电气设备雷击分析
雷电冲击试验分析

DL/T557《高压线路绝缘子陡波冲击耐受 试验》规定了线路绝缘子陡波冲击耐受试 验的标准冲击波形 (6)Tf=100~200毫微妙的陡波冲击波。 陡度2500KV/uS,最大输出电压幅值 500KV,适用于高压线路B型绝缘子陡波 冲击耐受试验。 JB5892《高压线路用有机复合绝缘子技 术条件》规定了有机复合绝缘子陡波冲击 耐受试验的标准冲击波形 (7)陡度大于1000KV/uS的陡波冲击波 最大输出电压幅值600KV,适用于高压线 路用有机复合绝缘子陡波冲击耐受试验。 DL474.6 《变压器操作波感应耐压试验》 规定了变压器操作波感应耐压试验的标准 冲击波形。 (8) Tcr>100微妙,Tz>1000微妙,Td (90)>200微妙的操作波冲击波 适用电力变压器操作波感应耐压试验。
(1)
(2)
老试验站冲击等值电路
新试验站冲击等值电路
(3)
旧试验站球心放电原理:如图 第一步:1点充电为+U0,当球隙击穿时,1点电位降到0,2 点 电位由0变为-U0,那么第二个球隙两端的电位变成+UO-(U0) =2U0,肯定会导致第二个球隙击穿。 第二步:同样第二个球隙击穿后,4点电位由0变为-2U0,那 么第三个球隙两端的电位变成+UO-(-2U0)=3U0,肯定会导 致第三个球隙击穿。所以有n个球隙击穿后,就有n个U0,它输 出电压如8点就为-nU0,可见输出电压与充电电压极性相反。 这一系列过程可被概括成为“多级电容器并联充电,而后串 联放电,形成幅值很高的冲击电压波”。 从发生器同步原理分析: (1)当C2(即球隙之间电容)为零时,Ug2=2UO,可见过电压 倍数较高。 (2)当C1、C3(即回路中对地杂散电容)为零时,Ug2≈UO, 可见过电压倍数较低,g2就不可能击穿,所以杂散电容的存在 加强了冲击发生器同步动作的有利条件。
35kV输电线路雷击跳闸分析及预防措施

35kV输电线路雷击跳闸分析及预防措施摘要:近几年来,因雷电而引发的输电线路掉落以及跳闸问题频频出现,不仅大大影响了用电设备运行的安全性,同时也在很大程度上对人们的日常工作生活造成了不良影响。
根据相关资料显示,全国各地每年都会发生多起因雷击造成的线路掉落和跳闸问题。
前几年,这一现象主要集中于山区,近些年则表现出了向平原地区转移的发展趋势。
可以说,雷击已成为影响输变电线路运行安全性和稳定性的主要因素。
关键词:35kV;输电线路;雷击跳闸;预防措施1 35kV输电线路运行的现状及雷击跳闸的类型1.1 35kV输电线路运行的现状35kV输电线路是电力系统中非常重要的组成部分,从目前情况来看,35kV输电线路运行过程中还存在如下几方面较为薄弱的环节:很大一部分35kV输电线路运行的时间过长,线路存在严重老化的问题,有些输电线路运行时间达到10年以上,甚至有的运行了30年以上,非常不利于线路运行的安全性和稳定性;某些输电线路没有进行避雷线的架设,缺少避雷线的屏蔽作用,这就造成了杆塔和线路全都暴露在雷电的打击范围内;一般情况下35kV 输电线路都只装设3~4片的绝缘子,这就造成线路的抗雷击能力比较低,不管是哪种雷击方式(主要有反击雷、感应雷以及绕击雷等等)都非常容易造成跳闸问题;对于输电线路来说,绝大部分都是布设在相对偏远的地区,例如山顶、半山坡以及丘陵地区相对比较突出的点,这些位置都非常容易遭到雷电的打击,从而引发跳闸事故。
1.2雷击跳闸的类型1.2.1反击类跳闸其主要特点为:故障点的接地电阻不符合标准要求,故障点主要是一基多相或者多基多相,在发生跳闸故障时在故障点会出现比较大的雷电流,一般情况下故障相是水平排列的中相或者垂直排列的中、下相。
1.2.2绕击类跳闸其主要特点为:输电线路架设有架空避雷线,故障点的接地电阻符合标准要求,故障点属于单基单相或者相邻两基同相,在发生跳闸故障时在故障点会出现比较小的雷电流,故障点发生的位置大都是在山顶边坡等容易绕击的区域,故障相大都是水平排列的边相或者垂直排列的上相。
