大学物理第一章质点运动学

合集下载

大学物理质点力学第一章 质点运动学 PPT

大学物理质点力学第一章 质点运动学 PPT

方向:
cosa
=
x r
cosβ=
y r
cosγ=
z r
路程:质点所经路径得总长度。
三、速度
描述位置矢量随时间变化快慢得物理量
1、平均速度
在移质为点r由)A,到单B的位过时程间中内(的所平用均时位间移为称为t该,质所点发在生该的过位
程中的平均速度。
v
=
Δ Δ
r t
=
Δx Δt
i
+ΔΔ
y t
j
+
Δ Δ
0
Δx
Δ t —割线斜率(平均速度)
dx —切线斜率(瞬时速度) dt
x~t图
t tt
1
2
2、 v ~ t 图
v ~ t图
割线斜率:
Δv Δt = a
v v2
切线斜率:
dv dt
=a
v1
v ~ t 图线下得面积(位移):
0 t1
t2
x2
dt dx x2 x1 x
t1
x1
t2 t
3、 a ~ t 图
=

dt
B
Δθ A
θ
0
x
(3)、角加速度
β =ΔΔωt
β
=
lim
Δt
Δω
0Δ t
=ddωt
=ddθt2 2
(4)、匀变速率圆周运动
0
t
1 2
t2
0 t
2
2 0
2
(5)、线量与角量得关系
Δ s = rΔθ
lim Δ s
Δt 0Δ t
=
lim
Δt 0
r
Δθ

大学物理第1章质点运动学

大学物理第1章质点运动学

大学物理第1章质点运动学质点运动学是物理学中研究物体运动的学科,它是物理学的一个重要分支,是学习物理的基础之一。

一、质点运动学的概念质点运动学是研究质点运动的学科,它把物体看作质点,即把物体看成一个点,而不考虑其体积大小。

质点运动学的主要研究内容包括:位置、速度、加速度等运动量的描述,以及运动的曲线形状、动量、能量等方面的分析。

二、质点的运动质点的运动可以分为匀速运动和非匀速运动两种情况。

1.匀速运动匀速运动是指质点在单位时间内沿着同一直线等距离地移动的运动。

匀速运动的速度大小是恒定的,可以用速度公式v=d/t来计算。

2.非匀速运动非匀速运动是指质点在单位时间内沿任意曲线路径移动的运动。

非匀速运动中质点的速度大小是变化的,需要用微积分的方法进行分析和计算。

三、质点运动中的基本物理量在质点运动中,需要描述质点的运动状态和变化情况。

主要的量包括:1.位置位置是指质点在空间中所处的位置,通常使用坐标表示。

我们可以通过坐标系建立一个参照系,来描述质点的位置。

2.位移位移是指质点从一个位置到另一个位置的距离和方向,通常用符号Δr表示。

位移的大小可以用位移公式Δr=r2-r1来计算。

3.速度速度是指质点在单位时间内所改变的位置,通常用符号v 表示。

速度的大小可以用速度公式v=Δr/Δt来计算。

4.加速度加速度是指质点在单位时间内速度所改变的量,通常用符号a表示。

加速度的大小可以用加速度公式a=Δv/Δt来计算。

四、质点的曲线运动在质点运动中,一些运动路径可能是曲线运动。

曲线运动的路径通常可以用弧长s、曲率半径r、圆心角等来表征。

1.弧长弧长是指质点在曲线路径上所走过的曲线长度,通常用符号s表示。

弧长的大小可以用弧长公式s=rθ来计算。

2.曲率半径曲率半径是指曲线在任一点上的曲率半径,通常用符号r 表示。

曲率半径可以根据曲线的形状计算得出。

3.圆心角圆心角是指质点所在的路径所对应的圆所对应的圆心角度数,通常用符号θ表示。

第1章 质点运动学

第1章 质点运动学

100t
4
t3
0
3
x x0
t
t0 vx (t)dt 0
t
(100t
4
t3 )dt
50t 2
1
t4
0
3
3
第一章 质点运动学
1-5 曲线运动
一、匀速圆周运动
1、匀速圆周运动的加速度
A v B
vA B vB
设质△|量=圆点 t|时vvv周处|存'刻。的在在,质半圆。v质点径周根点从为上据在PR点的加Q,运P处速处圆动,度,心到速的速为Q度定度O点为义,为有vv可v在,速;' 得t其度时在瞬中增刻t+时|,v
解:由
a
ann a
v2 R
n
dv dt
v
ds dt
20
0.6t 2 (m
/
s)
当t=1s时
an
v2 r
(20 0.6)2 200
m / s2
1.88m / s2
a
dv dt
1.2t
1.2m / s2
a a2 an2 2.23m / s2
dt
v0 v
0
v
v e(1.0s1 )t 0
由速度的定义: v
dy dt
v e(1.0s1 )t 0
y
t
dy v0 e dt (1.0s1 )t
y 10 1 e( 1.0s1 )t
0
0
由以上结果, t 时, v 0,此时y 10m。
但实际情况是:t 9.2s时, v 0,此时y 10m。
加速度分量
加速度大小 加速度余弦方向
a | a| a2x a2y a2z

