金属材料的组织结构

合集下载

金属材料的结构与组织纯金属的晶体结构金属

金属材料的结构与组织纯金属的晶体结构金属

3.气相
气相是陶瓷内部残留的孔 洞,其成因复杂,影响因素 多。陶瓷根据气孔率分为致 密陶瓷、无开孔陶瓷和多孔 陶瓷。除多孔陶瓷外,气孔 对陶瓷的性能不利,它降低 了陶瓷的强度,常常是造成 裂纹的根源(图2-28),所以 应尽量降低气孔率。一般普 通陶瓷的气孔率为5 %~10% ; 特种陶瓷在5 %以下;金属陶 瓷则要求低于0.5 %。
• 根据溶质原子在溶剂中所处位置不同,固溶体可分为间隙 固溶体和置换固溶体两大类。 (1)间隙固溶体 如图2-10(a)所示。 (2)置换固溶体 如图2-10(b)所示。
图2-10 晶格结构模型
2.1.4 金属材料的组织
1.组织的概念 2.组织的决定因素 3.组织与性能的关系 • 不同组织结构的材料具有不同的性能
图2-18为高聚物在不同加载速度时的应力应变。高聚 物大都服从这种规律。
图2-17 非晶态高聚物在不同温度时的图2-18 高聚物在不同加载速度时的
应力-应变曲线
应力-应变曲线
黏弹性:应变与应力同步发生,或应变与应力同时 达到平衡,如图2-19(a)所示。
应变不仅决定于应力,而且决定于应力作用的速 率。即应变不随作用力即时建立平衡,而有所滞后, 如图2-19(b)所示。
综上所述,金 属材料的成分、 工艺、组织结构 和性能之间有着 密切的关系。
图2-11 两种晶粒大小不同的纯铁示意图
2.2 高分子材料的结构与性能
• 2.2.1 高分子材料的结构 • 1.大分子链的构成 • (1)化学组成 • 组成大分子链的化学元素,主要是碳、氢、氧,
另外还有氮、氯、氟、硼、硅、硫等,其中碳是 形成大分子链的主要元素。 • 大分子链根据组成元素不同可分为三类,即碳链 大分子、杂链大分子和元素链大分子。

