第四章电力系统潮流计算
第四章 电力系统潮流计算

第四章 电力系统潮流分析与计算电力系统潮流计算是电力系统稳态运行分析与控制的基础,同时也是安全性分析、稳定性分析电磁暂态分析的基础(稳定性分析和电磁暂态分析需要首先计算初始状态,而初始状态需要进行潮流计算)。
其根本任务是根据给定的运行参数,例如节点的注入功率,计算电网各个节点的电压、相角以及各个支路的有功功率和无功功率的分布及损耗。
潮流计算的本质是求解节点功率方程,系统的节点功率方程是节点电压方程乘以节点电压构成的。
要想计算各个支路的功率潮流,首先根据节点的注入功率计算节点电压,即求解节点功率方程。
节点功率方程是一组高维的非线性代数方程,需要借助数字迭代的计算方法来完成。
简单辐射型网络和环形网络的潮流估算是以单支路的潮流计算为基础的.本章主要介绍电力系统的节点功率方程的形成,潮流计算的数值计算方法,包括高斯迭代法、牛顿拉夫逊法以及PQ 解藕法等。
介绍单电源辐射型网络和双端电源环形网络的潮流估算方法.4—1 潮流计算方程——节点功率方程1。
支路潮流所谓潮流计算就是计算电力系统的功率在各个支路的分布、各个支路的功率损耗以及各个节点的电压和各个支路的电压损耗.由于电力系统可以用等值电路来模拟,从本质上说,电力系统的潮流计算首先是根据各个节点的注入功率求解电力系统各个节点的电压,当各个节点的电压相量已知时,就很容易计算出各个支路的功率损耗和功率分布.假设支路的两个节点分别为k 和l ,支路导纳为kl y ,两个节点的电压已知,分别为kV 和l V ,如图4—1所示。
图4-1 支路功率及其分布那么从节点k 流向节点l 的复功率为(变量上面的“-”表示复共扼):)]([lk kl k kl k kl V V y V I V S -== (4—1) 从节点l 流向节点k 的复功率为:)]([kl kl l lk l lk V V y V I V S -== (4—2) 功率损耗为:2)()(klkl l k kl l k lk kl kl V y V V y V V S S S ∆=--=+=∆ (4—3)因此,潮流计算的第一步是求解节点的电压和相位,根据电路理论,可以采用节点导纳方程求解各个节点的电压。
第四章电力系统潮流的计算机算法

1 z ij
(4) 原有节点ij之间阻抗由Zij变为Zij’
i j
-Zij
Yii
Yj
j
y i' jyi
j
1 z'ij
1 zij
Z’ij
Yij=Yji
yi
j
y
i'
j=z1ij
1 z'ij
(4) 原有节点ij之间变压器的变比由K*变为K*’时。
i j
返回
-ZT K*:1
ZT K’*:1
Z1 Y T(k-1 )/k
(2)节点导纳矩阵是稀疏矩阵,非对角非零 元素的个数等于对应节点所连的不接地 支路数。
(3)对角元素(自导纳)等于相应节点所连 支路的导纳之和。
(4)非对角元素(互导纳)等于两节点间支 路导纳的负值。
(5)节点导纳矩阵是对称方阵,只需求上三 角或是下三角元素。
标准变比:在采用有名值时,是指归算参数时所 取的变比。采用标么值时,是指折算参数时所 取各基准电压之比。
•
I1
Z 1 U 1 k :1
I1
•
I2
ZT
U2
Z2
U 1/k
I2
~~
S1 = S 2
U1I 1 U1I2 k
I1 I2 / k U 1/kU 2I 2ZT
I1
U1 ZT k 2
U2 ZT k
I2
U1 ZT k
U2 ZT
I 1(y10y12)U 1y12 U 2 I 2 y2U 1 1(y20y21)U 2
2n个扰动变量是已知的,给定2(n-1)个控制变量, 给定2个状态变量,要求确定2(n-1)个状态变量。 已知:4n个变量,待求:2n个变量
第四章复杂电力系统潮流计算-高斯-赛德尔法潮流计算

大地电压 U0 0 令