大学物理-质点运动学

大学物理-质点运动学
空间曲线上的任意点都存在密切面,而且 是唯一的。
空间曲线上的任意点无穷小邻域内的一段 弧长,可以看作是位于密切面内的平面曲线。
曲线在密切面内的弯曲程度,称为曲线的 曲率,用表示。
描述点运动的弧坐标法
密切面与自然轴系
自然轴系
B(副法线) N(主法线)
自然轴系P-TNB P-空间曲线上的动点;
描述点运动的直角坐标法
例题3
几点讨论
2、关于P点运动的性质:何时 作加速度运动?何时作减速度 运动?
这一问题请同学们自己研究。
第1章 质点运动学
描述点运动的弧坐标法
描述点运动的弧坐标法

弧坐标要素与运动方程 密切面与自然轴系 速度 加速度
描述点运动的弧坐标法
弧坐标要素与运动方程
x
rA
O
r
B
rB
y
速度的方向为轨道上质点所在处的切线方向。 速度的矢量式:
v v x i v y j vz k
dx dy dz vx , vy , vz dt dt dt
速度的三个坐标分量:
速度的大小:
2 2 2 v v vx v y vz
( 2) 令
b x2 x1 为影长
db l dx2 v dt h dt
代入
l b x2 h

dx 2 hv 0 dt h l

lv 0 v hl
描述点运动的直角坐标法
椭圆规机构
例 题3
=常数, ω=
OA AB AC l , BP d
求:P点的运动方程、速度、加速度。

速率
1
在t时间内,质点所经过路程 s 对时间的变化率

《大学物理教学课件》第1章 质点运动学

《大学物理教学课件》第1章 质点运动学

足右手定则:沿质点转动方向右
旋大拇指指向。
平均角加速度:β Δω Δt
角加速度:β
lim
t 0
Δω Δt
dω dt
d 2
dt 2
单位:rad/s2,
y
B
s
A
RO
x
29
匀变速圆周运动的基本公式
0 t
0
0t
1 2
t 2
2 02 2 ( 0 )
圆周运动线量和角量的关系:
与匀变速直线运动计 算公式有对应关系:
4
§1.2 质点运动的描述
1.2.1 位置矢量 运动方程
1.位置矢量(位矢)
从原点O向质点P所在位置画一矢
量来表示质点位置。
r称为位置矢量,简称位矢。
位矢 用坐标值表示为: r xi yj zk
z
xo
x
i , j , k表示沿x,y,z轴的单位矢量。
位矢的大小:r | r| x2 y2 z2
质点运动时在空间所经历的实际路径叫做运动轨道, 相应的曲线方程称为轨道方程。
在运动方程中,消去t即得轨道方程:f(x,y,z)=0。
6
1.2.2 位移 路程
z A
1.位移
t时刻,A点位矢为
r1
t+Δt时刻在B点位矢为 r2
r B
r1
r2
o
y
x
在t 时间内,位矢的变化量(即A到B的有向线
段)称为位移。
y
B
s
A
RO
x
角位置 :质点所在的矢径与x 轴的夹角。
运动方程: (t)
角位移: 质点从A到B矢径转过的角度 。
规定: 逆时针转向为正 顺时针转向为负