金属材料中的微观组织与力学性能的关系

金属材料中的微观组织与力学性能的关系

金属材料中的微观组织与力学性能的关系随着科技的不断发展,人类对金属材料的认识也越来越深入。

金属材料被广泛应用于各行各业,例如建筑、汽车、电子、医疗等领域。

金属材料的力学性能是决定其能否被应用的关键。

而微观组织是影响金属材料力学性能的重要因素之一。

一、微观组织对金属材料力学性能的影响微观组织是指金属材料中的晶粒结构、晶界、缺陷等微观结构。

这些微观结构对金属材料的力学性能有着重要的影响。

首先,晶粒尺寸对金属材料的力学性能有着显著的影响。

晶粒尺寸越小,金属材料的强度和硬度越高,而塑性和韧性则降低。

这是因为晶粒越小,晶界面积增大,融合力增加,从而导致材料的强度和硬度增加,但同时也会抑制材料的可塑性。

其次,晶界对金属材料的力学性能也有着较大的影响。

晶界是相邻晶粒之间的界面,其结构和性质与晶粒内部不同。

晶界的存在会导致灰分、孔隙及晶粒的变形行为发生变化,从而影响金属材料的力学性能。

通常情况下,晶界的能量大于晶内,晶界会限制材料的塑性变形,从而降低金属材料的韧性。

最后,缺陷对金属材料的力学性能也有着显著的影响。

缺陷是指材料内部存在的各种缺陷、气孔、裂缝等。

这些缺陷通常会使金属材料的强度下降,韧性降低。

二、微观组织的调控为了获得更优异的力学性能,需要对金属材料的微观组织进行调控。

常用的方法如下:首先,通过合理的热处理工艺,可以有效地控制晶粒尺寸和分布。

晶粒尺寸的调节可通过热处理前后金属的冷却速率和温度控制。

例如,快速淬火可以使晶粒尺寸变小,而慢速冷却则可使晶粒尺寸变大。

其次,可以通过合理的成分设计来改变金属材料的晶界特性。

增加合金元素的含量可以有效地控制晶界能量,从而改变晶界对材料的影响。

同时,添加一定量的微合金元素如铌、钛等可以细化晶粒,增强材料的强度和硬度。

最后,适当的交变变形可消除材料中的缺陷,改善金属材料的力学性能。

交变变形可以促进晶界滑移和形变,从而增加金属材料的强度和韧性。

三、结语微观组织是影响金属材料力学性能的重要因素之一。

金属材料的微观结构与力学性能

金属材料的微观结构与力学性能

金属材料的微观结构与力学性能金属材料是我们日常生活中经常使用到的一种重要材料,它的力学性能直接决定着其使用价值。

然而,金属材料的微观结构是影响其力学性能的重要因素之一。

因此,了解金属材料的微观结构对于挖掘其潜力具有重要意义。

一、金属材料的组织结构金属材料的组织结构分为三个层次:微观结构、中观结构和宏观结构。

微观结构是由晶体组成的,晶体是由不同的结构单元组成的,包括晶粒、晶界、孪晶等。

中观结构是由晶粒的排列和分布组成的,如晶粒大小、晶粒形状、晶粒取向等。

宏观结构是由各种中观结构构成的,如晶体的尺寸、形状和排列方式等。

晶体是金属材料微观结构的最基本单位,在晶体内部原子是有规律地排列的。

金属材料中晶体是以多面体、圆柱体或板状的形式存在,晶体的大小和形状不同会对金属材料的力学性能产生影响。

晶体的组成通常是由多个原子经过排列形成的,晶体中的原子排列方式和结构不同会影响其力学性能。

此外,晶粒的界面处被称为晶界,晶界的稳定性及其形态对整个材料的力学性能有很大的影响。

二、微观结构对金属材料力学性能的影响1. 晶界影响材料力学性能的强度和韧性,晶界处的塑性变形是材料发生塑性时的一种重要机制,晶界出现裂纹和断裂是材料出现断裂的重要原因之一。

