雨量预报分析的评价模型-数学建模

合集下载

降水量预测模型的建立与优化研究

降水量预测模型的建立与优化研究

降水量预测模型的建立与优化研究一、绪论气象预报对于国家的经济、农业、交通等多个领域的发展都具有重要的作用。

其中,降水量预测是气象预报中非常重要的一部分。

本文基于历史气象数据和机器学习算法,构建了一种降水量预测模型,并对该模型进行了优化。

二、相关研究在之前的研究中,已经有许多学者对于降水量预测进行了研究。

传统的气象预测方法主要采用统计学和物理学方法,如逐步回归、灰色预测、ARIMA等方法,但这些方法在预测精度和准确性上存在一定的局限性。

近年来,随着人工智能及机器学习技术的发展,例如神经网络、支持向量机等,已经有很多学者将其应用于气象预测领域,并取得了良好的预测效果。

三、数据集特点本文选取了2015年-2020年的历史气象数据集,数据集中包含了每日的气温、湿度、气压、风向和风速等参数,以及当日的降水量数据。

该数据集的特点是具有高维度和高度相关性的的特征,同时也存在着部分特征缺失的问题。

四、模型构建4.1 特征选择对于数据集中的特征进行筛选是模型构建的一个重要环节。

我们对于所有特征进行特征重要性排序,选择对于降水量预测影响比较显著的特征。

在此基础上,根据Pearson相关系数、互信息等方法,对特征之间的相关性进行了分析,进一步排除一些冗余的特征。

4.2 模型选择在特征选择完成后,我们借鉴了之前的研究中的经验和方法,选择了支持向量回归模型,构建了降水量预测模型。

支持向量回归模型具有快速、准确和鲁棒性强等优点,在过去的实验中也表现出了非常好的效果。

4.3 模型训练与评估在模型构建完成后,我们利用数据集中的70%数据进行模型训练,训练时采用网格搜索方法对模型参数进行调优,其中包括正则化参数和核函数参数等。

在之后的30%数据上,我们对模型进行了评估,评估指标包括均方根误差(RMSE)、平均绝对误差(MAE)和决定系数(R2)等。

实验结果表明,我们构建的降水量预测模型具有较高的预测精度和鲁棒性。

五、模型优化为进一步提高模型的预测精度,我们还对模型进行了优化。

雨量预报方法的评价模型

雨量预报方法的评价模型

雨量预报方法的评价模型
伍利兵;雷中博;王翠;周国鹏(指导教师)
【期刊名称】《工程数学学报》
【年(卷),期】2005(022)007
【摘要】本文建立了“最邻近点插值法”、“反距离加权平均法”等两个降雨量预报算法模型。

给出各观测站的雨量预报值,并且用三项指标对两种雨量预报准确性进行了评价。

对于问题二,给出了满意度函数用来评价公众满意程度。

结果表明两种预报方法公众的满意度都在95%以上。

【总页数】6页(P127-132)
【作者】伍利兵;雷中博;王翠;周国鹏(指导教师)
【作者单位】咸宁学院,湖北咸宁437005
【正文语种】中文
【中图分类】O29
【相关文献】
1.雨量预报方法的评价模型
2.雨量预报方法的评价模型
3.对雨量预报方法的评价模型的评述
4.雨量预报方法的模糊评价模型--2005高教社杯全国大学生数学建模竞赛题目之一
5.雨量预报方法评价模型
因版权原因,仅展示原文概要,查看原文内容请购买。

