蓝宝石衬底

合集下载

蓝宝石衬底简介

蓝宝石衬底简介
蓝宝石衬底简介
外延部 2010-12-16
一.LED蓝宝石简介
蓝宝石的组成为氧化铝(Al2O3),是由三个氧原子和两 个铝原子以共价键型式结合而成,其晶体结构为六方晶格 结构.。具有耐高温、抗腐蚀、高硬度、熔点高(2045℃) 等特点。 目前超高亮度白/蓝光LED的品质取决于氮化镓磊晶 (GaN)的材料品质,而氮化镓磊晶品质则与所使用的蓝宝 石基板表面加工品质息息相关,蓝宝石(单晶Al2O3 )C面与 Ⅲ-Ⅴ和Ⅱ-Ⅵ族沉积薄膜之间的晶格常数失配率小,同时 符合GaN 磊晶制程中耐高温的要求,使得蓝宝石晶片成为 制作白/蓝/绿光LED的关键材料.
<10 μ m
0.20°±0.05
50.8± 0.05mm
16.0± 1mm
0°±0. 25°
<0.2nm
0.8~ 1.2μ m
科 瑞
430±15 μ m
<10 μ m
<10 μ m
<10 μ m
<10 μ m
0.20°±0.1
50.8± 0.1mm
16.0± ;0.2nm
0.5~ 1.0μ m
晶 美
430±15 μ m
<10 μ m
<10 μ m
<10 μ m
<15 μ m
0.20°±0.1
50.8± 0.25mm
16.0± 1.0mm
0°±0. 25°
<1nm
0.8~ 1.3μ m
谢 谢!
晶棒
机械加工
基片
定向:在切片机上准确定位蓝宝石晶棒的位置,以便于精准切片加工 切片:将蓝宝石晶棒切成薄薄的晶片 研磨:去除切片时造成的晶片切割损伤层及改善晶片的平坦度 倒角:将晶片边缘修整成圆弧状,改善薄片边缘的机械强度,避免应力集中造成缺陷 抛光:改善晶片粗糙度,使其表面达到外延片磊晶级的精度 清洗:清除晶片表面的污染物(如:微尘颗粒,金属,有机玷污物等) 品检:以高精密检测仪器检验晶片品质(平坦度,表面微尘颗粒等),以合乎客户要求

蓝宝石衬底折射率

蓝宝石衬底折射率

蓝宝石衬底折射率摘要:一、蓝宝石衬底简介二、蓝宝石衬底折射率的概念与计算三、蓝宝石衬底折射率在实际应用中的重要性四、提高蓝宝石衬底折射率的方法五、总结正文:蓝宝石衬底是一种具有高折射率的材料,广泛应用于光学领域。

蓝宝石衬底以其卓越的物理性能和稳定的化学性质在光学行业中占据重要地位。

本文将详细介绍蓝宝石衬底折射率的概念、计算方法以及在实际应用中的重要性,还将探讨如何提高蓝宝石衬底的折射率。

一、蓝宝石衬底简介蓝宝石衬底是一种由氧化铝(Al2O3)组成的无机非晶材料,具有高硬度、高熔点、高折射率等特点。

蓝宝石衬底在光学领域有着广泛的应用,如制作蓝宝石窗口、光学镜片等。

二、蓝宝石衬底折射率的概念与计算折射率是描述光在某种介质中传播速度与在真空中传播速度之比的一个物理量。

蓝宝石衬底的折射率与其材料性质、制备工艺等因素密切相关。

折射率的计算公式为:n = c / v,其中n为折射率,c为光在真空中的速度,v为光在蓝宝石衬底中的速度。

三、蓝宝石衬底折射率在实际应用中的重要性蓝宝石衬底的折射率对其在光学领域的应用具有重要意义。

高折射率意味着光在蓝宝石衬底中的传播速度较慢,这有助于提高光学器件的成像质量。

此外,折射率的不同还可以用于制作光栅、光开关等光学元件。

在实际应用中,蓝宝石衬底折射率的合理选择与优化有助于提高光学系统的性能。

四、提高蓝宝石衬底折射率的方法提高蓝宝石衬底折射率的方法主要有以下几点:1.优化制备工艺:采用高品质的制备工艺,如化学气相沉积、物理气相沉积等,以获得具有高折射率的蓝宝石衬底。