因此,优化金属材料晶界的形态和结构,提高其稳定性,有利于提高材料的整体机械性能。

2. 晶体取向对金属材料力学性能的影响很大。

晶体的取向是指对于某一个方向而言晶体内排列原子的方向性质。

晶体取向的不同会对力学性能产生不同的影响,大多数材料具有各向同性,但某些材料的微观结构有规则地定向排列,称为各向异性。

所有具有各向异性的材料都有一定的单向性质,也就是在某一个方向有更大的强度或韧性。

3. 晶粒的大小和形状对材料的力学性能产生重要影响。

晶粒尺寸大,晶体脆性相对较强,而晶粒尺寸小,其塑性会相对增强。

晶粒形状也会影响晶体的塑性变形,如晶粒呈多面体形状的金属材料相对具有更好的塑性特性。

4. 孪晶结构是一种经常出现在晶体中的微观结构,孪晶结构对于金属材料的塑性行为和断裂行为有重要影响。

金属材料显微组织图谱

金属材料显微组织图谱

金属材料显微组织图谱(共42个图谱)图谱01、不锈钢中的位错线:图谱02、铁碳合金的室温平衡组织(0.01%C ):(纯铁的室温平衡组织)铁素体 w ww .b zf x w .c om铁素体+珠光体图谱04、铁碳合金的室温平衡组织(0.77%C ):(T8钢的室温平衡组织)珠光体w ww .b zf xw .c om珠光体+二次渗碳体图谱06、球状珠光体:(T12钢的球化退火组织)球状珠光体w ww .b zf xw .c om图谱07、灰口铸铁的组织(一):(灰口铸铁的显微组织)铁素体+片状石墨 铁素体+珠光体+片状石墨 珠光体+片状石墨图谱08、灰口铸铁的组织(二):铁素体和团絮状石墨w ww .b zf xw .c om图谱09、灰口铸铁的组织(三):铁素体和球状石墨图谱10、陶瓷在室温下的组织:w ww .b zf xw .c om图谱11、W18Cr4V钢离子氮碳共渗+离子渗硫复合处理渗层组织:图谱12、共晶合金组织的形态:w ww .b zf xw .c om图谱13、亚共晶合金组织的形态:图谱14、过共晶合金组织的形态:w ww .b z f xw .c om图谱15、共析钢的室温组织:图谱16、共晶白口铸铁室温平衡组织:图谱17、亚共晶白口铸铁室温平衡组织:w ww .b zf xw .c om图谱18、过共晶白口铸铁室温平衡组织:图谱19、珠光体型组织:图1 珠光体 放大3800倍图2 索氏体 放大8000倍w w w .b z f xw .c om图3 屈氏体 放大8000倍图谱20、上贝氏体形态:图1 光学显微照片 放大500倍图2 电子显微照片 放大5000倍w ww .b zf xw .c om图谱21、下贝氏体形态:图1 光学显微照片 放大500倍图2 电子显微照片 放大12000倍图谱22、低碳马氏体的组织形态:w ww .b zf xw .c om图谱23、高碳马氏体的组织形态:图谱24、铸锭结构:(1) 细晶区; (2)柱状晶区; (3)等轴晶区w ww .b z f xw .c om图谱25、回火索氏体:图谱26、低碳钢渗碳缓冷后的显微组织:图谱27、38CrMoAl 钢氮化层的显微组织:w ww .b zf x w .c om图谱28、球墨铸铁的显微组织:图谱29、蠕墨铸铁的显微组织:图谱30、可锻铸铁的显微组织:w ww .b z f xw .c om图谱31、ZL102合金的铸态组织(一):未变质处理图谱32、ZL102合金的铸态组织(二):变质处理后w ww .b zf xw .c om图谱33、铜锌合金的显微组织(一):单相黄铜图谱34、铜锌合金的显微组织(二):双相黄铜w ww .b zf xw .c om图谱35、Ti-6Al-4V 合金时效处理后的显微组织:图谱36、GCr15钢淬火、回火后的显微组织:w w w .b zf x w .c om图谱37、ZChSnSb11-6轴承合金的显微组织:图谱38、高速钢淬火、回火后的组织:()w ww .b z f xw .c om图谱39、钨纤维铜基复合材料中的裂纹在铜中扩展受阻:图谱40、碳纤维环氧树脂复合材料断裂时纤维断口电子扫描照片:图谱41、韧性断裂断口:(韧窝)w ww .b zf xw .c om图谱42、脆性断裂断口:(河流花样)(全文完)w ww .b zf xw .c om。

金属材料的结构与结晶

金属材料的结构与结晶

只有当溶质原子尺寸较小,溶剂晶格间隙较大时
才能形成间隙固溶体。
例:Fe和C形成间隙固溶体。
间隙固溶体溶解的溶质数量是有限的。
图2-12(b)
图2-12(a)
(2)臵换固溶体:溶质原子占据晶格结点位臵而形 成的固溶体。 (图2-12b)
两组元原子尺寸相近时,易形成臵换固溶体。可形
成有限固溶体和无限固溶体。 例:Cr和Ni等合金元素溶入铁中形成的固溶体为臵
立方晶格中的某些晶面立方晶格中的某些晶面100100面面110110面面111111面面立方晶格中的某些晶向立方晶格中的某些晶向111111向向110110向向在同一晶格的不同晶面和晶向上原子排列的疏密在同一晶格的不同晶面和晶向上原子排列的疏密不同因此原子结合力也就不同从而在不同的不同因此原子结合力也就不同从而在不同的晶面和晶向上显示出不同的性能这就是晶体具晶面和晶向上显示出不同的性能这就是晶体具有各向异性的原因
1.晶格:描述原子在晶体中排列方式的空间几何格架。 2.晶胞:反映晶格特征的最小单元。
3. 晶格参数:
晶胞棱边的长度和棱边夹角α、β、γ。
4. 三种典型的金属晶体结构 面心立方晶格、体心立方晶格、密排六方晶格。 面心立方晶格类型的金属有Cu、Al、Ni等,具有良
好的塑性; 密排六方晶格的金属有 Mg、Zn、Be等
Fe3C组成的机械混合物。
机械混合物的性质,基本上是各组成相性能的
平均值。
35 钢的显微组织
机械混合物P
将黑色部分放大,看到指纹状结构。其中白色
基体是Fe与C形成的固溶体, 含碳0.0218% 体 心立方晶格(称为铁素体F), 黑色条纹为 渗
碳体(Fe3C)。
黑色部分是F与Fe3C形成的机械混合物,称为