无 Ui 项
Yij yij
Yii
j 0, j i
n
yij ,
节点 i 的自导纳 则
节点 i 和 i 之间的互自导纳
I i YijU j
j 1
n
Yi 1U 1 Yi 2U 2 YiiU i YinU n
1:k
Y11 Y1i Yi 1 Yii Y Y Y ji j1 Yn1 Yni
Y1 j Y1 n Yij Yin Y jj Y jn Ynj Ynn
Y11 Yi 1 Y Y n1 yij 0
Y1i Y1n Yii Yin Yni Ynn Y ji 0
0 Yij i 行 0 Y jj j 行
导纳矩阵阶数增加 1 阶,改变 节点 i 所对应的主对角元及与 节点 j 所对应的行和列即可。
I ij I ij
j
I ik
I ij yij (U i U j ) Ii
i
Ii
k
I il
j 0, j i
n
n
I ij
j 0, j i n
n
yij (U i U j ) yijU j
l
j 0, j i
功率方程
每个节点的复功率为 Si
* * P jQ U I U Y U Si i i i i i ij j * j 1 n
通常将上面的复数方程表示为有功和无功的实数 方程,这样每个节点均可列出两个功率方程式。
电力系统潮流计算

电力系统潮流计算电力系统潮流计算是电力系统运行分析中的重要环节。
它通过对电力系统中各节点的电压、相角以及功率等参数进行计算和分析,从而得出电力系统的稳态运行状态。
本文将从潮流计算的基本原理、计算方法、应用及其发展等方面进行阐述。
一、潮流计算的基本原理电力系统潮流计算的基本原理是基于潮流方程建立的。
潮流方程是一组非线性的方程,描述了电力系统中各节点的电压、相角以及功率之间的关系。
潮流计算的目的就是求解这组非线性方程,以确定电力系统的电压幅值、相角及有功、无功功率的分布情况。
二、潮流计算的基本方法潮流计算的基本方法主要有直接法、迭代法以及牛顿-拉夫逊法。
直接法是通过直接求解潮流方程得到电力系统的潮流状况,但对于大规模复杂的电力系统来说,直接法计算复杂度高。
迭代法是通过对电力系统的节点逐个进行迭代计算,直到满足预设的收敛条件。
牛顿-拉夫逊法是一种较为高效的迭代法,它通过近似潮流方程的雅可比矩阵,实现了计算的高效和稳定。
三、潮流计算的应用潮流计算在电力系统运行与规划中起着重要作用。
首先,潮流计算可以用于电力系统的稳态分析,确定电力系统在各种工况下的电压、相角等参数,以判断电力系统是否存在潮流拥挤、电压失调等问题。
其次,潮流计算还可以用于电力系统的优化调度,通过调整电力系统的发电机出力、负荷组织等参数,以改善电力系统的经济性和可靠性。
此外,潮流计算还可以用于电力系统规划,通过对电力系统进行潮流计算,可以为新建电源、输电线路以及变电站等设备的规划和选择提供科学依据。
四、潮流计算的发展随着电力系统的规模不断扩大和复杂度的提高,潮流计算技术也得到了迅速的发展。
传统的潮流计算方法在计算效率和计算精度上存在一定的局限性。
因此,近年来研究者提出了基于改进的迭代方法、高精度的求解算法以及并行计算等技术,以提高潮流计算的速度和准确性。
此外,随着可再生能源的不断融入电力系统,潮流计算还需要考虑多种能源的互联互通问题,这对潮流计算提出了新的挑战,需要进一步的研究和改进。
例题-第四章 电力系统潮流的计算机计算

第4章复杂电力系统的潮流计算一、填空题1。
用计算机进行潮流计算时,按照给定量的不同,可将电力系统节点分为节点、节点、节点三大类,其中,节点数目最多,节点数目很少、可有可无,节点至少要有一个。
二、选择题1.若在两个节点i、j之间增加一条支路,则下列关于节点导纳矩阵的说法正确的是()A.阶数增加1B.节点i的自导纳不变C.节点i、j间的互导纳发生变化D.节点j的自导纳不变2.若从节点i引出一条对地支路,则下列关于节点导纳矩阵的说法正确的是()A.阶数增加1B.节点i的自导纳发生变化C。