大学物理——第1章-质点运动学

大学物理——第1章-质点运动学
沿逆时针方向转动角位移取正, 沿顺时针方向转动角位移取负.
21
★ 角速度 ω 大小: ω = lim 单位:rad/s ★ 角加速度 β
v
θ dθ = t →0 t dt
v
ω dω d2θ 大小: β = lim = = 2 t →0 t dt dt
单位:rad/s2
22
★ 线量与角量的关系
dS = R dθ
16
取CF的长度等于CD
v v v v vτ vn v v v = lim + lim 加速度: a = lim = aτ + an t →0 t →0 t →0 t t t
v v 当 t →0 时,B点无限接近A点,vA与 vB v v 的夹角 θ 趋近于零,vτ 的极限方向与 vA v 相同,是A点处圆周的切线方向;vn的极 v 限方向垂直于 vA ,沿圆轨道的半径,指向
y
v v v r = r′ + R
v v v dr dr ′ dR 求导: = + dt dt dt
o
y′ M v u v v r′ r v o′ R
x′
z′
x
z v称为质点M的绝对速度, v称为质点M的相对速度, υ υ′
v 称为牵连速度. u
27
v v υ =υ′ +u
v
in 例1-6 一人向东前进,其速率为 υ1 = 50m/ m ,觉得风从 正南方吹来;假若他把速率增大为υ2 = 75m/ m , in
t
9
初始条件:t = 0 , x = 5m 【不定积分方法】
速度表达式是: v = 4+ 2t
x = ∫ vdt = ∫ (4 + 2t)dt = 4t + t 2 + C

大学物理第一章质点运动学

大学物理第一章质点运动学

∫ d x = ∫ (2t −t )dt
2 0 0
t
质点的运动方程
13 x = t − t (m) ) 3
2
(3) 质点在前三秒内经历的路程
s = ∫ vdt = ∫ 2t − t 2 dt
0 0
3
3
令 v =2t-t 2 =0 ,得 t =2
8 s = ∫ (2t − t )dt + ∫ (t − 2t)dt = m 0 2 3
初始条件为x 初始条件为 0=0, v0=0 质点在第一秒末的速度;(2)运动方程;(3)质点在前三秒内 运动方程; 质点在前三秒内 运动方程 求 (1) 质点在第一秒末的速度 运动的路程。 运动的路程。 解 (1) 求质点在任意时刻的速度 dv dv a= = 2 − 2t 由 dt dv = (2 − 2t) dt 分离变量 两边积分
y
P点在 系和 '系的空间坐标 、 点在K系和 系的空间坐标、 点在 系和K 时间坐标的对应关系为: 时间坐标的对应关系为:
y'
r v
P
}
r r
o z
r r′
o' x x'
r R
z'
伽利略坐标变换式
2. 速度变换 r r vK、vK′ 分别表示质点在两个坐标系中的速度 r r r d r ′ d(r − vt) r r r vK′ = = = vK − v dr′ r dt t r 即 vK′ = vK − v r r r vK = vK′ + v 伽利略速度变换
dv = g − Bv dt 分离变量并两边积分
t dv ∫0 g - Bv = ∫0 dt v
g v = (1− e−Bt ) B

大学物理第一章

大学物理第一章

r (t) x(t)i y(t) j z(t)k
标量形式 x x(t), y y(t), z z(t)
t 从上式消去参数 得轨迹方程 f ( x, y, z) 0
上页 下页 返回 帮助
1-2 位置矢量 位移
第一章 质点运动学
例如 质点的运动方程为
r R costi R sintj
速度的方向余弦 cos 0, cos 15 , cos 10t
上页 下页 返回 帮助
1-3 速度 加速度
第一章 质点运动学
(2)当t=1s时, 18.03m s-1
cos 0, cos 0.832, cos 0.555
即 90 , 33 42', 56
再求加速度矢量。由定义得 a 10k
质点是实际物体的一个理想模型,后面我们还会建立刚体、 理想气体、点电荷等理想模型,建立理想模型的方法在处理 实际问题中是很有意义的.
上页 下页 返回 帮助
1-2 位置矢量 位移
第一章 质点运动学
一、位置矢量和运动方程
1 位置矢量
在物理学中用一个有向线段来表示质点的位置. 这个有向线段
的长度为质点到原点的距离,方向规定为由坐标原点指向质点 所在位置P点,称为质点的位置矢量,简称位矢,记做r
解 由加速度的定义式 a d 恒量
dt
d a dt
a d t at C1
设当t=0时, 0 ,代入上式可得 C1 0
因此 0 at
由速度的定义式得
0
at
dx dt
d x (0 at) d t
上页 下页 返回 帮助
1-4 直线运动
第一章 质点运动学
积分可得 x (0 at) d t 0 d t at d t
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大学物理第一章质
点运动学
-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
第一章章节测试题
一、选择题(每小题3分,共计15分) 1.以下四种运动形式中,a 保持不变的运动是 ( )
(A) 单摆的运动 (B) 匀速率圆周运动
(C) 行星的椭圆轨道运动 (D) 抛体运动
2.一物体从某一确定高度以0v 的速度水平抛出,已知它落地时的速度为t v ,
那么它运动的时间是 ( ) (A) g t 0v v - (B) g
t 20v v - (C) ()g t 2/120
2
v v - (D) ()g t 22/120
2
v v -
3.下列说法中,哪一个是正确的
( )
(A) 一质点在某时刻的瞬时速度是2 m/s ,说明它在此后1 s 内一定要经过2 m 的路程
(B) 斜向上抛的物体,在最高点处的速度最小,加速度最大
(C) 物体作曲线运动时,有可能在某时刻的法向加速度为零
(D) 物体加速度越大,则速度越大
4.一质点沿x 轴运动,其运动方程为2353x t t =-,其中t 以s 为单位。

