

《圆锥的侧面展开图》教案设计

《圆锥的侧面展开图》教案设计第一章:圆锥的侧面展开图概念介绍1.1 圆锥的侧面展开图定义引导学生回顾圆锥的基本概念,理解圆锥的侧面展开图是将圆锥的侧面展开后形成的平面图形。

通过实物演示或图片展示,让学生直观地感受圆锥的侧面展开图的形成过程。

1.2 圆锥的侧面展开图的特点分析圆锥的侧面展开图的形状,引导学生发现它是一个扇形。

解释圆锥的侧面展开图与圆锥的底面之间的关系,让学生理解展开图的弧长等于圆锥底面的周长。

第二章:圆锥的侧面展开图的计算2.1 圆锥的侧面积计算引导学生利用圆锥的侧面展开图来计算圆锥的侧面积。

给出圆锥的侧面积计算公式:侧面积= π×r ×l,其中r为圆锥的底面半径,l为圆锥的母线长。

2.2 圆锥的全面积计算引导学生理解圆锥的全面积包括底面积和侧面积。

给出圆锥的全面积计算公式:全面积= π×r ×(r + l),其中r为圆锥的底面半径,l为圆锥的母线长。

第三章:圆锥的侧面展开图的应用3.1 圆锥的侧面积在实际问题中的应用通过举例或情景设置,让学生理解圆锥的侧面积在实际问题中的应用,如制作圆锥形状的物体时计算材料用量等。

3.2 圆锥的全面积在实际问题中的应用通过举例或情景设置,让学生理解圆锥的全面积在实际问题中的应用,如计算圆锥形物体的表面积等。

第四章:圆锥的侧面展开图的绘制4.1 圆锥的侧面展开图的绘制方法引导学生学习如何将圆锥的侧面展开成一个扇形,并绘制出圆锥的侧面展开图。

通过步骤讲解和示范,让学生掌握绘制圆锥的侧面展开图的方法。

4.2 圆锥的侧面展开图的绘制技巧介绍一些绘制圆锥的侧面展开图的技巧,如如何准确地测量和标记圆锥的底面半径和母线长等。

第五章:圆锥的侧面展开图的综合练习5.1 圆锥的侧面展开图的计算练习提供一些有关圆锥的侧面展开图的计算题目,让学生巩固圆锥的侧面积和全面积的计算方法。

5.2 圆锥的侧面展开图的应用练习提供一些有关圆锥的侧面展开图的应用题目,让学生将所学知识应用到实际问题中。

有关圆锥展开图计算的两个重要公式

有关圆锥展开图计算的两个重要公式

有关圆锥展开图计算的两个重要公式广东省东莞市光明中学许昌大家在解决有关圆锥侧面展开图的计算问题时,通常利用了两个等量关系,第一个是=×底面圆周长(或侧面的弧长)×母线长,第二个就是侧面的弧长等于底面的周长,但每次都直接利用这两个等量关系来计算还是很麻烦,特别是同学们往往容易忘记乘以系数,基于此我们不妨把这两个等量关系进一步推导,得出实质性的乘积、比例公式。

我相信同学们在理解并运用这两个公式后,解题的思路可以变得清晰,速度和准确度也可以得到很大的提高。

一、推导公式:1.乘积式:侧面积:全面积:2.比例式:弧长等于⊙O1的周长∵∴又∵即:这两组公式的优点是避开了求底面圆周长,而直接建立了S侧与R、r的乘积关系,以及圆心角n与R、r的比例关系,减少了许多中间过程,特别是比例式给我们的计算带来了极大的便利。

二、运用乘积式:类型一:顺向使用公式【问题】(2009济南)在综合实践活动课上,小明同学用纸板制作了一个圆锥形漏斗模型.如图所示,它的底面半径高则这个圆锥漏斗的侧面积是()A.B.C.D.分析:从刚才推导出的可以看出,只与圆锥的母线长度以及底面圆半径有关,若题目没有直接给出母线长度以及底面圆半径,往往还可以利用R、r和h组成的直角三角形,求出未知的R或r来,从而计算出侧面积。