节点i和其余节点间的互导纳均发生变化D。
节点导纳矩阵的所有元素均不变3。
若从两个节点i、j之间切除掉一条支路,则下列关于节点导纳矩阵的说法正确的是()A.阶数减少1B。
节点i、j间的互导纳一定变为0C.节点i、j间的互导纳发生变化,但不一定变为0D.节点i、j的自导纳均不变4.若网络中增加一个节点k,且增加一条节点i与之相连的支路,则下列关于节点导纳矩阵的说法正确的是()(1)阶数增加1(2)节点k的自导纳等于题干中所述支路的导纳(3)节点i的自导纳等于题干中所述支路的导纳(4)节点i、k间的互导纳等于题干中所述支路的导纳A。
(1)(2)B。
(2)(3) C。
(1)(4) D.(2)(4)三、简答题1.什么是潮流计算?潮流计算的主要作用有哪些?潮流计算,电力学名词,指在给定电力系统网络拓扑、元件参数和发电、负荷参量条件下,计算有功功率、无功功率及电压在电力网中的分布。
潮流计算是电力系统非常重要的分析计算,用以研究系统规划和运行中提出的各种问题.对规划中的电力系统,通过潮流计算可以检验所提出的电力系统规划方案能否满足各种运行方式的要求;对运行中的电力系统,通过潮流计算可以预知各种负荷变化和网络结构的改变会不会危及系统的安全,系统中所有母线的电压是否在允许的范围以内,系统中各种元件(线路、变压器等)是否会出现过负荷,以及可能出现过负荷时应事先采取哪些预防措施等.2.潮流计算有哪些待求量、已知量?(已知量:1、电力系统网络结构、参数2、决定系统运行状态的边界条件待求量:系统稳态运行状态例如各母线上的电压(幅值及相角)、网络中的功率分布以及功率损耗等)3.潮流计算节点分成哪几类?分类根据是什么?(分成三类:PQ节点、PV节点和平衡节点,分类依据是给定变量的不同)4.教材牛顿—拉夫逊法及P—Q分解法是基于何种电路方程?可否采用其它类型方程?答:基于节点电压方程,还可以采用回路电流方程等.但是后者不常用。
4、电力系统潮流计算

由前刚求得的S1和已 知的首端电压U1,可 求得阻抗上压降:
又
第四章
开式电力网的潮流计算 可求得该段 阻抗环节末 端电压为: 推广:
任何复杂电网的等值电路,均可分解成多个阻 抗环节; 求解复杂电网的潮流,可按上述一段阻抗环节 的功率、电压算法,逐个环节重复、递推计算。
电 力 系 潮 流 计 算
练习--课本例题4-1及补充习题-1
电 力 系 潮 流 计 算
潮流计算——电力系统分析(稳态分析)中一 种最基本的计算。 稳态分析计算—— 不考虑发电机的参数,将机端母线作为系 统的边界点。
潮流的基本概念
在发电机母线上功率被注入网络; 而在变(配)电站的母线上接入负荷; 两者之间,功率在网络中流动。 对于这种流动的功率,电力生产部门称之为 潮
电 力 系 潮 流 计 算
将电压和功率由末端向始端交替推进 ;
对于110KV及以下网络,可略去电压降落 的横分量,从而使计算简化; 计算中须注意到变压器参数及电压的归算。
第四章
开式电力网的潮流计算
练一练:[补充-2]
电 力 系 潮 流 计 算
一电力线路长100km,末端接有一台容量为 20MVA、变比为110/38.5KV的降压变压器; 变压器低压侧负荷为15+j11.25MVA。 正常运行时负荷要求电压为36KV,试求线路 始端母线应具备多大的功率和电压才满足要 求。 2 T 3 1
(4-25)
当s=2,即已知环节末端量来求阻抗损耗的计 算式,即为:
(4-26)
(4-27)
第四章
(一)电力网的功率损耗
即电容功率 )
电 力 系 潮 流 线路首端的无功损耗: 计 算
电力系统潮流计算

电力系统潮流计算电力系统潮流计算是电力系统运行和安排分析的基础,也是现代电力系统科学研究的重要内容之一。