2.控制晶体生长:通过调整生长条件,如生长速率、生长方向等,实现蓝宝石衬底晶体结构的优化,提高折射率。

3.表面处理:对蓝宝石衬底进行表面处理,如抛光、清洗等,以降低表面粗糙度,减少光散射,提高折射率。

4.掺杂改性:通过向蓝宝石衬底中掺杂不同元素,如钛、氮等,改变其材料性质,提高折射率。

五、总结蓝宝石衬底折射率是衡量蓝宝石衬底性能的重要指标,其在光学领域的应用具有重要意义。

三种衬底材料比较

三种衬底材料比较

对于制作LED芯片来说,衬底材料的选用是首要考虑的问题。

应该采用哪种合适的衬底,需要根据设备和LED器件的要求进行选择。

目前市面上一般有三种材料可作为衬底:·蓝宝石(Al2O3)·硅 (Si)碳化硅(SiC)蓝宝石衬底通常,GaN基材料和器件的外延层主要生长在蓝宝石衬底上。

蓝宝石衬底有许多的优点:首先,蓝宝石衬底的生产技术成熟、器件质量较好;其次,蓝宝石的稳定性很好,能够运用在高温生长过程中;最后,蓝宝石的机械强度高,易于处理和清洗。

因此,大多数工艺一般都以蓝宝石作为衬底。

图1示例了使用蓝宝石衬底做成的LED芯片。

图1 蓝宝石作为衬底的LED芯片[/url]使用蓝宝石作为衬底也存在一些问题,例如晶格失配和热应力失配,这会在外延层中产生大量缺陷,同时给后续的器件加工工艺造成困难。

蓝宝石是一种绝缘体,常温下的电阻率大于1011Ω·cm,在这种情况下无法制作垂直结构的器件;通常只在外延层上表面制作n型和p型电极(如图1所示)。

在上表面制作两个电极,造成了有效发光面积减少,同时增加了器件制造中的光刻和刻蚀工艺过程,结果使材料利用率降低、成本增加。

由于P型GaN掺杂困难,当前普遍采用在p型GaN上制备金属透明电极的方法,使电流扩散,以达到均匀发光的目的。

但是金属透明电极一般要吸收约30%~40%的光,同时GaN基材料的化学性能稳定、机械强度较高,不容易对其进行刻蚀,因此在刻蚀过程中需要较好的设备,这将会增加生产成本。

蓝宝石的硬度非常高,在自然材料中其硬度仅次于金刚石,但是在LED器件的制作过程中却需要对它进行减薄和切割(从400nm减到100nm左右)。

添置完成减薄和切割工艺的设备又要增加一笔较大的投资。

蓝宝石的导热性能不是很好(在100℃约为25W/(m·K))。

因此在使用LED器件时,会传导出大量的热量;特别是对面积较大的大功率器件,导热性能是一个非常重要的考虑因素。

蓝宝石LED衬底工艺流程

蓝宝石LED衬底工艺流程

热导
衬底作为芯片散热的主要 通道,将芯片产生的热量 传导至外部。
光学特性
衬底对芯片的光学性能有 影响,如光的吸收、反射 和折射等。
LED衬底材料的种类
蓝宝石
常用作LED衬底材料,具有较高的硬度、化学稳定 性和高热导率。