金属材料的组织结构

金属材料的组织结构

金属材料的组织结构晶体结构是金属材料中最基本的组织结构。

金属材料的晶体结构是由原子通过化学键的方式排列而成的。

金属晶体结构通常为紧密堆积或者是面心立方结构。

紧密堆积的晶体结构中,原子分布紧密,没有空隙,金属的密度较高。

而面心立方结构中,每个原子周围都有最靠近的三个原子,因此,金属的面心立方结构也是最密堆积的结构之一、晶体结构的不同将导致金属的性能也有所不同。

晶粒结构是金属材料中相当重要的组织结构。

晶粒是由具有相同晶体结构的晶体单元构成的。

在金属材料加工过程中,晶粒会逐渐生长,最终形成多个晶粒相邻而不连续的结构。

晶粒的大小和形状对金属的性能非常重要。

晶粒尺寸越大,金属的强度就越低,但是其塑性和韧性会增加;而当晶粒尺寸较小时,金属的强度会提高,但是韧性和塑性会降低。

晶粒形状的不均衡也会对金属的性能产生重要影响。

晶粒中的缺陷(如晶界、孪晶等)也会影响金属的强度和韧性。

相结构是金属材料中不同组分的混合结构。

金属材料可以由一个或者多个相组成。

相是指具有相同化学成分和结构的区域。

在金属材料中,不同相之间的晶粒大小和分布状态也会影响材料的性能。

例如,在金属合金中,可以通过控制相的种类和分布来调节材料的硬度、强度、抗腐蚀性等性能。

除了上述的基本组织结构外,金属材料中还存在一些其他的组织结构,如晶体缺陷、析出物和纹理等。

晶体缺陷是指晶体中的缺陷或者杂质。

晶体缺陷的种类包括点缺陷(如空位、间隙原子等)、线缺陷(如晶界、位错等)和面缺陷(如孪晶界等)。

晶体缺陷会影响金属的力学性能和电学性能。

析出物是金属中的第二相,它们通过固溶度和固相反应形成。

析出物的尺寸和形状也会影响材料的性能。

纹理是指金属材料中晶粒的方向分布,它会对材料的机械性能、磁性能等产生影响。

综上所述,金属材料的组织结构对其性能和用途有着重要影响。

晶体结构、晶粒结构和相结构是金属材料的基本组织结构。

晶体结构决定了金属的原子排列方式,晶粒结构影响金属的强度和韧性,相结构调节金属的性能调节。

金属材料的结构与组织

金属材料的结构与组织
晶界在空间中呈网状 晶粒1 晶界 晶粒2
晶界结构示意图
晶界原子排列示意图
亚晶界 亚晶粒之间的边界(过 渡区),也称小角度晶界。它也 是一种原子排列不太规则的区域. 亚晶界是位错规则排列的结构。
例如,亚晶界可由位错垂直排列 成位错墙而构成。
亚晶界
• 面缺陷处的晶格畸变较大,界面处能量高,影响范围
也较大。因此,晶界具有与晶粒内部不同的特性。
冷却曲线中出现水平线段,是因为 结晶时放出大量的结晶潜热,补偿 了金属向周围散失的热量。
纯金属冷却曲线
2.2 金属结晶过程
液态金属向固态转变经历形成晶核和晶核长大两个过
程。首先在液态金属中形成极小的晶体——晶核作为 结晶中心。此后,已形成的晶核不断长大,同时又不 断产生新的晶核并长大,直至液相完全消失。每个晶 核长大成为一个晶粒。
1.3 实际金属的晶体结构 实际金属的晶体结构与理想晶体的结构不同。实际金 属是由很多结晶位向不同的小晶体(即晶粒)组成, 晶粒内晶体的位向不同。 一般金属都是多晶体。晶粒之间的分界面称为晶界。
1Cr17不锈钢的多晶体
1. 单晶体与多晶体 • 单晶体:内部晶格位向完全一致的晶体(理想晶体)。 如单晶Si半导体。
溶剂原子
溶质原子
溶质在间隙固溶体的溶解是有限的,故都是有限固溶体。 间隙固溶体中,溶质原子的排列是无序的,所以也都是无 序固溶体。
置换固溶体
溶质原子代替溶剂原子占据着溶剂晶
格结点位置而形成的固溶体。 置换固溶体又可分为两类:
• 显微组织 在显微镜下看到的相和晶粒的形态、大小与分布。
3.2 合金的相结构
合金的相结构分为固溶体和金属化合物两大类。 1. 固溶体 合金组元通过溶解形成的一种成分和性能均匀、且 结构与组元之一相同的固相,称为固溶体。 与固溶体晶格相同的组元为溶剂,一般在合金中含 量较多;另一组元为溶质,含量较少。 合金在固态下溶质原子溶入溶剂而形成的一种与溶 剂有相同晶格的相,称为固溶体。 固溶体的重要标志是它仍保持溶剂晶格。固溶体用α、 β、γ等符号表示。