当t=2s 时,该质点正在 ( )
(A )加速 (B )减速 (C )匀速 (D ) 静止
5.下列关于加速度的说法中错误的是 ( )
(A )质点加速度方向恒定,但其速度的方向仍可能在不断的变化着
(B )质点速度方向恒定,但加速度方向仍可能在不断的变化着
(C )某时刻质点加速度的值很大,则该时刻质点速度的值也必定很大
(D )质点作曲线运动时,其法向加速度一般不为零,但也有可能在某时刻法向加速度为零
二、填空题(每空2分,共计20分)
1.一辆作匀加速直线运动的汽车,在6 s 内通过相隔60 m 远的两点,已知汽车经过第二点时的速率为15 m/s ,则汽车通过第一点时的速率v 1
=______________。

2.质点沿半径为R 的圆周运动,运动学方程为 223t +=θ,则t时刻质点的法向加速度大小为a n = 。

3.一质点沿x 方向运动,其加速度随时间变化关系为:a = 3+2 t ,如果初始时刻质点的速度v 0为5 m/s ,则当t为3s 时,质点的速度 v = 。

4.已知质点的运动学方程为:j t t i t t r )3
14()2125(32++-+=,当t = 2 s 时,速度的大小=v ,加速度的大小a = 。

5.在x 轴上作变加速直线运动的质点,已知其初速度为0v ,初始位置为x 0,加速度2Ct a =(其中C 为常量),则其速度与时间的关系为=v ,位置与时间的关系为x= 。

6.一质点从静止出发沿半径R =1 m 的圆周运动,其角加速度随时间t 的变化规律是β =12t 2-6t ,则质点的角速度ω =____________________。

7.已知质点的运动学方程为24t r = i +(2t +3)j ,则该质点的轨道方程为_______________。

8.一质点沿x 轴作直线运动,它的运动学方程为x =3+5t +6t 2-t 3 (SI),则加速度为零时,该质点的速度=v __________________。

三、简答题(每题5分,共计25分)
1、分子的体积很小,所以可以看作质点,你认为这种说法对吗?为什么?
2、质点运动过程中,其加速度为负值,则说明质点是减速运动的,你认为这种说法对吗?说明原因
3、一个质点在做匀速率圆周运动时,其切向加速度、法向加速度是否变化?
4、瞬时速率是瞬时速度的大小,平均速率是平均速度的大小,这种说法对吗?举例说明
5、某质点作直线运动的运动学方程为x =3t -5t 3 + 6 (SI),则该质点作何运动加速度方向
四、计算题(每题10分,共计40分)
1.一质点沿x 轴运动,其加速度为a = 4t ,已知t = 0时,质点位于x 0=10 m 处,初速度v 0 =0。

试求其位置和时间的关系式。

2.已知质点的运动方程为x=2t ,y=2-t 2 ,式中各量用国际单位制。

(1)试导出质点的轨道方程,并图示质点的运动轨迹;(2)计算t=1s 和t=2s 时质点的矢径,并计算1s 和2s 之间质点的位移,(3)计算质点在2s 末时的速度;
(4)计算质点的加速度,并说明质点做什么运动?
3.在xy 平面内,质点以原点O 为圆心作匀速圆周运动,已知在t = 0时,y = 0,x =r ,角速度ω如图所示;(1)试用半径r 、角速度ω和单位矢量i 、j 表示其t 时刻的位置矢量;(2)由(1)导出速度v 与加速度 a 的矢量表示式;(3)试证加速度指向圆心。

4.由楼窗口以初速0v 水平射出一发子弹,以枪口为原点,沿0v 方向取为x 轴,竖直向下取为y 轴,并取发射时为初时刻,试求:(1) 子弹在任一时刻t 的坐标,及子弹所经轨迹的方程(重力加速度g 作为已知);(2) 试求子弹在t 时刻的速度,切向加速度及法向加速度。

相关文档
最新文档