具有高热导率、低成本和成熟的半导体制造工艺。
碳化硅
具有高热导率、高硬度、高化学稳定性和高抗腐 蚀性。
蓝宝石LED衬底工艺流程
• 引言 • LED衬底概述 • 蓝宝石LED衬底制备工艺流程 • 工艺流程中的关键技术 • 工艺流程中的问题与解决方案 • 结论
01
引言
主题简介
01
蓝宝石LED衬底是LED产业中的重 要组成部分,其工艺流程涉及多 个环节和关键技术。
02
蓝宝石LED衬底具有优异的光学 、热学和机械性能,广泛应用于 照明、显示、背光等领域。
晶体切割
将晶体切割成适当的大小 和形状,以满足后续加工 需求。
切割与研磨的关键技术
切片
抛光
使用刀片或激光将衬底切成适当的大 小。
通过抛光剂和抛光盘对衬底表面进行 抛光,以提高表面光洁度和平整度。
研磨
通过研磨剂和研磨盘对衬底表面进行 研磨,以去除切割痕迹和表面缺陷。
抛光处理的关键技术
选择性抛光
根据衬底表面的不同区域选择不 同的抛光参数,以实现局部抛光。
研究更精确的光刻技术
随着LED芯片尺寸的不断减小,需要更精确的光刻技术来制作更精细 的图案。
发展新型蓝宝石衬底材料
为了满足LED行业的发展需求,需要研究和发展新型蓝宝石衬底材料, 提高其性能和稳定性。
深入研究退火处理技术
退火处理对蓝宝石衬底的性能有很大影响,需要进一步深入研究退火 处理技术,优化退火工艺参数,提高蓝宝石衬底的性能。

2024年蓝宝石衬底市场发展现状

2024年蓝宝石衬底市场发展现状

蓝宝石衬底市场发展现状简介蓝宝石衬底是一种高品质的材料,广泛应用于光电子、半导体等领域。

随着科技的不断发展,蓝宝石衬底市场也迎来了快速增长。

本文将对蓝宝石衬底市场的发展现状进行综述,分析其市场规模、应用领域以及主要厂商等方面的情况。

市场规模蓝宝石衬底市场在过去几年里呈现出快速增长的趋势。

据市场研究公司的数据显示,蓝宝石衬底市场的年复合增长率达到了10%以上。

这主要得益于蓝宝石衬底在光电子、半导体等领域的广泛应用。

应用领域蓝宝石衬底在光电子、半导体等领域有着广泛的应用。

在光电子领域,蓝宝石衬底可用于制作LED(发光二极管)芯片,具有优异的光电性能和机械性能,被视为制作高亮度、高效率LED的最佳选择。

在半导体领域,蓝宝石衬底可用于制作集成电路和激光二极管等器件,具有优异的电学性能和热学性能。

主要厂商目前,蓝宝石衬底市场的竞争较为激烈,主要厂商包括:1.Rubicon Technology:作为蓝宝石衬底市场的领导者之一,RubiconTechnology在蓝宝石衬底领域拥有丰富的经验和技术优势。

公司的产品质量和稳定性备受市场认可。

2.Crystal Applied Technology:Crystal Applied Technology是一家蓝宝石衬底制造商,公司专注于研发和生产高质量的蓝宝石衬底产品。