数学建模C题论文

数学建模C题论文

191])()([),(20200y y x x r z y x z -+--=c y b x a y x y x z +⋅+⋅++=22),(4753⨯41i D i D 20.000160.001162021421339915152112032534791410.1 6660.1 2.5 2.666.11212.12525.16060.1/mcm05/probX 53⨯47Y 53⨯47k n m Z ⨯53⨯47 k n m Z ⨯~53⨯47i n m k H ⨯m m n k n 21n +120i n m k S ⨯i D126 18319719141164512X Y⎪⎪⎪⎭⎫ ⎝⎛=⨯⨯⨯⨯⨯⨯47532531534712111..................x x x x x x X ⎪⎪⎪⎭⎫⎝⎛⨯⨯⨯⨯⨯⨯47532531534712111..................y y y y y y),(y x Z =mnk ⎪⎪⎪⎭⎫⎝⎛⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯),(...),,(),,(............),(...),,(),,(4753475325325315315347147121211111y x f y x f y x f y x f y x f y x f ⎪⎪⎪⎭⎫⎝⎛⨯⨯⨯⨯⨯⨯47532531534712111..................Z Z Z Z Z Z 1=imnk Z ~⎪⎪⎪⎪⎭⎫ ⎝⎛⨯⨯⨯⨯⨯⨯47532531534712111~...~~............~...~~Z Z Z Z Z Z i imnkH ∆mnk Z i mnk Z ~⎪⎪⎪⎭⎫⎝⎛⨯⨯⨯⨯⨯⨯ii i i i i h h h h h h 47532531534712111............... (2)i mnkS∆∑∑=⨯=⨯4712531)(47531j i ji i hi D ∆∑=16411641i mnk S 4i i imnk H 5347imnk S mnk H i D 41 2),(y x Z = ),(y x Z =i D nk m ⨯ i mnk H mnk Z i mnk Z ~1~mnk Z 2~mnk Z 1mnk H 2mnk H imnkS∆∑∑=⨯=⨯4712531)(47531j ij i i h1mnk S 2mnk S⑤ 用i D ∆∑=16411641i mnk S 计算出1D 与2D ,则1D 和2D 的值较小者为最优方案.3 主要程序及结论通过数据处理与分析我们认为预测方法一比预测方法二好.所得计算结果值分别为:(1)不同时段的两种方法的实测与预测值的均方差:1mnkS =[0.9247218269e-1, .165797962696, 0.9247218269e-1,0.9247218269e-1, .2586806182, .2586806182, .2586806182, 2.791713932, .2474029514, .2539943168, .2715902174, .2715902174182, .2586806182, 2.791713932, .2474029514, .2539943168, .2715902174]2mnkS := [0.921412432e-1, .1098068392, 0.2234955063e-1,0.1592933205e-1, .2851304286, .2851304286, .2851304286, 2.792910527, .2612701098, .2381007694, .2613774987, 0.5183032655e-1,.2851304286,2.792810527, .2612701098, .2381007694, .2613774987] (2) 方法一的均方差为:1D := .8311398371方案二的均方差: 2D = .8417760978得1D <2D .主要程序与运行结果为: (1) 局域曲面拟合程序> solve({0.3=0.6-r*(0.045^2+0.042^2)},{r});> z1:=0.6-79.17656374*[(x-120.2500)^2+(y-33.7667)^2];> z2:=0.6-79.17656374*[(x-120.2500)^2+(y-33.7667)^2];> z3:=0.6-79.17656374*[(x-120.2500)^2+(y-33.7667)^2];> z4:=0.6-79.17656374*[(x-120.2500)^2+(y-33.7667)^2];> solve({0.15=0.3-r*(0.045^2+0.042^2)},{r});> z4:=0.3-39.58828187*[(x-118.1833)^2+(y-31.0833)^2];> solve({5.1=10.2-r*(0.045^2+0.042^2)},{r});> z1:=10.2-1346.001584*[(x-120.3167)^2+(y-31.5833)^2];> z2:=10.2-1346.001584*[(x-120.3167)^2+(y-31.5833)^2];> z3:=10.2-1346.001584*[(x-120.3167)^2+(y-31.5833)^2];> z4:=10.2-1346.001584*[(x-120.3167)^2+(y-31.5833)^2];> solve({0.1=0.2-r*(0.045^2+0.042^2)},{r});> z4:=0.2-26.39218791*[(x-118.4000)^2+(y-30.6833)^2];>z4:=solve({118.9833^2+30.6167^2+a*118.9833+b*30.6167+c=0.7000,118.5833^ 2+30.0833^2+a*118.5833+b*30.0833+c=1.8000,119.4167^2+30.8833^2+a*119.41 67+b*30.8833+c=0.5});> solve({0.05=0.1-r*(0.045^2+0.042^2)},{r});> z1:=0.1-13.19609396*[(x-119.4167)^2+(y-30.8833)^2];>> solve({2.9=5.8-r*(0.045^2+0.042^2)},{r});> z4:=0.1-765.3734495*[(x-118.2833)^2+(y-29.7167)^2];(2)均方差求值程序:>sq1:=[0.09247218269,0.165797962696,0.09247218269,0.09247218269,0.258680 6182,0.2586806182,0.2586806182,2.791713932,0.2474029514,0.2539943168,0. 2715902174,0.2715902174182,0.2586806182,2.791713932,0.2474029514,0.2539 943168,0.2715902174];> sum1:=add(i,i=sq1);> ave1:=sum1/17;>ve1:=[.5222900020,.5222900020,.5222900020,.5222900020,.5222900020,.5222 900020,.5222900020,.5222900020,.5222900020,.5222900020,.5222900020,.522 2900020,.5222900020,.5222900020,.5222900020,.5222900020,.5222900020,.52 22900020];>sq2:=[0.0921412432,0.1098068392,0.022********,0.01592933205,0.285130428 6,0.2851304286,0.2851304286,2.792910527,0.2612701098,0.2381007694,0.261 3774987,0.0518*******,0.2851304286,2.792810527,0.2612701098,0.238100769 4,0.2613774987];(2)数据模拟图程序:> with(linalg):> l:=matrix(91,7,[58138,32.9833,118.5167, 0.0000, 5.0000, 0.2000, 0.0000, 58139, 33.3000,118.8500, 0.0000, 3.9000, 0.0000, 0.0000,58141, 33.6667,119.2667, 0.0000, 0.0000, 0.0000, 