潮流计算主要是根据电力系统终端负荷和电力系统节点的运行状态,计算和分析不同状态下电力系统的各种相关物理量。
电力系统潮流计算的核心目的是为了确定电力系统状态的最佳运行模式,及其电压、电流和功率的合理分配,以此来达到系统的安全、稳定、可靠和经济的运行。
电力系统潮流计算是通过对电力系统运行特征和物理约束的有效分析,来检测b系统安全性、稳定性和经济性,以及发电、负荷、输电线路和变压器等设备状态的检测,从而有效帮助电力系统的运行和控制。
潮流计算可以用来分析电力系统拓扑结构、根据拓扑结构对系统故障进行性检查、以及分析电力系统的安全稳定性等。
电力系统潮流计算的计算方法主要有基于线性代数的潮流计算法、参数拟合法,基于全局优化的潮流计算法,基于负载拟合的潮流计算法等方法。
基于线性代数的潮流计算法主要是根据电力系统的线性约束和Kirchhoff定律来建立电力系统的各种物理参数的数学模型,以此来计算出电力系统的潮流和电压。
参数拟合法是根据电力系统各节点的历史数据来建立负荷模型,然后根据这些模型来拟合出电力系统的潮流和电压。
基于全局优化的潮流计算法则是利用模拟退火和遗传算法等全局优化算法,求解出电力系统的潮流和电压。
潮流计算结果主要应用在电力系统规划设计、电力网络安全分析、发电满足率分析、电网终端负荷预测、电力系统容量及负荷平衡等方面。
电力系统规划设计时,可以利用潮流计算结果,选择合适的设备、制定负荷安排方案,确定电力系统的最佳运行模式,以保证系统的安全可靠。
电力网安全分析中,可以利用潮流计算的结果,检测出电力系统的故障点,以及设备的运行情况,从而有效预防和应对电力系统的安全威胁。
综上所述,电力系统潮流计算是电力系统及其科学研究的重要内容,通过对电力系统的物理参数有效分析,可以帮助电力系统安全、可靠的运行。
潮流计算的核心目的是确定电力系统状态的最佳运行模式,及其电压、电流和功率的合理分配,并且利用潮流计算结果,可以在电力系统规划、安全分析、发电满足率分析、电网终端负荷预测等方面发挥作用。
电力系统潮流计算定义、方法

3电力系统潮流计算1、前言电力是衡量一个国家经济发展的主要指标,也是反映人民生活水平的重要标志,它已成为现代工农业生产、交通运输以及城乡生活等许多方面不可或缺的能源和动力。
电力系统是由发电、输电、变电、配电和用电等环节组成的电能生产与消费系统。
它的功能是将自然界的一次能源通过发电动力装置转化成电能,再经输电、变电和配电将电能供应到各用户。
为实现这一功能,电力系统在各个环节和不同层次还具有相应的信息与控制系统,对电能的生产过程进行测量、调节、控制、保护、通信和调度,以保证用户获得安全、经济、优质的电能。
电力系统的出现,使电能得到广泛应用,推动了社会生产各个领域的变化,开创了电力时代,出现了近代史上的第二次技术革命。
20世纪以来,电力系统的发展使动力资源得到更充分的开发,工业布局也更为合理,使电能的应用不仅深刻地影响着社会物质生产的各个侧面,也越来越广地渗透到人类日常生活的各个层面。
电力系统的发展程度和技术水准已成为各国经济发展水平的标志之一。
潮流计算是在给定电力系统网络结构、参数和决定系统运行状态的边界条件的情况下确定系统稳态运行状态的一种基本方法,是电力系统规划和运营中不可缺少的一个重要组成部分。
可以说,它是电力系统分析中最基本、最重要的计算,是系统安全、经济分析和实时控制与调度的基础。
是电力系统研究人员长期研究的一个课题。
MATLAB自1980年问世以来,它的强大的矩阵处理功能给电力系统的分析、计算带来许多方便。
在处理潮流计算时,其计算机软件的速度已无法满足大电网模拟和实时控制的仿真要求,而高效的潮流问题相关软件的研究已成为大规模电力系统仿真计算的关键。