公司拥有先进的生产设备和技术,能够满足不同客户的需求。

3.Monocrystal:Monocrystal是一家全球领先的蓝宝石衬底制造商,公司产品广泛应用于LED、光通信和半导体领域。

公司致力于提供高品质、高性能的蓝宝石衬底产品。

发展趋势随着LED技术的进一步发展,蓝宝石衬底市场将持续增长。

未来,随着5G等新兴技术的应用,对光电子和半导体领域的需求将进一步增加,这将为蓝宝石衬底市场带来更多机遇。

同时,随着技术的进步,蓝宝石衬底产品的性能将得到进一步提升,开拓更多应用领域。

结论总的来说,蓝宝石衬底市场在光电子、半导体等领域发展迅速,市场规模不断扩大。

LED用蓝宝石基板衬底详细介绍

LED用蓝宝石基板衬底详细介绍

未来展望
技术创新
随着科技的不断进步,蓝宝石基板衬底技术将不断突破, 提高晶体质量、降低成本、优化散热性能等方面将取得更 多进展。
市场需求增长
随着LED照明、显示等领域的快速发展,蓝宝石基板衬底 的市场需求将持续增长,为产业发展带来更多机遇。
产业链协同发展
蓝宝石基板衬底产业的发展需要与LED芯片、封装等环节 紧密合作,形成协同发展的产业链,共同推动LED产业的 进步。
LED用蓝宝石基板衬底详 细介绍
• LED与蓝宝石基板衬底概述 • LED用蓝宝石基板衬底的应用 • LED用蓝宝石基板衬底的特性 • LED用蓝宝石基板衬底的生产工艺 • LED用蓝宝石基板衬底的挑战与展望
01
LED与蓝宝石基板衬底概述
LED简介
01
02
03
LED简介
LED(Light Emitting Diode)是一种固态电子 器件,通过电流激发半导 体材料产生可见光。
抗氧化性
蓝宝石不易氧化,能够延 长LED的使用寿命。
环境适应性
蓝宝石可以在各种环境下 稳定工作,适应性强。
光学特性
高透光性
蓝宝石具有高透光性,能够让更 多的光线通过,从而提高LED的
亮度和发光效率。
抗光反射
蓝宝石具有很好的抗光反射性能, 可以减少光线的散射和反射,提
高LED的出光效果。
色彩稳定性
蓝宝石的折射率和色散性能稳定, 能够保证LED的色彩稳定性。
市场挑战
成本压力
蓝宝石基板作为高端LED芯片的衬底材料,成本较高,需要不断 降低生产成本以适应市场需求。
竞争激烈
随着LED市场的竞争加剧,蓝宝石基板衬底面临着来自其他材料的 竞争压力,如硅基、碳化硅基等。

蓝宝石衬底详细介绍

蓝宝石衬底详细介绍

图9:纳米图案化蓝宝石基板图
3:R-Plane或M-Plane蓝宝石基板
通常,C面蓝宝石衬底上生长的GaN薄膜是沿着其极性轴即c轴方向生长的, 薄膜具有自发极化和压电极化效应,导致薄膜内部(有源层量子阱)产生强 大的内建电场,(Quantum Confine Stark Effect, QCSE;史坦克效应)大 大地降低了GaN薄膜的发光效率. 在一些非C面蓝宝石衬底(如R面或M 面) 和其他一些特殊衬底(如铝酸锂;LiAlO2 )上生长的GaN薄膜是非极性和半极 性的,上述由极化场引起的在发光器件中产生的负面效应将得到部分甚至 完全的改善.传统三五族氮化物半导体均成长在c-plane 蓝宝石基板上,若 把这类化合物成长于R-plane 或M-Plane上,可使产生的内建电场平行于 磊晶层,以增加电子电洞对复合的机率。因此,以氮化物磊晶薄膜为主的 LED结构成长R-plane 或M-Plane蓝宝石基板上,相比于传统的C面蓝宝石 磊晶,将可有效解决LED内部量子效率效率低落之问题,并增加元件的发光 强度。最新消息据称非极性LED能使白光的发光效率提高两倍.
出纳米级特定规则的微结构图案藉以控制LED之输出光形式,并可同 时减少生长在蓝宝石基板上GaN之间的差排缺陷,改善磊晶质量,并 提升LED内部量子效率、增加光萃取效率。
1:C-Plane蓝宝石基板
C-Plane蓝宝石基板是普遍使用的蓝宝石基板.1993年日本的赤崎勇教授 与当时在日亚化学的中村修二博士等人,突破了InGaN 与蓝宝石基板 晶格不匹配(缓冲层)、p 型材料活化等等问题后,终于在1993 年 底日亚化学得以首先开发出蓝光LED.以后的几年里日亚化学以蓝宝石 为基板,使用InGaN材料,通过MOCVD 技术并不断加以改进蓝宝石基板 与磊晶技术,提高蓝光的发光效率,同时1997年开发出紫外LED,1999 年蓝紫色LED样品开始出货,2001年开始提供白光LED。从而奠定了日 亚化学在LED领域的先头地位.