0.0000,58143, 33.8000,119.8000, 0.0000, 0.0000, 0.0000, 0.0000,58146, 33.4833,119.8167, 0.0000, 0.0000, 0.0000, 0.0000,58147, 33.0333,119.0333, 0.0000, 6.0000, 1.4000, 0.0000,58148, 33.2333,119.3000, 0.0000, 1.1000, 0.3000, 0.0000,58150, 33.7667,120.2500, 0.0000, 0.0000, 0.0000, 0.1000,58154, 33.3833,120.1500, 0.0000, 0.0000, 0.0000, 0.0000,58158, 33.2000,120.4833, 0.0000, 0.0000, 0.0000, 0.0000,58230, 32.1000,118.2667, 3.3000,20.7000, 6.6000, 0.0000,58236, 32.3000,118.3000, 0.0000, 8.2000, 3.6000, 1.4000,58238, 32.0000,118.8000, 0.0000, 0.0000, 0.0000, 0.0000,58240, 32.6833,119.0167, 0.0000, 3.0000, 1.4000, 0.0000,58241, 32.8000,119.4500, 0.1000, 1.4000, 1.5000, 0.1000,58243, 32.9333,119.8333, 0.0000, 0.7000, 0.4000, 0.0000,58245, 32.4167,119.4167, 0.3000, 2.7000, 3.8000, 0.0000,58246, 32.3333,119.9333, 7.9000, 2.7000, 0.1000, 0.0000,58249, 32.2000,120.0000,12.3000, 2.4000, 5.6000, 0.0000,58251, 32.8667,120.3167, 5.2000, 0.1000, 0.0000, 0.0000, 58252, 32.1833,119.4667, 0.4000, 3.2000, 4.8000, 0.0000, 58254, 32.5333,120.4500, 0.0000, 0.0000, 0.0000, 0.0000, 58255, 32.3833,120.5667, 1.1000,18.5000, 0.5000, 0.0000, 58264, 32.3333,121.1833,35.4000, 0.1000, 0.2000, 0.0000, 58265, 32.0667,121.6000, 0.0000, 0.0000, 0.0000, 0.0000, 58269, 31.8000,121.6667,31.3000, 0.7000, 2.8000, 0.1000, 58333, 31.9500,118.8500, 8.2000, 8.5000,16.9000, 0.1000, 58334, 31.3333,118.3833, 4.9000,58.1000, 9.0000, 0.1000, 58335, 31.5667,118.5000, 5.4000,26.0000,11.0000, 0.8000, 58336, 31.7000,118.5167, 3.6000,27.8000,15.3000, 0.6000, 58337, 31.0833,118.1833, 7.0000, 6.4000,15.3000, 0.2000, 58341, 31.9833,119.5833,11.5000, 5.4000,16.1000, 0.0000, 58342, 31.7500,119.5500,32.6000,37.9000, 5.8000, 0.0000, 58343, 31.7667,119.9333,20.7000,24.3000, 5.3000, 0.0000, 58344, 31.9500,119.1667,12.4000, 5.9000,16.3000, 0.0000, 58345, 31.4333,119.4833,21.8000,18.1000, 9.8000, 0.1000, 58346, 31.3667,119.8167, 0.1000,12.7000, 5.1000, 0.2000, 58349, 31.2667,120.6333, 1.1000, 5.1000, 0.0000, 0.0000, 58351, 31.8833,120.2667,22.9000,15.5000, 6.2000, 0.0000, 58352, 31.6500,120.7333,15.1000, 5.4000, 2.4000, 0.0000, 58354, 31.5833,120.3167, 0.1000,12.5000, 2.4000, 0.0000, 58356, 31.4167,120.9500, 5.1000, 4.9000, 0.4000, 0.0000, 58358, 31.0667,120.4333, 2.4000, 3.4000, 0.0000, 0.8000, 58359, 31.1500,120.6333, 1.5000, 3.8000, 0.5000, 0.1000, 58360, 31.9000,121.2000, 5.6000, 3.2000, 2.9000, 0.1000, 58361, 31.1000,121.3667, 3.5000, 0.6000, 0.2000, 0.7000, 58362, 31.4000,121.4833,33.0000, 4.1000, 0.9000, 0.0000, 58365, 31.3667,121.2500,17.7000, 2.2000, 0.1000, 0.0000, 58366, 31.6167,121.4500,75.2000, 0.4000, 1.5000, 0.0000, 58367, 31.2000,121.4333, 7.2000, 2.8000, 0.2000, 0.2000, 58369, 31.0500,121.7833, 3.2000, 0.3000, 0.0000, 0.3000, 58370, 31.2333,121.5333, 7.0000, 3.4000, 0.2000, 0.2000, 58377, 31.4667,121.1000, 7.8000, 7.2000, 0.3000, 0.0000, 58426, 30.3000,118.1333, 0.0000, 0.0000,17.6000, 6.2000, 58431, 30.8500,118.3167, 5.1000, 2.3000,16.5000, 0.1000, 58432, 30.6833,118.4000, 3.6000, 1.4000,20.5000, 0.2000, 58433, 30.9333,118.7500, 2.1000, 3.4000, 8.5000, 0.2000, 58435, 30.3000,118.5333, 0.0000, 0.0000,13.6000, 8.5000, 58436, 30.6167,118.9833, 0.0000, 0.0000, 5.3000, 0.5000, 58438, 30.0833,118.5833, 0.0000, 0.0000,27.6000,21.8000, 58441, 30.8833,119.4167, 0.1000, 1.6000, 1.6000, 1.0000, 58442, 31.1333,119.1833, 3.0000, 8.8000, 5.4000, 0.2000, 58443, 30.9833,119.8833, 0.1000, 2.7000, 0.1000, 0.9000,58446, 30.9667,119.6833, 0.0000, 0.1000, 5.1000, 2.5000, 58448, 30.2333,119.7000, 0.0000, 0.0000,15.1000, 6.9000, 58449, 30.0500,119.9500, 0.0000, 0.0000,23.5000, 8.2000, 58450, 30.8500,120.0833, 0.0000, 0.7000, 0.0000, 4.1000, 58451, 30.8500,120.9000, 0.5000, 0.1000, 0.0000, 3.8000, 58452, 30.7833,120.7333, 0.3000, 0.0000, 0.0000, 3.0000, 58453, 30.0000,120.6333, 0.0000, 0.0000, 0.0000,18.2000, 