电厂雷击事件总结报告

XXX电厂雷击事件报告X月XX日凌晨4时17分,XXX电站遭受一次强雷击,导致电厂开关站主变辅助系统、开关站LCU、公用系统LCU等多处设备损坏,事后对此次雷击事故,具体如下:一、公用LCU1、故障现象公用系统LCU主辅电源直流部分无指示;电源模块指示异常,有电源指示但无工作指示;CPU模块无指示,通讯模块异常无通讯数据;中断量模块插件端子条联接器有明显电弧烧灼痕迹,中断量模块7、8接口有明显烧毁痕迹,模块损坏;通讯管理机电源输入正常,但装置无显示;模拟量模块前池栅前水位有输入无输出,端口故障;第二槽主板其他模块指示正常,但3套开出模块无工作指示;35KV变电站断路器直流220V操作电源空开跳闸;2、生产影响公用系统LCU瘫痪,全厂公用油、水、气辅助设备、厂用电系统、水力监测系统以及电能量测量系统不能自动采集且上送至上位机系统,中控室主控系统无数据实时检测和无法进行远方控制。
3、损坏设备清单4、抢修实施情况4.1 LCU直流电源系统无输出,拆机检查判断为主板故障,交流系统工作正常,正常情况下可满足装置工作用电,但无备用电源,待备件到厂后返厂维修;2、拆除烧毁的中断量模块以及插件端子后,CPU、电源、通讯模块恢复正常工作,原因为中断量模块端子击穿后有短路现象,引起电源模块保护断电;3、水位测量系统是经过水位测量检测装置将液位变送器信号采集后再经4~20mA模拟量送入公用LCU模拟量采集模块中,测量输入信号正常,但CPU 模块未能采集到信号,更换模拟量模块仍无反应,判定原模拟量模块被击穿后,浪涌至机箱总线,引起主板故障,为保证运行人员监视前池水位和正确调度水库,经报厂部同意将前池水位信号由公用LCU改接至2FLCU模拟量接口上送,上位机能实时监测前池水位。
5、雷击设备损坏原因分析二次侧回路分析:从受损设备外观分析,雷电流通过中断量模块采集的XX、XX开关分合信号回路引入,因电流强度较大,击穿模块21至24号端子后经模块回路分别再次击穿PLC主板及LCU装置直流电源回路中断量模块电源端子 ,反击浪涌分别在PLC主板和LCU装置电源系统直流熔断保险处能量释放完毕;经检查公用系统至35KV变电站XX、XX开关信号回路,PLC的DC24V 正电源通过电缆全程埋地与35KV变电站XX、XX开关信号端子箱相连,电缆屏蔽层接地情况为两端接地,雷击电流为35KV一次侧或10KV一次侧引入经XX、XX开关操作机构产生感应电流直接通过信号回路经中断量模块放电;一次侧受雷击部位分析:首先全厂所有计算机监控系统LCU装置主辅电源进行过清查,将LCU系统设备电源和I/O电源进行区分,中断量和普通开入信号模块设备自身具有光电隔离功能,本次雷击同时击穿LCU系统主辅电源系统和模块隔离说明浪涌电流较强;其次信号回路全程埋地形式无受雷击影响的可能性,在雷雨天气时易受雷击的部位主要有以下几点:5.2.1 35KV线路全程均有避雷线覆盖并于今年4月进行过线路接地电阻检测,数据如下:线路避雷线以及站内接地电阻为欧,接地电阻比较主厂房欧的接地偏大近10倍,为独立接地系统,公用LCU至35KV开关站信号电缆屏蔽层采用两端接地,当变电站侧有接地等电位抬升时易通过电缆屏蔽层向厂房接地系统放电;5.2.2 10KVXX线设计施工时只考虑了XXX生活区至泵站夸江段的线路避雷,而生活区至35KV变电站线路采用单杆架设,未设计线路避雷措施,只分别在线路两侧安装10KV氧化锌避雷器,当受到直接雷击时,一次线路开关即XX、XX开关易对二次辅助接点产生感应电流并通过信号回路对厂内监控系统产生冲击;5.2.3 35KV变电站站内避雷针遭受雷击后使站内接地系统等电位瞬时抬高并通过信号回路向厂区接地系统放电;6、预防和控制技术措施分别在35KV变电站和公用系统LCU中断、模拟前池水位采集信号采集回路装二次信号避雷器,并清查其他设备有无雷同情况;针对35KV及10KV线路运行时远方操作较少的情况,正常运行时将公用LCU 