清华大学工程材料第五版第一章

清华大学工程材料第五版第一章
晶胞
老师提示 不同元素组成的金属晶体因晶格形 式及晶格常数的不同,表现出不同的物理、 化学和力学性能。金属的晶体结构可用X射线 结构分析技术进行测定。
精品课件
一、三种常见的金属晶体结构
☆ 老师提示:重点内容
1. 体心立方晶格(胞) ( BCC 晶格)
8个原子处于立方体的角上,1个原子处于 立方体的中心, 角上8个原子与中心原子紧靠。
精品课件
若两个晶向的全部指数数值相同而符
号相反, 则它们相互平行或为同一原子列,
但方向相反。
如[110]与

若只研究原子排列情况, 则晶向[110]

可用同一个指数[110]表示。
精品课件
晶向族 原子排列情况相同而在空间位向不 同的晶向组成晶向族。
晶向族用尖括号表示, 即<uvw>。
如: <100> = [100] + [010] + [001]
晶面族用大括号表示, 即{hkl}。
在立方晶胞中
组成{111}晶面族:
精品课件
{111} 晶面族
2. 立方晶系的晶向表示方法
以晶向DA为例:
精品课件
晶向OA : [100] 晶向OB : [110] 晶向OB’ :[111]
立方晶胞中的主要晶向
晶向指数一般标记为[uvw],
表示一组原子排列相同的平行晶向。
精品课件
在立方晶系中, 一个晶面指数与 一个晶向指数数值和符号相同时, 则 该晶面与该晶向互相垂直。
如:(111)⊥[111]。
晶面与晶向互相垂直
精品课件
3. 六方晶系的晶面指数和 晶向指数
四指数方法表示晶面和晶向。
水平坐标轴选取互相成120°
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金属材料的组织结构
➢教学目的与要求:
➢ 1.了解金属结晶过程及其规律。 ➢ 2.了解常用金属的晶体结构及同素异构对金属性能的影
响。 ➢ 3.掌握合金的基本相与基本组织及其对合金性能的影响。 ➢ 4.掌握合金的成分、组织与性能的关系。 ➢ 5.能利用铁—碳相图定性地分析铁碳合金成分、组织、性
能间的关系。 ➢ 6.能够分析平衡状态下典型成份铁碳合金的组织转变过
➢ 1. 自发形核
➢ 当液态金属很纯净时,在足够大的过冷度之下,金属晶核将 从液相中直接形成,这种形核方式称为自发形核。
➢ 2. 非自发形核
➢ 在实际液态金属中,往往存在一些微小的固体微粒,晶核就 优先依附于这些现成的固体表面而形成,这种形核方式称为 非自发形核。
金属材料的组织结构
(二)过冷度对形核和晶核长大的影响
金属材料的组织结构
常温下,晶粒越细小,晶界面积越大,则强度和硬度越 高,同时塑性和韧性也越好,即综合机械性能好。
高温下,晶粒应适当粗化,其性能较好。因为高温下原子 沿晶界的扩散比晶内快,晶界对变形的阻力大大减弱所致。
(二)决定晶粒度的因素 晶粒度取决于N/G,其值越大,晶粒越细小。
金属材料的组织结构
密排六方晶胞
金属材料的组织结构
密排六方晶胞的特征:
a=b=c, α=β=γ=90°
金属材料的组织结构
(2)晶胞原子数
在体心立方晶胞中, 每个角上的原子在晶格中同时属于8 个相邻的晶胞,因而每个角上的原子属于一个晶胞仅为1/8, 而中心的那个原子则完全属于这个晶胞。所以一个体心立方 晶胞所含的原子数为 2个。
(二)面心立方晶格
面心立方晶胞原子如何排列
金属材料的组织结构
金属原子分布在立方体的八个角上和六个面的中心。面中 心的原子与该面四个角上的原子紧靠。
具有这种晶格的金属有铝(Al)、铜(Cu)、镍(Ni)、金(Au)、 银(Ag)、γ- 铁( γ-Fe, 912 ℃~1394 ℃)等。大都具有较
高的塑性。
面心立方晶胞
金属材料的组织结构
面心立方晶胞的特征:
金属材料的组织结构
(二)金属结晶时的过冷现象 1、理论结晶温度 2、过冷现象
实际结晶过程只有在理论结晶温度以下才能进行的 现象叫过冷现象。