58454, 30.5333,120.0667, 0.0000, 0.0000, 0.5000, 4.9000, 58455, 30.5167,120.6833, 0.0000, 0.0000, 0.0000, 4.6000, 58456, 30.6333,120.5333, 0.0000, 0.0000, 0.0000, 4.2000, 58457, 30.2333,120.1667, 0.0000, 0.0000, 2.0000,12.6000, 58459, 30.2000,120.3167, 0.0000, 0.0000, 0.0000,15.0000, 58460, 30.8833,121.1667, 1.2000, 0.1000, 0.0000, 2.3000, 58461, 31.1333,121.1167, 4.0000, 1.4000, 0.4000, 0.2000, 58462, 31.0000,121.2500, 2.7000, 0.3000, 0.4000, 1.7000, 58463, 30.9333,121.4833, 1.7000, 0.1000, 0.0000, 0.8000, 58464, 30.6167,121.0833, 0.0000, 0.0000, 0.0000, 3.6000, 58467, 30.2667,121.2167, 0.0000, 0.0000, 0.0000, 1.8000, 58468, 30.0667,121.1500, 0.0000, 0.1000, 5.1000, 2.5000, 58472, 30.7333,122.4500, 0.3000, 0.6000, 0.0000, 4.9000, 58477, 30.0333,122.1000, 0.0000, 0.0000, 0.0000, 0.0000, 58484, 30.2500,122.1833, 0.0000, 0.0000, 0.0000, 0.0000, 58530, 29.8667,118.4333, 0.0000, 0.0000,27.5000,23.6000, 58531, 29.7167,118.2833, 0.0000, 0.0000, 3.7000,11.5000, 58534, 29.7833,118.1833, 0.0000, 0.0000, 9.3000, 6.5000, 58542, 29.8167,119.6833, 0.0000, 0.0000, 0.0000,27.6000, 58550, 29.7000,120.2500, 0.0000, 0.0000, 0.0000, 4.9000, 58562, 29.9667,121.7500, 0.0000, 0.0000, 0.0000, 0.9000]);> lat:=col(l,2);> lon:=col(l,3); > sd1:=col(l,4);> sd2:=col(l,5); > sd3:=col(l,6); > sd4:=col(l,7);> abc1:=seq([lat[i],lon[i],sd1[i]],i=1..91);> abc2:=seq([lat[i],lon[i],sd2[i]],i=1..91);> abc3:=seq([lat[i],lon[i],sd3[i]],i=1..91);> abc4:=seq([lat[i],lon[i],sd4[i]],i=1..91);> with(plots):> pointplot3d([abc1],color=green,axes=boxed);> surfdata([abc1],labels=["x","y","z"],axes=boxed);> with(stats):> with(fit):> with(plots):fx1:=leastsquare[[x,y,z],z=x^3+y^3+a*x^2+b*y^2+c*x*y+d*x+e*y+f,{a,b,c,d ,e,f}]([abc1]);> plot3d(fx1,x=25..35,y=119..135);> pointplot3d([abc2],color=blue,axes=boxed);> surfdata([abc2],labels=["x","y","z"],axes=boxed);>fx2:=leastsquare[[x,y,z],z=x^3+y^3+a*x^2+b*y^2+c*x*y+d*x+e*y+f,{a,b,c,d ,e,f}]([abc2]);> plot3d(fx2,x=25..35,y=119..135);> pointplot3d([abc3],color=red,axes=boxed)> surfdata([abc3],labels=["x","y","z"],axes=boxed);>fx3:=leastsquare[[x,y,z],z=x^3+y^3+a*x^2+b*y^2+c*x*y+d*x+e*y+f,{a,b,c,d ,e,f}]([abc3]);> surfdata([abc4],labels=["x","y","z"],axes=boxed);>fx4:=leastsquare[[x,y,z],z=x^3+y^3+a*x^2+b*y^2+c*x*y+d*x+e*y+f,{a,b,c,d ,e,f}]([abc4]);五.如何在评价方法中考虑公众感受的数学模型建立.1660.1 2.5 2.666.11212.12525.16060.1z } 1.00 {0≤≤=z z R } 5.21.0 {1≤≤=z z R } 66.2 {2≤≤=z z R } 121.6 {3≤≤=z z R } 251.12 {4≤≤=z z R } 601.25 {5≤≤=z z R } 1.60 {6≥=z z R 0ˆR 1ˆR 2ˆR 3ˆR 4ˆR 5ˆR 6ˆR } 1)( {ˆ000R z z z R ∈≤=,μ} 1)( {ˆ111R z z z R ∈≤=,μ} 1)( {ˆ222R z z z R ∈≤=,μ } 1)( {ˆ333R z z z R ∈≤=,μ} 1)( {ˆ444R z z z R ∈≤=,μ} 1)( {ˆ555R z z z R ∈≤=,μ } 1)( {ˆ666R z z z R ∈≤=,μ)(z i μ i 1z ∈i R i R )(z i μ i 16i R ˆ i 1 2)(z i μ i 1⎩⎨⎧≤<+-≤≤=1.006.0 , 5.22506.00, 1)(0z z z z μ)(1z μ] 2369277587.0e [2369277587.0112)3.1(----z 5.21.0≤≤z )(2z μ] 20555762126.0e [20555762126.0112)3.4(----z 66.2≤≤z)(3z μ] 2287787270.0e [2287787270.0119.5)05.9(2----z 121.6≤≤z )(4z μ] 70397557815.0e[70397557815.0119.12)55.18(2----z 251.12≤≤z)(5z μ] 00475951221.0e[00475951221.011100)55.42(2----z 601.25≤≤z)(6z μ2)]5.60(5 [11--+z 1.60≥z 74)(z i μ及iR ˆ i =0,1,…,6合并可得} 0 {≥=z z R 上的模糊集合} , 1)( {ˆR z z z R∈≤=μ.其中R 是论域,)(z μ是模糊集合R ˆ的隶属函数,由)(z i μ分段合)(z μ小雨的隶属函数图特大暴雨隶属函数图大暴雨隶属函数图暴雨隶属函数图⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧>≤<≤<≤<≤<≤<≤≤=60)(6025)(2512)(126)(65.2)(5.21.0)(1.00)()(6543210z z z z z z z z z z z z z z t μμμμμμμμ 5 353⨯47imnkZ ~)(z μ53⨯47=M mnk⎪⎪⎪⎭⎫⎝⎛⨯⨯⨯⨯⨯⨯47532531534712111..................μμμμμμ=M imnk~⎪⎪⎪⎭⎫⎝⎛⨯⨯⨯⨯⨯⨯47532531534712111~...~~............~...~~μμμμμμi ),(y x Z =i mnk ∏∆mnk M =M i mnk~⎪⎪⎪⎪⎭⎫ ⎝⎛⨯⨯⨯⨯⨯⨯i i i i i i 47532531534712111..................λλλλλλ 6imnkΓ∆∑∑=⨯=⨯4712531)(47531j i j i i λ i Ω∆∑=16411641i imnkΓ 8 i 2i i i mnk ∏5347imnk Γi mnk ∏i Ω411Ω2Ω 1Ω2Ω1D 2D19811999。