蓝宝石衬底用途

蓝宝石衬底用途

蓝宝石衬底用途蓝宝石衬底是一种广泛应用于科技领域的材料,具有多种用途和优势。

本文将介绍蓝宝石衬底的特性、应用领域以及未来发展趋势。

蓝宝石衬底具有优异的物理和化学性质。

它的硬度非常高,仅次于金刚石,因此具有出色的耐磨性和耐腐蚀性。

此外,蓝宝石衬底具有良好的热导性和电绝缘性能,使其成为制造高性能电子器件的理想选择。

蓝宝石衬底在光电子领域有着广泛的应用。

由于其晶体结构的特殊性质,蓝宝石衬底能够提供优异的光学性能。

它具有高透明度和低自发光特性,使其成为制造激光器、LED和光电探测器等器件的理想基底材料。

此外,蓝宝石衬底还可以用于制造光学窗口、光学镜片和光学纤维等光学元件。

除了光电子领域,蓝宝石衬底还在半导体领域发挥着重要作用。

由于其晶格结构的稳定性和高纯度的特性,蓝宝石衬底被广泛应用于制造集成电路和功率器件。

它可以作为衬底材料,提供良好的晶体生长平台,用于制备高质量的半导体薄膜。

此外,蓝宝石衬底还可以用于制造高频电子器件和微波器件,具有优异的高温稳定性和低损耗特性。

蓝宝石衬底还在生物医学领域展现出巨大潜力。

由于其生物相容性和抗腐蚀性能,蓝宝石衬底可以用于制造生物传感器、人工关节和植入式医疗器械等。

它的高透明度和低自发光特性也使其成为显微镜镜片和光学探针的理想选择。

未来,随着科技的不断进步,蓝宝石衬底的应用领域将进一步扩展。

例如,蓝宝石衬底可以用于制造高效能太阳能电池,提高太阳能转换效率。

此外,蓝宝石衬底还可以用于制造高功率电子器件,满足日益增长的能源需求。

同时,蓝宝石衬底在量子技术和纳米技术领域也有着广阔的应用前景。

蓝宝石衬底作为一种优异的材料,在光电子、半导体和生物医学领域具有广泛的应用。

随着科技的不断发展,蓝宝石衬底的应用前景将更加广阔。

相信在不久的将来,蓝宝石衬底将继续发挥重要作用,推动科技进步和社会发展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

蓝宝石衬底展开对于制作LED芯片来说,衬底材料的选用是首要考虑的问题。

应该采用哪种合适的衬底,需要根据设备和LED器件的要求进行选择。

目前市面上一般有三种材料可作为衬底:〃蓝宝石(Al2O3)、硅(Si)、碳化硅(Sic)蓝宝石衬底通常,GaN基材料和器件的外延层主要生长在蓝宝石衬底上。

蓝宝石衬底有许多的优点:首先,蓝宝石衬底的生产技术成熟、器件质量较好;其次,蓝宝石的稳定性很好,能够运用在高温生长过程中;最后,蓝宝石的机械强度高,易于处理和清洗。