随着计算机技术的不断发展和成熟,对MATLAB潮流计算的研究为快速、详细地解决大电网的计算问题开辟了新思路。
1.1 本设计主要工作1)掌握潮流计算的基本原理;2)根据电力系统网络推导电力网络数字模型,写出节点导纳矩阵;3)赋予各节点电压变量初值后,求解不平衡量;4)形成雅克比矩阵;5)求解修正量后,重新修改初值,从2)开始重新循环计算;6)求解的电压变量达到要求的精度时,再计算各支路的功率分布、功率损耗和平衡节点功率;7)上机编程调试;8)计算分析给定系统潮流,并与手工计算结果进行比较分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 电力系统潮流分析与计算电力系统潮流计算是电力系统稳态运行分析与控制的基础,同时也是安全性分析、稳定性分析电磁暂态分析的基础(稳定性分析和电磁暂态分析需要首先计算初始状态,而初始状态需要进行潮流计算)。
其根本任务是根据给定的运行参数,例如节点的注入功率,计算电网各个节点的电压、相角以及各个支路的有功功率和无功功率的分布及损耗。
潮流计算的本质是求解节点功率方程,系统的节点功率方程是节点电压方程乘以节点电压构成的。
要想计算各个支路的功率潮流,首先根据节点的注入功率计算节点电压,即求解节点功率方程。
节点功率方程是一组高维的非线性代数方程,需要借助数字迭代的计算方法来完成。
简单辐射型网络和环形网络的潮流估算是以单支路的潮流计算为基础的。
本章主要介绍电力系统的节点功率方程的形成,潮流计算的数值计算方法,包括高斯迭代法、牛顿拉夫逊法以及PQ 解藕法等。
介绍单电源辐射型网络和双端电源环形网络的潮流估算方法。
4-1 潮流计算方程--节点功率方程1. 支路潮流所谓潮流计算就是计算电力系统的功率在各个支路的分布、各个支路的功率损耗以及各个节点的电压和各个支路的电压损耗。
由于电力系统可以用等值电路来模拟,从本质上说,电力系统的潮流计算首先是根据各个节点的注入功率求解电力系统各个节点的电压,当各个节点的电压相量已知时,就很容易计算出各个支路的功率损耗和功率分布。
假设支路的两个节点分别为k 和l ,支路导纳为kl y ,两个节点的电压已知,分别为kV 和l V ,如图4-1所示。
图4-1 支路功率及其分布那么从节点k 流向节点l 的复功率为(变量上面的“-”表示复共扼):)]([lk kl k kl k kl V V y V I V S (4-1) 从节点l 流向节点k 的复功率为:)]([k l kl l lk l lk V V y V I V S (4-2)功率损耗为:2)()(klkl l k kl l k lk kl kl V y V V y V V S S S (4-3)因此,潮流计算的第一步是求解节点的电压和相位,根据电路理论,可以采用节点导纳方程求解各个节点的电压。
2. 节点功率方程根据电路理论,要想求系统各个节点的电压,需要利用系统的节点导纳方程。
图4-2 电网络示意图如图4-2所示的电网络,有N 个节点,假如已知各个节点的注入电流源的电流,以及各个支路的支路导纳,那么可以根据节点导纳方程求出电网各个节点的电压:S I Y V (4-4)其中NN N N N N Y Y Y Y Y Y Y Y Y 212222111211Y 为电网络的节点导纳矩阵,kk Y (N k ,2,1 )为自导纳,是与k 节点所有连接支路导纳之和,kl Y (l k )为互导纳,等于负的连接k 和l 节点的所有支路导纳之和。
T 21],,,[N V V V V 为各个节点的电压相量,T ,21],,,[N S S S S I I I I 为注入到各个节点的总电流。
2.1 节点复功率方程要想计算各个节点电压,除了需要知道系统参数及节点导纳矩阵以外,还需要知道节点的注入电流源的电流。
然而电力系统中,节点的注入电流是不知道的,已知的是各个节点的注入功率。