数学建模 -的范例

数学建模 -的范例

针对问题三,本文首先对主要风险因子进行了灰色预测,计算出未来几年水资源总量、降水量、平均气温、生活用水量、工业用水量。

然后采用问题二中的BP神经网络预测每年的缺水量。

最后通过整合往年的数据,运用问题二中的熵值取权的模糊评价模型预测出未来几年内水资源短缺的风险等级。

由于考虑到降水量和地下储水相关系数高,我们依据历年的降水量估测出平水年,偏枯年,枯水年三种不同年份的水资源总量,并应用问题二的风险评价模型进行评估,得到三种不同年份水资源短缺风险等级依次为高,较高,较低。

最后我们分析了南水北调工程对北京市未来两年水资源短缺的风险等级影响,风险等级依次变为低,偏低,无。

针对问题四,我们从北京市水资源现状及分析、北京市严重缺水的原因探究、北京市水资源开发利用对策三个层面向相关行政主管部门提交建议报告,以求帮助其合理规避水资源短缺风险。

关键字:水资源短缺风险、灰色关联度分析、主成分分析,模糊综合评价、BP 神经网络、熵值取权一、问题重述1.1 问题背景水是生命之源,万物之本,是人类生存和发展不可或缺的物质,是地球上最普遍、最常见同时也是最珍贵的自然资源。

水是人类一切生产活动的基础,有水的地方欣欣向荣,水资源枯竭的地方则文明消失。

长期以来,我们注重经济社会发展,却忽略了水资源的承载能力,注重水资源开发利用,却没有同等重视节约和保护。

随着经济社会发展,1.2 问题重述水资源短缺危险泛指在特定的时空环境下,由于来水和用水的不确定性,室区域水资源系统发生供水短缺的可能性以及有此产生的损失。

近年来我国水资源短缺问题日趋严重,以北京市为例,北京是世界上水资源严重缺乏的大都市之一,属严重缺水地区。

虽然政府采取了一些列措施,如南水北调工程建设, 建立污水处理厂,产业结构调整等。

但是,气候变化和经济社会不断发展,水资源短缺风险始终存在。

如何对水资源风险的主要因子进行识别,对风险造成的危害等级进行划分,对不同风险因子采取相应的有效措施规避风险或减少其造成的危害,这对社会经济的稳定、可持续发展战略的实施具有重要的意义。

降雨量预测的简单方法---数学建模论文

降雨量预测的简单方法---数学建模论文

摘要首先,本文运用SAS和Excel两种软件工具对两种方法预测到的数据进行定量分析比较,采用绝对误差法让每一天每一个站点每一个时段预测到的数据与相应的实际的数据作差,求绝对值,再加总总的绝对值误差,建立了模型(1),得出了数据预测的方法一比方法二效果较好的结论。

其次,考虑到绝对误差法的局限性,进一步采用相对误差法对模型(1)进行改进,让每一天每一个站点每一个时段预测到的数据与相应的实际的数据作差的绝对值除于相对应的真实时段的数据,建立了模型(2);由于有些数据为0的缘故,对模型(2)进一步改进得到模型(3),仍然得出方法一优于方法二的结论。

最后,本文对模型进行了评价。

关键词:绝对误差法相对误差法SAS Excel一、问题重述FORECAST中的文件名为<f日期i>_dis1和<f日期i>_dis2,例如f6181_dis1中包含2002年6月18日采用第一种方法预测的第一时段数据(其2491个数据为该时段各网格点的数据),而f6183_dis2中包含2002年6月18日采用第二种方法预测的第三时段数据。

MEASURING中包含了41个名为<日期>.SIX的文件,如020618.SIX表示2002年6月18日晚上21点开始的连续4个时段各站点的实测数据,这些文件的数据格式是:站号纬度经度第1段第2段第3段第4段58138 32.9833 118.5167 0.0000 0.2000 10.1000 3.1000 58139 33.3000 118.8500 0.0000 0.0000 4.6000 7.4000 58141 33.6667 119.2667 0.0000 0.0000 1.1000 1.4000 58143 33.8000 119.8000 0.0000 0.0000 0.0000 1.8000 58146 33.4833 119.8167 0.0000 0.0000 1.5000 1.9000……根据已有的数据用模型判断这两种预测方法的优劣。

数学建模降雨量预测方法优劣的评价

数学建模降雨量预测方法优劣的评价

当 x ≥ 0.1 时, f3 (x ) =
1 1 + 3.33511 × 10−6 (x − 4.3)18
1 取 α 4 = 3.85014 × 10−8 , β 4 = 14, r4 = (a4 + b4 ) = 9.05 ,则 2 3 f4 (a 3 + (b3 − a 3 )) = 0.121201 ≈ 0.1 , f4 (a 4 ) = 0.87295 ≈ 0.8 , 4
4
考虑公众的感受,一般地,若天气预报准确,人们会对所预报的值表示满意;若天 气预报不准确,人们会不满意所预报的值,因此可以用人们的满意程度高低来判别这两 种预测方法的优劣(显然,人们满意程度高的方法更优) 。人们的满意程度可以通过量 化的方法来刻划。拟定人们对某次预报的满意程度函数 fi (x ) ∈ [0,1] ,其中 i 为该次预报 的等级, x 为实际降雨量;若 fi (x ) = 1 ,则人们对该次预报“完全满意” ,若 fi (x ) = 0 , 则人们对该次预报“完全不满意” 。 考虑这样的一个过程:人们首先通过天气预报(通常只预报降雨等级)在心中形成 对未来天气状况的预期。随时间的转移,人们很快知道了真实的天气状况。这时人们会 将对真实天气状况的感受与对所预报的天气状况的理解进行比较。 两者给人感觉差距越 大,人们对预报天气情况的认可程度越低,即,满意度越低。由于“有雨”/“无雨”给 人的感觉是很明显的,因而可以取 1 x < 0.1 f1 ( x) = 0 x ≥ 0.1 降雨等级是根据人们的经验来划分的。若降雨量在等级范围区间的中间,则人们容 易确定所下的雨是属于哪个等级的,而在区间的两端却不容易确定,特别是在两个相邻 区间的交界处会更加模糊,难以确定属于哪个等级。假设预报的是等级 A,若实际降雨 量在 A 的范围区间的中间,人们会认为预报是非常准确的;若实际降雨量在 A 的范围 区间的两端, 则会认为预报基本准确。 若实际降雨量在两个等级范围区间的交界处附近, 则人们也会认为预报是比较准确的,因为人们较难辨别实际降雨的等级。例如,若降雨 量为 2.6 毫米,虽然应该分属于中雨,但是人们却往往区分不出是中雨还是小雨,因而 不管预报的是小雨还是中雨,人们总会认为是比较准确的。由以上分析,可知等级 2 到 等级 6 的满意度函数可以采用图形大致如下的函数:

评价雨量预报的数学模型

评价雨量预报的数学模型
24两种 预报 方 法 的 比较 .
气象部 门将 6 时降雨 量分 为 6 :. .毫米 为小 小 等 0 —2 1 5
雨 ,._6 2 -1毫米为 中雨 ,. 1 6_ 61 2毫米为大雨 ,21 5 米为 — 1. —2 毫 暴雨 ,51 0毫米为大暴雨 , 2. —6 大于 6 .毫米为特大暴雨。若 01
关键 词 :误 差 ;评 价 准 则 ;级 差
中图分类号 : O1 1 文 献标识码 : A 文章编 号:10 — 4 5 2 0 )1 08 — 2 4. 4 0 8 5 7 (0 70 — 0 3 0
1 问题 的 提 出
绝对 ) , 等 对连续 函数( 差计算方法 的第 三种 ) 误 可将求和 改
为 积分 。
23插 值 方 法 .
雨量预报对农业生产和城市工作 、生活有重要作用 , 但 准确 、 时地 对雨量作 出预报是一 个十分 困难 的问题 , 及 广受 世界各 国关 注。我国某地气象台和气象研究所正在研究 6小 时雨量预报方法 , 即每天晚 上 2 0点 预报 从 2 点开始 的 4个 1 时段 ( 1 2 点至次 1 3 , 1 3点至 9点 , 3 点 次 3 9点至 1 ,5点 5点 1 至2点) 1 在某些 位置 的雨量 , 些 位置 位 于东经 10度 、 这 2 北 纬3 2度附近的 5  ̄ 7的等距 网格点上 。同时设 立 9 个 观测 34 1 站 点实测这些时段 的实际雨 量 , 于各 种条件 的限制 , 由 站点 的设置是不均匀 的。气象部 门希望建立一种科学评 价预报方 法好坏的数学模 型与方法 。
观测站点 ( 纬度, 经度 )(。 。, 1 …, 1 :a b i , 9 ; ,) -
将 5  ̄ 7个 网格点 的预报数据进行插 值 ,得到 9 34 1个观 测点上的预报值 , 与已给 出的观测点上 的雨量实测值 比较 。 21 计算连续 雨量分布函数( .3 . 在数据区域内) 的预报误差 分别 用 9 个观测点 上 的实 测数据 和 5 x 4 个 网格 点 1 3 7 的预报数 据进行插 值 , 得到 区域 内的实 测和预报两个雨量 分 布函数进行 比较。

数学建模-淋雨模型

数学建模-淋雨模型

淋雨量模型一、问题概述要在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变,试建立数学模型讨论是否跑得越快,淋雨量越少。

将人体简化成一个长方体,高a=1.5m(颈部以下),宽b=0.5m,厚c=0.2m,=5m/s,雨速u=4m/s,降雨量ω=2cm/h,设跑步的距离d=1000m,跑步的最大速度vm及跑步速度为v,按以下步骤进行讨论:[17](1)、不考虑雨的方向,设降雨淋遍全身,以最大速度跑步,估计跑完全程的总淋雨量;(2)、雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体的夹角为θ,如图1.建立总淋雨量与速度v及参数a,b,c,d,u,ω,θ之间的关系,问速度v多大,总淋雨里最少。

计算θ=0,θ=30°的总淋雨量.(3)、雨从背面吹来,雨线方向跑步方向在同一平面内,且与人体的夹角为α,如图2.建立总淋雨量与速度v及参数a,b,c,d,u,ω,α之间的关系,问速度v多大,总淋雨量最小。

计算α=30°的总淋雨量.(说明:题目中所涉及的图形为网上提供)(4)、以总淋雨量为纵轴,速度v为横轴,对(3)作图(考虑α的影响),并解释结果的实际意义.(5)、若雨线方向跑步方向不在同一平面内,试建立模型二、问题分析淋雨量是指人在雨中行走时全身所接收到得雨的体积,可表示为单位时间单位面积上淋雨的多少与接收雨的面积和淋雨时间的乘积。

可得:淋雨量(V)=降雨量(ω)×人体淋雨面积(S)×淋浴时间(t)①时间(t)=跑步距离(d)÷人跑步速度(v)②由①②得:淋雨量(V)=ω×S×d/v三、模型假设(1)、将人体简化成一个长方体,高a=1.5m(颈部以下),宽b=0.5m,厚c=0.2m.=5m/s,雨速u=4m/s,降雨量ω=2cm/h,记跑设跑步距离d=1000m,跑步最大速度vm步速度为v;(参考)(2)、假设降雨量到一定时间时,应为定值;(3)、此人在雨中跑步应为直线跑步;(4)、问题中涉及的降雨量应指天空降落到地面的雨,而不是人工,或者流失的水量,因为它可以直观的表示降雨量的多少;四、模型求解:(一)、模型Ⅰ建立及求解:设不考虑雨的方向,降雨淋遍全身,则淋雨面积:S=2ab+2ac+bc雨中奔跑所用时间为:t=d/v总降雨量V=ω×S×d/vω=2cm/h=2×10-2/3600 (m/s) 将相关数据代入模型中,可解得:S=2.2(㎡)V=0.00244446 (cm³)=2.44446 (L)(二)、模型Ⅱ建立及求解:若雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体的夹角为θ.,则淋雨量只有两部分:顶部淋雨量和前部淋雨量. (如图1)设雨从迎面吹来时与人体夹角为θ. ,且 0°<θ<90°,建立a ,b ,c ,d ,u ,ω,θ之间的关系为:(1)、考虑前部淋雨量:(由图可知)雨速的水平分量为θsin u ⋅且方向与v 相反,故人相对于雨的水平速度为:()v sin u +⋅θ则前部单位时间单位面积淋雨量为:u /v sin u )(+⋅⋅θω又因为前部的淋雨面积为:b a ⋅,时间为: d/v于是前部淋雨量V 2为 :()()[]()v /d u /v sin u V 2⋅+⋅⋅⋅⋅=θωb a即:()()v u /v sin u a V 2⋅+⋅⋅⋅⋅=θωd b ①(2)、考虑顶部淋雨量:(由图可知)雨速在垂直方向只有向下的分量, 且与v 无关,所以顶部单位时间单位面积淋雨量为()θωcos ⋅,顶部面积为()c b ⋅ ,淋雨时间为()v /d ,于是顶部淋雨量为:v /cos b V 1θω⋅⋅⋅⋅=d c ②由①②可算得总淋雨量 :()()v u /v sin u a v /cos c b V V V 21⋅+⋅⋅⋅⋅⋅+⋅⋅⋅⋅=+=θωθωd b d代入数据求得:v1800v875.1sin 5.7cos V ⋅++=θθ由V (v)函数可知:总淋雨量(V )与人跑步的速度(v )以及雨线与人的夹角(θ)两者有关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