因此,大多数工艺一般都以蓝宝石作为衬底。

使用蓝宝石作为衬底也存在一些问题,例如晶格失配和热应力失配,这会在外延层中产生大量缺陷,同时给后续的器件加工工艺造成困难。

蓝宝石是一种绝缘体,常温下的电阻率大于1011Ω〃cm,在这种情况下无法制作垂直结构的器件;通常只在外延层上表面制作n型和p型电极(如图1所示)。

在上表面制作两个电极,造成了有效发光面积减少,同时增加了器件制造中的光刻和刻蚀工艺过程,结果使材料利用率降低、成本增加。

由于P型GaN掺杂困难,当前普遍采用在p型GaN上制备金属透明电极的方法,使电流扩散,以达到均匀发光的目的。

但是金属透明电极一般要吸收约30%~40%的光,同时GaN基材料的化学性能稳定、机械强度较高,不容易对其进行刻蚀,因此在刻蚀过程中需要较好的设备,这将会增加生产成本。

蓝宝石的硬度非常高,在自然材料中其硬度仅次于金刚石,但是在LED器件的制作过程中却需要对它进行减薄和切割(从400μm减到100μm左右)。

添置完成减薄和切割工艺的设备又要增加一笔较大的投资。

蓝宝石的导热性能不是很好(在100℃约为25W/(m〃K))。

因此在使用LED器件时,会传导出大量的热量;特别是对面积较大的大功率器件,导热性能是一个非常重要的考虑因素。

为了克服以上困难,很多人试图将GaN光电器件直接生长在硅衬底上,从而改善导热和导电性能。

硅衬底目前有部分LED芯片采用硅衬底。

硅衬底的芯片电极可采用两种接触方式,分别是L接触(Laterial-contact ,水平接触)和 V接触(Vertical-contact,垂直接触),以下简称为L型电极和V型电极。

通过这两种接触方式,LED芯片内部的电流可以是横向流动的,也可以是纵向流动的。

由于电流可以纵向流动,因此增大了LED的发光面积,从而提高了LED的出光效率。

因为硅是热的良导体,所以器件的导热性能可以明显改善,从而延长了器件的寿命。

碳化硅衬底碳化硅衬底(美国的CREE公司专门采用SiC材料作为衬底)的LED芯片电极是L型电极,电流是纵向流动的。

采用这种衬底制作的器件的导电和导热性能都非常好,有利于做成面积较大的大功率器件。

采用碳化硅衬底的LED芯片如图2所示。

[url=/upload/zhishi/200803/20080329082643z5.jpg]图2 采用蓝宝石衬底与碳化硅衬底的LED芯片[/url]碳化硅衬底的导热性能(碳化硅的导热系数为490W/(m〃K))要比蓝宝石衬底高出10倍以上。

蓝宝石本身是热的不良导体,并且在制作器件时底部需要使用银胶固晶,这种银胶的传热性能也很差。

使用碳化硅衬底的芯片电极为L型,两个电极分布在器件的表面和底部,所产生的热量可以通过电极直接导出;同时这种衬底不需要电流扩散层,因此光不会被电流扩散层的材料吸收,这样又提高了出光效率。

但是相对于蓝宝石衬底而言,碳化硅制造成本较高,实现其商业化还需要降低相应的成本。

三种衬底的性能比较前面的内容介绍的就是制作LED芯片常用的三种衬底材料。

这三种衬底材料的综合性能比较可参见表1。

除了以上三种常用的衬底材料之外,还有GaAS、AlN、ZnO等材料也可作为衬底,通常根据设计的需要选择使用。

衬底材料的评价1.衬底与外延膜的结构匹配:外延材料与衬底材料的晶体结构相同或相近、晶格常数失配小、结晶性能好、缺陷密度低;2.衬底与外延膜的热膨胀系数匹配:热膨胀系数的匹配非常重要,外延膜与衬底材料在热膨胀系数上相差过大不仅可能使外延膜质量下降,还会在器件工作过程中,由于发热而造成器件的损坏;3.衬底与外延膜的化学稳定性匹配:衬底材料要有好的化学稳定性,在外延生长的温度和气氛中不易分解和腐蚀,不能因为与外延膜的化学反应使外延膜质量下降;4.材料制备的难易程度及成本的高低:考虑到产业化发展的需要,衬底材料的制备要求简洁,成本不宜很高。