结论:要求,就求R、r。

解答:此题由底面半径高可以求出母线BC为10cm,即R=10cm,r=6cm,再由,选C。

【练习】1. (2009铁岭)小丽想用一张半径为5cm的扇形纸片围成一个底面半径为4cm的圆锥,接缝忽略不计,则扇形纸片的面积是cm2.(结果用表示)202.(2009南昌)一个圆锥的底面直径是80cm,母线长是90cm,则它的侧面积是____ 。

3600cm23. (2008成都)小红同学要用纸板制作一个高4cm,底面周长是6πcm的圆锥形漏斗模型,若不计接缝和损耗,则她所需纸板的面积是()BA.12πcm2B.15πcm2C.18πcm2D.24πcm2类型二:逆向使用公式【问题】(2009义乌)如图,圆锥的侧面积为,底面半径为3,则圆锥的高AO为 .分析:从刚才推导出的可以看出,已知、R、r中任意两个量可以求出余下未知的量,若题目要求求出圆锥的高h,往往还可以利用R、r和h 组成的直角三角形,从而求出。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆锥的侧面展开图及相关计算
教学目标:
1、了解母线的意义,体会母线、高与底面圆的半径的关系.
2、理解掌握圆锥的侧面积和全面积的计算公式,并会运用它解决相关问题.
3、进一步培养学生分析,解决问题的能力. 教学过程:
一、创设情境,激发兴趣 1、生活中的圆锥欣赏 2、圆锥的形成
二、自主学习,问题探究
3、如上图,你能用刚才得到的结论快速的解决下列问题吗?
① 如r=12,a=20,则S 侧= ,S 全= . ② 如h=12,r=5, 则S 侧= ,S 全= . ③ 如a=2, r=1, 则n= . ④ 如h=3, r=4, 则n= .
⑤ 已知△ABC 中,∠ACB =90°,AC =5cm ,BC =12cm ,将△ABC 分别绕直角边AC 、BC 和斜边AB 旋转一周,画出旋转后的图形并求所得几何体的侧面积?
三、直击中考,发现问题
1、小红要过生日了, 为了筹备生日聚会,准备自己动手用纸板制作圆锥形的生日礼帽,如下图,圆锥帽底面半径为9cm ,母线长为36cm ,请你帮助他们计算制作一个这样的生日礼貌需要纸板的面积为( )
(A )648πcm 2 (B )432πcm 2 (C )324πcm 2 (D )216πcm 2
2、一个扇形,半径为30cm ,圆心角为120度,用它做成一个圆锥的侧面,那么这个圆锥的底面半径为_____ .
3、已知圆锥的侧面积为10πcm 2,侧面展开图的圆心角为36°,则该圆锥的母线长为( )
A.100cm
B.
C.10cm
D.
4、若圆锥侧面积是底面积的2倍,则这个圆锥的侧面展开图的圆心角是 ( )
(A )120° (B )135° (C )150° (D )180° 5、如图已知扇形AOB 的半径为6cm ,圆心角的度数为120°,若将此扇形围成一个圆锥,
则围成的圆锥的侧面积为( )
A.4π cm 2
B.6π cm 2
C.9π cm 2
D.12π cm 2
6、如下图,如果从半径为9cm 的圆形纸片剪去 圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为( )
l
A. B. C. D.
7、如图,有一直径为4的圆形铁皮,要从中剪出一个最大圆心角为60°的扇形ABC .那么剪下的扇形ABC (阴影部分)的面积为______; 用此剪下的扇形铁皮围成一个圆锥,该圆锥的底面圆的半径r=______.
8、如下图,矩形ABCD 中,AB=4,以点B 为圆心,BA 为半径画弧交BC 于点E ,以点
O 为圆心的⊙O 与弧AE ,边AD ,DC 都相切.把扇形BAE 作一个圆锥的侧面,该圆锥的底面圆恰好是⊙O ,则AD 的长为 .
9、如下图,圆锥的母线长是3,底面半径是1,A 是底面圆周上一点,从点A 出发绕侧面一周,
再回到点A 的最短的路线长是( )
(A) 36 (B)
2
3
3 (C) 33 (D) 3
10、如下图,已知在⊙O 中,
,AC 是⊙O 的直径,AC ⊥BD 于F ,∠A=30°.
(1)求图中阴影部分的面积;
(2)若用阴影扇形OBD 围成一个圆锥侧面,请求出这个圆锥的底面圆的半径.
四、个性问题,小组解决。

相关文档
最新文档