雨量预报分析的评价模型一、摘要我们将FORECAST 文件夹中的数据按日期先后顺序导入Matlab ,建立53×47×164的三维矩阵rain1和rain2;把MEASURING 文件夹中的数据以同样方法导入91×7×41的三维矩阵temp 中,然后建立循环将temp 矩阵中每一层的后4列提取,另存入一个91×164的rain3矩阵;在命令窗中直接导入预测点的经度和纬度存入矩阵lon 和lat 中,导入实测点的经度和纬度存入矩阵lon1和lat1中,并对其作图,得到实测点和预测点的经纬度图。

整理得到91个观测点41天的预测值和测量值对应的两个91×164矩阵,根据气象部门将降雨的等级分为6个等级的分法,把矩阵中相应的降雨量值转化为其所对应等级值,其中,预测中的零全部记为0,得到两个预报等级矩阵。

针对问题(1),利用插值基点为散乱节点的插值函数griddata [1]在Matlab 中进行三次样条插值处理,将91个观测站点41天164个时段的雨量情况进行预测。

利用残差平方和21()nij i i weap wear ξ==-∑以及平均误差11n ij ii avg weap wear n ==-∑来作为评价的标准。

残差平方和ξ与平均误差avg 值较小的一种预测方法作为较好的预报方法。

残差平方和以及平均误差数值越小,表明预报越准确度越高。

预测方法一的残差平方和为174290.00,平均误差为0.4553。

预测方法二的残差平方和为195580.00,平均误差为0.4753。

雨量预报方法一的准确性更高一些。

针对问题(2),两个预报等级矩阵,继续利用残差平方和以及平均误差来作为评价的标准。

残差平方和以及平均误差数值越小,表明预报越准确度越高,相应公众感受就越好。

预测方法一的残差平方和为2774,平均误差为0.1730。

预测方法二的残差平方和为2806,平均误差为0.1745。

雨量预报方法一的准确性更高一些。

由于残差平方和与平均误差难以反映真实汇报的准确度,我们将模型改进优化。

把矩阵中相应的降雨量值转化为其所对应等级值,得到两个预报等级矩阵,将两个预报等级矩阵与实测等级矩阵做差值运算,得到两个等级差矩阵,对等级差作绝对值处理,进行等级差统计。

我们利用预测准确度检验法对两种预报进行评价。

预测准确度(H )等于预报正确次数(R )(即运算之差为0的情况)和预测次数(T )之比,即100%RH T=⨯。

准确度越高,表明预报准确度越高,相应公众感受就越好。

预报1的预报准确度为83.26%高于预报2的准确度83.11%,公众更易接受第一种预报方法。

关键字:散乱节点插值 残差平方和 平均误差 预报等级矩阵 预测准确度二、问题重述雨量预报对农业生产和城市工作和生活有重要作用,但准确、及时地对雨量作出预报是一个十分困难的问题,广受世界各国关注。

我国某地气象台和气象研究所正在研究6小时雨量预报方法,即每天晚上20点预报从21点开始的4个时段(21点至次日3点,次日3点至9点,9点至15点,15点至21点)在某些位置的雨量,这些位置位于东经120度、北纬32度附近的53×47的等距网格点上。

同时设立91个观测站点实测这些时段的实际雨量,由于各种条件的限制,站点的设置是不均匀的。

气象部门希望建立一种科学评价预报方法好坏的数学模型与方法。

气象部门提供了41天的用两种不同方法的预报数据和相应的实测数据。

预报数据在文件夹FORECAST中,实测数据在文件夹MEASURING中,其中的文件都可以用Windows系统的“写字板”程序打开阅读。

FORECAST中的文件lon.dat和lat.dat分别包含网格点的经纬度,其余文件名为<f日期i>_dis1和<f日期i>_dis2,例如f6181_dis1中包含2002年6月18日晚上20点采用第一种方法预报的第一时段数据(其2491个数据为该时段各网格点的雨量),而f6183_dis2中包含2002年6月18日晚上20点采用第二种方法预报的第三时段数据。

MEASURING中包含了41个名为<日期>.SIX的文件,如020618.SIX表示2002年6月18日晚上21点开始的连续4个时段各站点的实测数据(雨量),这些文件的数据格式是:站号纬度经度第1段第2段第3段第4段58138 32.9833 118.5167 0.0000 0.2000 10.1000 3.1000 58139 33.3000 118.8500 0.0000 0.0000 4.6000 7.4000 58141 33.6667 119.2667 0.0000 0.0000 1.1000 1.4000 58143 33.8000 119.8000 0.0000 0.0000 0.0000 1.8000 58146 33.4833 119.8167 0.0000 0.0000 1.5000 1.9000 ……雨量用毫米做单位,小于0.1毫米视为无雨。