至35变电站XX、XX开关信号开出回路空开置于常开位置,避免再次遭受雷击时通过开出回路对厂内设备造成冲击;将公用LCU至35KV开关站所有信号回路电缆采用单侧接地方式暨将开关站侧屏蔽接地拆除,避免因两侧接地电阻不一致而产生向厂区泄流的可能性;组织研究进一步降低35KV变电站接地系统电阻的技术方案,拟减少雷击时泄流的时间;请设计单位对10KV王百线生活区段线路避雷措施进行重新设计,防止线路出现直接受雷击的可能性;二、开关站部分设备受损分析1、故障现象1#主变油泵及风机控制开关跳闸,人工合闸失败;251计量红相表信号回路空开跳闸;开关站LCU模拟量和温度量模块显示通道故障;1#主变第一组4#风机电机线圈短路,3#油泵电源进线A项击穿; 2#主变油温测温电阻、变送装置故障无信号输出;220KVXXX线路避雷器计数器数值无变化,表明线路未有泄流现象,本次雷击为升压站内避雷针受雷击通过接地网泄流;2、生产影响中控室不能监视2#主变油温变化情况,需靠人工到现场进行红外测量,准确度较差,不能实施掌握主变工作情况;1#主变强迫油循环系统不能投运已及时抢修完成 ,因该主变为扩大单元接线方式,两台机组发电时主变温度较高,影响设备安全运行;3、损坏设备清单4、抢修实施情况1#主变3号油泵电源接线A项被击穿,经现场测量短路及绝缘未见异常,将击穿部位处理后油泵恢复正常运行,同时主变辅助控制屏散热系统可投入自动运行;1#主变第一组风机4#风机电机相间绝缘监测不合格,表明电机内部线圈有短路现象,经送修后恢复正常运行;2#主变油温测温系统装置以及开关站温度量模块需待备件进行替换;5、雷击设备损坏原因分析:本次雷击为升压站内避雷针受雷击泄流,因本年度5月25日对升压站接地网电阻及避雷针接地电阻进行测量均符合设计要求:避雷针放电时对站内设备产生感应电流,如遇设备接地不良会产生感应浪涌电压,在设备绝缘薄弱处产生击穿现象;检查温度控制线箱未进行等电位接地,升压站遭受雷击时在主变测温装置回路上感应浪涌电压,致使主变冷却器控制系统温度变送器和测温装置同时损坏;1#主变3#油泵接头处电源接线有松动情况,雷击电位抬高时产生发热击穿现象;6、预防及控制技术措施主变信号回路:分别在中控室主变辅助控制屏柜及开关站LCU和现地端子箱内的模拟量和温度量信号回路加装装防浪涌模块,拟保证雷击时测量装置和监控模块不受损坏;对站内所有电气设备电源接线进行排查,对松动部位进行紧固;对主变端子箱进行等电位接地;XXX电厂设备管理部。
配电线路受雷击原因及对策分析

配电线路受雷击原因及对策分析摘要:电力能源是社会发展中至关重要的一项能源,并且随着社会经济的快速发展,人们的用电需求在不断增加,促进了我国电力行业迅速发展。
电力系统是由多个部分组成的,配电线路是其中的关键部分,只有保证配电线路不出现故障,才可以确保电力系统有效运行。
由于配电线路较长,可能会遭受雷电等袭击,在实际运行过程中常常会出现问题,导致配电线路产生相应的故障。
所以,电力企业需要做好配电线路的检修及防雷工作,确保能为人们不间断地输送电能。
关键词:配电线路;雷击原因;对策分析1配电线路雷击危害雷电是一种常见的自然现象,对于电力系统的危害较大。
作为大自然中的大气放电现象,雷电是由雷云引起的。
雷云一雷云放电、雷云内部放电以及雷云一大地放电是产生雷电主要三种途径。
其中,虽然发生概率最高的是雷云一雷云放电,但危害最大,对配电线路的安全产生巨大威胁的是雷云一大地放电,因此当今对于雷电课题,众多学者的关注放在了云地放电上。
对于电力系统的线路和设备来说,雷电的主要危害为是其将会产生能量巨大的大气过电压,由雷云会对架空线路放电或对架空线路附近地面放电引发,其巨大的能量将会击穿杆塔的绝缘子并对其他电气设备造成不同程度的损害。