这就需要将节点电压方程转化为节点功率方程。
方程4-4中第k (N k ,,2,1 )个节点的方程可以写作:Sk N kN k kk k k N l lkl I V Y V Y V Y V YV Y 22111 (4-5) 在方程4-5两端乘以k V ,得到: Sk Sk Sk Sk k N l l kl k jQ P S I V V Y V 1(4-6)假如在电力系统中,各个节点的注入复功率都已知,那么就可以用方程4-6组成的方程组求解各个节点的电压。
然而实际情况并非如此,已知的条件是:有的节点的注入复功率S 是已知的,有的节点的电压幅值和注入有功功率是已知的,有的节点的电压和相角是已知的。
根据这三种不同的情况,电力系统中各个节点分为三种类型:PQ 节点、PV 节点和V 节点。
所谓PQ 节点,就是该节点的注入复功率S 是已知的,这样的节点一般为中间节点或者是负荷节点。
PV 节点,指该节点已知的条件是注入节点的有功功率P 和该节点的电压幅值V ,这样的节点通常是发电机节点。
V 节点指的是该节点的电压幅值和相角是已知的,这样的节点通常是平衡节点,在每个局部电网中只有一个这样的节点。
当然,PQ 节点和PV 节点在一定条件下还可以互相转化,例如,当发电机节点无法维持该节点电压时,发电机运行于功率极限时,发电机节点的有功和无功变成了已知量,而电压幅值则未知,此时,该节点由PV 节点转化为PQ 节点。
再比如某个负荷节点,运行要求电压不能越限,当该节点的电压幅值处于极限位置,或者电力系统调压要求该节点的电压恒定,此时该负荷节点就由PQ 节点转化为PV 节点。
假如全系统有N 个节点,其中有M 个PQ 节点,N-M-1个PV 节点,1个平衡节点,每个节点有四个参数:电压幅值V 、相位角 (用极坐标表示电压,如果用直角坐标表示电压相量则是e 和f )注入有功功率S P 和无功功率S Q ,任何一个节点的四个参数中总有两个是已知的,因此N 个节点,有2N 个未知变量,N 个复数方程(即2N 个实数方程,实部和虚部各一个),通过解这个复数方程就可得到另外2N 个参数。
这就是潮流计算的本质。
但在实际求解过程中,由于我们求解的对象是电压,因此,实际上不需要2N 个功率方程,对于M 个PQ 节点,有2M 个功率方程(M 个实部有功功率方程,M 个虚部无功功率方程);对于N-M-1个PV 节点,由于电压有效值V 已知,因此只有N-M-1个有功功率方程;对于平衡节点,由于电压和相角已知,不需要功率方程。
因此总计有2M+N-M-1=N+M-1个功率方程。
如果电压相量用极坐标表示,即kk k V V ,则M 个PQ 节点有2M 个未知数(M 个电压有效值,M 个电压相角),N-M-1个PV 节点有N-M-1个未知数(电压有效值已知,未知数为电压相角),平衡节点没有未知数,因此未知数的个数也是N+M-1个,与方程数一致。
如果复电压用直角坐标表示,kk k jf e V ,则有2(N-1)个未知数,还需要增加N-M-1个电压方程,即222k k k f e V 。
2.2 用直角坐标表示的电力系统节点功率方程对于PQ 节点,已知的是注入节点的功率P 和Q ,将km km km jB G Y 和kk k jf e V 带入节点功率方程的复数表示式中,可以得到有功功率和无功功率两个方程:11111111)()()()(N m m km m km k N m m km m km k Lk Gk Sk N m m km m km k N m m km m km k Lk Gk Sk e B f G e f B e G f Q Q Q e B f G f f B e G e P P P (4-7) 上式中Sk P 和Sk Q 为注入到节点k 的净功率,即注入和消耗的代数和。