金属材料的组织结构
液态和固态自由能随温度变化的示意图以 及纯金属的冷却曲线
二、金属结晶的过程
金属材料的组织结构
➢ 金属的结晶过程分为三个方面进行表述:
1.液态——固态; 2.原子由液态下的无序状态——固态下的有序状态;
3.原子由液态下的高速运动——固态下原子的低速运 动。
金属材料的组织结构
金属结晶过程示意图
1、晶胚; 2、晶核形成; 3、晶核长大和新的晶核产生; 4、晶核长大; 5、所有液态形成晶核
金属材料的组织结构
(一)形核方式
➢ 金属结晶时,由于结晶条件不同,可能出现两种不同的形核 方式:一种是自发形核,另一种是非自发形核。
程。
金属材料的组织结构
➢教学内容:
➢ 金属的结晶过程,结晶规律,纯金属的晶体结构,合金 的组织,铁碳合金平衡状态图。
➢重点、难点:
➢ 有关金属学的基本概念, ➢ 铁碳合金平衡状态图及其分析。
本章主要阅读文献:
金属材料的组织结构
1、周凤云主编. 工程材料及应用. 武汉:华中科技大 学出版社,2002。
过冷度对于晶核形成率和成长速率的影响,主要是因为 在结晶过程中有两个因素同时在起作用: 一是晶体与液体的自由能差(△F),是晶核形成和长大的驱
动力; 二是液体中原子迁移能力或扩散系数(D),是晶核形成和长
大的必须条件。 如图2—4、2—5所示。
金属材料的组织结构
三、晶粒大小的控制 (一)晶粒度对金属性能的影响
(1)晶格常数
a=b=c,α=β=γ=90°
(2)晶胞原子数 (个)
1/8*8+1/2*6=4
金属材料的组织结构
(三)密排六方晶格
密排六方晶胞原子如何排列
金属材料的组织结构
十二个金属原子分布在六方体的十二个角上,在上下 底面的中心各分布一个原子, 的金属有镁(Mg)、镉(Cd)、锌(Zn)、铍 (Be)等。大多具有较大的脆性,塑性差。
(三)细化晶粒方法及原理
1. 控制过冷度
V实增大,Tn降低,△T增大,为结晶过程提供了更多 的能量 。
2. 变质处理
在液态金属中加入一定变质剂(粉末状、细颗粒), 促进形核,以增加晶核数目或抑制晶粒长大,从而细化晶 粒。
3. 机械振动法(如搅动)﹑超声波振动法等。
金属材料的组织结构
第二节 纯金属的晶体结构
金属材料的组织结构
体心立方晶格的晶胞中,八个原子处于立方体的角上,一 个原子处于立方体的中心, 角上八个原子与中心原子紧靠。
具有体心立方晶格的金属有钼(Mo)、钨(W)、钒(V)、α铁(α-Fe, <912 ℃)等。大多具有较高的强度和韧性。
体心立方晶胞
金属材料的组织结构
体心立方晶胞特征:
(1)晶格常数
一、晶格、晶胞、晶体常数
晶体结构: 晶体中原子(离子或分子)规则排列的方式称为晶体结构。
晶格: 通过金属原子(离子)的中心划出许多空间直线,这些直线
将形成空间格架。这种格架称为晶格。晶格的结点为金属原 子(或离子)平衡中心的位置。
晶体和晶格的示意图
金属材料的组织结构
晶胞:
金属材料的组织结构
能反映该晶格特征的最小组成单元称为晶胞, 晶胞在三维空间的重复排列构成晶格。晶胞的基本 特性即可反映该晶体结构(晶格)的特点。
2、于永泗主编.机械工程材料. 大连:大连理工大学 出版社,2003。
3、卢秉恒主编. 机械制造技术基础. 北京:机械工 业出版社,1999 。
第一节
金属材料的组织结构
金属的结晶
一、金属结晶的有关概念 (一)晶体的概念
晶体:是指原子(离子﹑分子)在三维空间呈有规则的周期性 重复排列的物质。
特点:各向异性 具有规则的外形 具有固定的熔点
晶格常数:
晶胞的几何特征可以用晶胞的三条棱边长a、b、 c和三条棱边之间的夹角α、β、γ这六个参数来描 述。其中a、b、c 为晶格常数。 金属的晶格常数一 般为: 1×10-10 m~7×10-10 m。
晶胞和晶格常数示意图
金属材料的组织结构
二、常用金属的晶体结构 (一)体心立方晶格
体心立方晶胞原子如何排列
相关文档
最新文档