衬底尺寸一般不小于2英寸。

当前用于GaN基LED的衬底材料比较多,但是能用于商品化的衬底目前只有两种,即蓝宝石和碳化硅衬底。

其它诸如GaN、Si、ZnO衬底还处于研发阶段,离产业化还有一段距离。

氮化镓:用于GaN生长的最理想衬底是GaN单晶材料,可以大大提高外延膜的晶体质量,降低位错密度,提高器件工作寿命,提高发光效率,提高器件工作电流密度。

但是制备GaN体单晶非常困难,到目前为止还未有行之有效的办法。

氧化锌:ZnO之所以能成为GaN外延的候选衬底,是因为两者具有非常惊人的相似之处。

两者晶体结构相同、晶格识别度非常小,禁带宽度接近(能带不连续值小,接触势垒小)。

但是,ZnO作为GaN外延衬底的致命弱点是在GaN外延生长的温度和气氛中易分解和腐蚀。

目前,ZnO半导体材料尚不能用来制造光电子器件或高温电子器件,主要是材料质量达不到器件水平和P型掺杂问题没有得到真正解决,适合ZnO基半导体材料生长的设备尚未研制成功。

蓝宝石:用于GaN生长最普遍的衬底是Al2O3。

其优点是化学稳定性好,不吸收可见光、价格适中、制造技术相对成熟。

导热性差虽然在器件小电流工作中没有暴露明显不足,却在功率型器件大电流工作下问题十分突出。

碳化硅:SiC作为衬底材料应用的广泛程度仅次于蓝宝石,目前还没有第三种衬底用于GaNLED的商业化生产。

SiC衬底有化学稳定性好、导电性能好、导热性能好、不吸收可见光等,但不足方面也很突出,如价格太高,晶体质量难以达到Al2O3和Si那么好、机械加工性能比较差,另外,SiC衬底吸收380纳米以下的紫外光,不适合用来研发380纳米以下的紫外LED。

由于SiC衬底有益的导电性能和导热性能,可以较好地解决功率型GaNLED器件的散热问题,故在半导体照明技术领域占重要地位。

同蓝宝石相比,SiC与GaN外延膜的晶格匹配得到改善。

此外,SiC具有蓝色发光特性,而且为低阻材料,可以制作本报讯 10月11日上午,天通公司晶体事业部的高洁净级蓝宝石衬底加工车间,来自北京的专家正在对蓝宝石衬底质量管理体系进行审查。

这是天通4英寸LED蓝宝石衬底材料项目今年试产成功后,首次接受ISO质量体系审查。

“目前,该项目的试生产已经完成,合格率达80%以上。

”公司总裁助理、LED晶体事业群负责人段金柱告诉记者,这段时间企业正在积极进行生产调试,争取早日进入规模化量产。

据介绍,蓝宝石晶体材料市场前景十分广阔。

不仅能应用于LED产业,还可以作为微电子、光电子器件的外延基片,传感器(温度、压力)敏感元件的衬底,可以做成不同尺寸和型面的单模、双模、多模光电窗口和整流罩,应用于军工领域,可以作为各种耐压、耐磨件、轴承、密封件等用于各种精密装备中,还可应用于高端手表表面、手机屏幕及便携式电子设备屏幕等。

然而国内在单晶生产工艺上日渐成熟,但在后续精密加工技术上仍与国外差距较大,大尺寸高端产品还是主要依赖于进口。

2010年,天通经过充分的论证,积极布局LED蓝宝石衬底生产项目。

“公司一直致力于关键基础材料的开发制造,在材料生产研发领域有着独特的优势,是全国最大的磁性材料生产企业之一,主要客户有飞利浦、欧司朗、三星、LG、索尼、松下等,而蓝宝石是LED产业的关键上游材料,高端客户资源与磁性材料重叠,公司具有客户资源平台发展优势。