雷电产生的过电压按照落雷点与线路的距离,可分为直击雷过电压和感应雷过电压。
二者作用机理业有较大不同。
其中,直击雷过电压对于架空线路的危害较为严重,特别是对于较高电压等级的配电网来说。
但是众多的资料显示,虽然直击雷过电压值比较高,但是其发生的概率相对于感应雷比较低。
加之当今社会的迅速发展,建筑物比较高大以及绿化数目的增多,这也在一定程度上又进一步降低了线路遭受直击雷的概率。
与之相对,在雷击灾害中,感应雷过电压出现的概率相较于直击雷较高。
根据我国电力系统雷击灾害的统计显示,感应雷造成的雷击事故约为直击雷4倍。
2配电线路发生雷击现象的主要原因分析(1)缺少避雷装置。
根据调查发现,发生雷击现象的配电线路,大部分是因为没有安装防雷装置。
变电站电子设备的防雷分析及保护措施

一、概述随着我国现代化建设的不断提高,各类先进的电子设备广泛地运用到了各电压等级的变电站内。
但是一方面由于电子设备内部结构高度集成化,从而造成设备耐压、耐过电流的水平下降,对雷电(包括感应雷及操作过电压浪涌)的承受能力下降,另一方面由于信号来源路径增多,系统较以前更容易遭受雷电波侵入。
据统计,雷电对电子设备的损坏占设备损坏因素的比例高达26%,例如变电站线路落雷,造成主控地与设备之间的电位差而损坏大量的保护设备;变电站的微波塔落雷,由于感应过电压而造成大量的通讯、远动设备损坏,我们应当对雷电的危害性引起高度重视,加强防雷意识,做好变电站预防工作,将雷害损失降到最低限度。
二、几种主要的雷击方式2.1雷的直击和绕击雷云单体浮在大地上空,其所带电荷拖着地表相反电荷犹如一个影子随风移动。
如果途经变电站的避雷针或地表其他突出物,地电荷会导致突出物顶端电场畸变集中。
闪电开展之前先是雷云底部的始发先导按间歇分级跃进方式向地表发展,当距地面50~100m时,由避雷针等地表电场畸变集中的地方产生垂直向上的迎面先导。
两者相接,进入直击或绕击的主放电阶段。
通常当地面上突出物的高度为h,雷云正下方的平均电场强度大于和等于580h-0.7 kV/m 时,则该突出物将容易受到直击雷。
原因是高为h的避雷针可影响雷云单体向下的始发先导发展方向的半径,用公式表述为:R=16.3h0.61m。
该式还表明,地表安装独立避雷针后,将会在其附近出现大量的散击,甚至对避雷针进行直击,对受避雷针保护范围内的物体进行绕击。
一次雷击主放电一般为几万安培到十几万安培,释放的能量相当大,瞬间所产生的强大电流、灼热的高温、猛烈的冲击波、剧变的静电场和强烈的电磁辐射等物理效应给人们的生产生活带来多种危害,如引起火灾和大爆炸,金属导体连接部分断裂破损,建筑物倒塌,电气设备损坏等等。
2.2雷击反击直击雷电流通过地表突出物的电阻入地散流。
假如地电阻为10Ω,一个30kA的雷电流将会使地网电位上升至300kV。
输电线路雷击故障的防护措施分析

输电线路雷击故障的防护措施分析首先,针对输电线路雷击故障,引入防雷装置是必不可少的。
防雷装置主要由闪络器、接地装置和避雷针等组成。
闪络器能够将浮电位释放到大地上,防止雷电通过设备或线路流入地方电劢。
接地装置能够使系统设备、金属构架、设备房等与地之间导通,形成一个良好的大地接点,从而使雷电通过大地排除。
避雷针则分散雷电的能量,减少雷击的概率。
通过引入这些防雷装置,可以有效地减少雷击故障的发生,提高输电线路设备的安全性。
其次,应加强对输电线路设备的维护和检测工作。
定期进行设备的检查和维护,发现设备存在的潜在故障问题,并及时处理,是预防雷击故障的重要措施之一、通过使用红外热成像仪等设备,对线路设备进行定期的热成像检测,可以发现设备存在的潜在故障问题,如接触不良、绝缘老化等,及时进行维修和更换,减少雷击故障的发生。
此外,合理的线路布置和线路设计也是预防雷击故障的重要因素。
合理的线路布置可以减少雷电对输电线路的冲击程度,降低雷击故障的概率。