Gk P 、Gk Q 表示注入的功率,Lk P 和Lk Q 为消耗的功率。
对于PV 节点,除了有功功率方程外,因为已知该节点的电压幅值,还有一个电压方程:222k k k f e V (4-8)方程4-7可以抽象的表示为:0),,,,(0),,,,(11111111N N k N N k f e f e Q f e f e P (4-9) 方程4-8可以抽象的表示为0),,,,(1111 N N k f e f e V (4-10)因此,对于一个具有N 个节点的电力系统,其中M 个PQ 节点,N-M-1个PV 节点,1个平衡节点,有方程如下:节点的方程个PQ 2M 0),,,,(0),,,,(0),,,,(0),,,,(111111111111111111N N M N N M N N N N f e f e Q f e f e P f e f e Q f e f e P 节点方程个PV 1)-M -2(N 0),,,,(0),,,,(0),,,,(0),,,,(11111111111111111111N N N N N N N N M N N M f e f e V f e f e P f e f e V f e f e P (4-11) N 个节点,平衡节点的电压幅值和相角已知,即其横分量和纵分量已知,因此平衡节点不参与计算。
N-1个节点的电压的横分量和纵分量为未知数,共2N-2个未知数。
2M 个PQ 节点方程,2(N-M-1)个PV 节点方程,共计2N-2个方程。
解这个方程组,就可以得到电力系统N 个节点的电压相量,根据各个节点的电压相量和已知的注入功率,就可以计算出各个支路的潮流分布,及各个支路的功率损耗。
2.3 极坐标表示的节点功率方程对于PQ 节点,已知的是注入节点的功率P 和Q ,将km km km jB G Y 和kk k V V 带入节点功率方程的复数表示式中,可以得到实部和虚部两个方程:N m km km km km m k Lk Gk Sk N m km km km km m k Lk Gk Sk B G V V Q Q Q B G V V P P P 11)cos sin ()sin cos ( (4-12) 上式中,V 代表电压幅值,m k km 。
对于PV 节点,由于节点的电压幅值已知,因此只有有功功率方程而没有无功功率方程。
同样,方程4-12可以抽象的表示为:0),,,,(111 N M k V V P (4-13a)0),,,,(111 N M k V V Q (4-13b)因此,对于一个具有N 个节点的电力系统,其中M 个PQ 节点,N-M-1个PV 节点,1个平衡节点,有方程如下:节点方程个PQ 2M 0),,,,,(0),,,,,(0),,,,,(0),,,,,(11111111111111N M M N M M N M N M V V Q V V P V V Q V V P 节点方程个PV 10),,,,,(0),,,,,(1111-N 1111MM N V V P V V P N M N M (4-14)除了平衡节点外,N-1个节点中,有M 个PQ 节点的电压幅值和相角都是未知数,N-M-1个PV 节点的相角为未知数,因此共有2M+N-M-1=N+M-1个未知数,2M+N-M-1=N+M-1个方程。
在方程4-14中,可以把N-1个有功功率方程放在一起,M 个无功功率方程放在一起: 个有功功率方程1N 0),,,,,(0),,,,,(11111111N M N N M V V P V V P个无功功率方程M V V Q V V N M M N M0),,,,,(0),,,,,(Q 1111111 (4-15)解上述方程组,就可以得到电力系统中各个节点的电压幅值和相角,进而可以计算出各个支路的潮流分布和损耗。