”段金柱说,两年来,天通在引进日本先进蓝宝石长晶技术及衬底切磨抛技术的基础上,进行了一系列技术创新及超越,形成了一套具有国际先进水平的大尺寸、高品质蓝宝石衬底生产线,并利用公司客户资源平台积极拓展欧、美、日、韩高端市场。

在天通公司的晶体生产车间,20多台从日本引进的长晶炉正在运行,“为了掌握好这一关键技术,公司专门选派了7位技术骨干去日本学习,并专门聘请了2位国际知名专家常住海宁,帮助我们一同攻克技术难关。

”段金柱介绍。

在生产车间外的陈列柜里,摆放着天通自主生产的高品质70千克蓝宝石晶锭及衬底。

“从2英寸到6英寸不同型号的衬底,天通均能自主生产,尤其是6英寸衬底成功填补了我国大尺寸LED 蓝宝石衬底国产化的空白。

”段金柱告诉记者。

随着生产工艺的日渐成熟,天通的LED蓝宝石衬底产品合格率不断提升,其产品也获得了市场的认可。

就在采访的当天,段金柱就接到了来自河北的一位重要客户的来电,被告知其产品在试样中顺利通过。

“目前,我们的产品已得到4家客户的认可,其中包括军工企业,也有国外的特种产品生产企业,此外,之前送样的国内外高端客户正在陆续进行产品认证中。

”段金柱表示。

今年以来,蓝宝石衬底生产设备及衬底材料产品价格大幅下降,天通公司重新调整了该项目的产能以及经济效益,在原投资3.6亿元规模不变的前提下,通过技术创新及设备的优化升级,大幅增大了产能,将该项目升级为“年产115万片4英寸LED蓝宝石衬底技改项目”。

项目建成后,预计新增年均销售收入2.97亿,相当于2011年公司营业收入的22%。

LED用蓝宝石基板(衬底)简介.2.1 CZ法(直拉法) 112.2.2 泡生法(Kyropoulos;KY法) 122.2.3 热交换器长晶法(HEM) 132.2.4 导模法 (Edge-defined Film-fed Growth;EFG)一、蓝宝石介绍蓝宝石的组成为氧化铝(Al2O3),是由三个氧原子和两个铝原子以共价键型式结合而成,其晶体结构为六方晶格结构。

它常被应用的切面有A-Plane,C-Plane及R-Plane.由于蓝宝石的光学穿透带很宽,从近紫外光(190nm)到中红外线都具有很好的透光性.因此被大量用在光学元件、红外装置、高强度镭射镜片材料及光罩材料上,它具有高声速、耐高温、抗腐蚀、高硬度、高透光性、熔点高(2045℃)等特点,它是一种相当难加工的材料,因此常被用来作为光电元件的材料。

目前超高亮度白/蓝光LED的品质取决于氮化镓磊晶(GaN)的材料品质,而氮化镓磊晶品质则与所使用的蓝宝石基板表面加工品质息息相关,蓝宝石(单晶Al2O3 )C面与Ⅲ-Ⅴ和Ⅱ-Ⅵ族沉积薄膜之间的晶格常数失配率小,同时符合GaN 磊晶制程中耐高温的要求,使得蓝宝石芯片成为制作白/蓝/绿光LED 的关键材料。

下图则分别为蓝宝石的切面图;晶体结构图上视图;晶体结构侧视图;Al2O3分之结构图;蓝宝石结晶面示意图:最常用来做GaN磊晶的是C面(0001)这个不具极性的面,所以GaN的极性将由制程决定(a)图从C轴俯看 (b)图从C轴侧看二、蓝宝石晶体的生长方法蓝宝石晶体的生长方法常用的有两种:1、柴氏拉晶法(Czochralski method),简称CZ法.先将原料加热至熔点后熔化形成熔汤,再利用一单晶晶种接触到熔汤表面,在晶种与熔汤的固液界面上因温度差而形成过冷。

相关文档
最新文档