(1)请建立数学模型来评价两种6小时雨量预报方法的准确性;(2)气象部门将6小时降雨量分为6等:0.1—2.5毫米为小雨,2.6—6毫米为中雨,6.1—12毫米为大雨,12.1—25毫米为暴雨,25.1—60毫米为大暴雨,大于60.1毫米为特大暴雨。

若按此分级向公众预报,如何在评价方法中考虑公众的感受?三、名词和符号说明四、模型假设:假设题目中全部数据真实可靠,忽略误差; :假设观测站所在位置的经纬度准确无误; :假设天气预报针对的位置在所给网格点附近; :假设雨量在各网点之间的变动是连续的;五、问题分析针对问题1,我们将两种预测方法的所有预测值构造成两个以有序时间段对应的预测值为列,以网格点的个数为行的2491×164矩阵,对于91观测站点41天的实测值做同样的处理,构造成91×164的矩阵。

这样,繁琐的数据经过预处理后就整理成了三个矩阵。

由于观测站点相应位置没有两种预测方法对应的预测值,无法直接进行评价,我们采用了三次样条插值的方法进行插值预处理,到了91个观测站点两种预测方法的相应时刻的预测值,然后将两种预测方法雨量预测值与雨量实测值进行比较,从而判断出两种预测方法的准确性。

针对问题2,我们根据要求的雨量分级方式来考虑观众的感受。

我们将问题1中91个观测站点预测处理后雨量预测值构成的两个91×164矩阵和实际雨量观测值构成的91×164这个三个矩阵分别采用雨量等级记法构造出三个新的矩阵,然后分别把两个预测值构成的降雨量等级矩阵和观测值构成的等级矩阵对应元素相减并取绝对值,并进行等级统计,再利用预测准确度检验法进行判断,准确度越高说明我们预报的误差越小,表明预测方法更准确。

1L 2L 3L 4L六、模型建立1、数据预处理(1)针对问题1根据上面的分析,我们先对数据进行预处理。

处理方法为:把FORECAST文件夹中的第一种和第二种预测方式得到的数据分开两个文件夹,分别以记事本格式按照日期的先后顺序有序的导入Matlab的workspace工作空间中,然后建立m文件编辑公式将两部分的数据导入53×47×164的三维矩阵rain1和rain2中;把MEASURING文件夹中的数据以同样方法导入91×7×41的三维矩阵temp中,然后建立循环将temp矩阵中每一层的后4列提取,另存入一个91×164的rain3矩阵;在命令窗中直接导入预测点的经度和纬度存入矩阵lon和lat中,导入实测点的经度和纬度存入矩阵lon1和lat1中,并对其作图,如图5-1。

实现的matlab 语句已呈现在附录2.1中。

图5-1 预测点(彩色实线)与实测点(蓝色孤点)由于三维矩阵无法用表格的形式呈现,我们分别截取了rain1和rain2矩阵的第一层呈现在下表5-1和5-2中,rain3是二维矩阵,将其数据呈现在表5-3中:由问题1我们可以整理得到91个观测点41天的预测值和测量值对应的两个91×164矩阵,再根据问题2中气象部门将降雨的等级分为6个等级的分法,把矩阵中相应的降雨量值转化为其所对应等级值,其中,预测中的零全部记为0,得到两个预报等级矩阵,如下表5-4和5-5:2、模型建立与求解(1)针对问题1由于91个观测站点没有相应的预测值,因此不能够直接对实测值进行评价,属于离散的散乱节点,我们利用插值基点为散乱节点的插值函数griddata [1]在Matlab 中进行三次样条插值处理,插值函数griddata 为:(,,,1,1,'')weap griddata lat lon wea lat lon cubic = [1] 其中lon 表示预测点的经度值,lat 表示预测点的纬度值,wea 表示预测点的已知的预测值,1lat 表示观察站点的纬度值,1lon 表示观察站点的经度值,cubic 表示三次样条插值的参数选项,weap 观察站点的预测值。

将91个观测站点41天164个时段的雨量情况进行预测之后,我们可以建立模型来评价这两种预测方法。

这里我们利用残差平方和ξ[2]以及平均误差avg [3]来作为评价的标准:21(),nij i i weap wear ξ==-∑ 1,2j = [2]11,nij i i avg weap wear n ==-∑ 1,2j = [3]最后,我们根据ξ和avg 的值进行评价,取值越大,表明预报的值准确性越低。

因此,残差平方和ξ与平均误差avg 值较小的一种预测方法作为较好的预报方法。

利用公式(1),我们在Matlab 中应用编程求解,程序代码见附录2.2。

求解之后得到91个观测点41天164个时段的预测值,整理成91×164矩阵,然后把预测矩阵和实测矩阵对应元素值相减取平方作残差平方和,再作平均误差,最后结果如下表5-6:由此可知,雨量预报方法一的准确性更高一些。

(2)针对问题2由问题1我们可以整理得到91个观测点41天的预测值和测量值对应的两个91×164矩阵,再根据问题2中气象部门将降雨的等级分为6个等级的分法,把矩阵中相应的降雨量值转化为其所对应等级值,其中,预测中的零全部记为0,得到两个预报等级矩阵,继续利用残差平方和以及平均误差来作为评价的标准。

残差平方和以及平均误差数值越小,表明预报越准确度越高,相应公众感受就越好。

由结果可知,预测方法一的准确度更高。

七、模型优化针对问题2,由于残差平方和与平均误差难以反映真实汇报的准确度,我们将模型改进优化。

由问题1我们可以整理得到91个观测点41天的预测值和测量值对应的两个91×164矩阵,再根据问题2中气象部门将降雨的等级分为6个等级的分法,把矩阵中相应的降雨量值转化为其所对应等级值,得到两个预报等级矩阵,将两个预报等级矩阵与实测等级矩阵做差值运算,得到两个等级差矩阵,对等级差作绝对值处理后,我们就可以从中进行等级差统计。

相关文档
最新文档