另外,合理的线路设计也可以减少雷电对设备和系统的影响,从而提高电力系统的稳定性。
例如,合理的避雷子站布置可以使雷电不易击中设备,减少雷击故障的发生。
此外,对于重要的输电线路,还可以采取无线遥测监测系统进行实时监测。
该系统可以通过无线电信号将线路的状态信息传送到监测中心,及时发现恶劣天气下可能导致雷击故障的情况,采取相应的应对措施,防止事故的发生。
最后,加强人员培训和安全教育也是预防雷击故障的重要环节。
员工应具备基本的防雷知识,了解防雷装置的工作原理和使用方法,掌握事故应急处理的方法,并定期进行相关的培训与演练,提高员工的应急处理能力。
此外,还需要加强对操作人员的安全教育,提高他们的安全意识和责任意识,防止因人为操作不当导致的雷击事故。
综上所述,输电线路雷击故障的防护措施主要包括引入防雷装置、加强设备维护和检测、合理的线路布置和设计、无线遥测监测系统以及加强人员培训和安全教育等。
探析 10kV 配电线路雷击事故产生原因及防雷措施
探析 10kV 配电线路雷击事故产生原因及防雷措施摘要:在供电工作中,10kV配电线路的安全稳定运行,与社会生产和人民生活用电关系密切,因此,电力工作者需要确保10kV配电线路处于良好运行,这也是各级供电部门的工作重点。
在实际工作中,10kV配电网的安全稳定运行,常因雷击事故的发生,给供电的稳定性与安全性带来不利影响,也严重影响生产与生活的正常用电。
为此,需要重视对10kV配电线路发生雷击事故的原因进行认真分析与总结,才能及时发现配电网运行过程中发生的雷击隐患,及时采取相应的安全措施,防止雷击事故发生,更好的保障配电线路的运行安全,为人们生产、生活提供良好的用电服务。
关键词:10kV配电线路;雷击事故;原因;防雷措施引言对10kV配电线路来说,雷击带来的危害极其严重,会导致电源开关跳闸、绝缘子串炸裂,进而引发一系列的接地故障。
当配电线路受到雷击时,极有可能因为接地线上的高电压,导致塔杆上的间隙被击穿。
除此之外,当导线被雷电击中时,会导致绝缘闪络并引发相间短路,这种短路会造成金属器具烧断,从而引发故障。
1雷击对架空配电线路的危害雷电是一种伴有闪电和雷鸣并释放巨大能量的自然现象,闪电平均电流可达数万安,电压可达亿伏。
雷电具有很强的破坏性,其对架空配电线路的危害主要有以下三点。
(1)造成线路绝缘子闪络,雷击可能导致绝缘子损坏,引起单相接地及相间短路,使得线路导线、金具、接地引下线受损。
(2)造成供电系统跳闸或线路输供电中断。
(3)形成过电压,以行波的形式向变电站传输,对变电站运行设备绝缘造成损害。
2配电线路遭受雷击的原因2.1绝缘子存在质量问题绝缘子是10kV配电线路中常用的电气部件,是一种特殊的绝缘部件,在架空输电线路中起到重要作用。
如果绝缘子自身质量存在问题,极易在雷击发生时,因过电压而导致绝缘子被击穿或沿表面闪络,导致配电线路出现接地故障和短路故障,影响配电网正常运行。
2.2配电线路的地理位置不利于防雷地理环境也会对避雷器的效果带来影响。
配电变压器雷击及预防
配电变压器雷击及预防配电变压器是电力系统中的重要设备,负责将高压输电线路输送的电能变换为适合用户使用的低压电能。
然而,配电变压器在工作过程中容易受到雷击的影响,导致设备损坏甚至引发事故。
为了保障电力供应的稳定性,预防配电变压器雷击是非常重要的。
本文将从雷击的原因分析、雷击对配电变压器的影响和预防雷击的措施等方面进行阐述。
雷击是自然界中常见的现象,它是由大气中的正负电荷不均引起的。
在雷电活动过程中,闪电会释放极高的电能,如果直接击中配电变压器,会对设备产生严重的破坏作用。
此外,雷电还会引发感应电流、电磁冲击等现象,对变压器正常运行产生不利影响。
因此,预防雷击对配电变压器的影响具有重要意义。
首先,雷击对配电变压器的影响主要体现在以下几个方面:1. 损坏设备:雷电的强大能量会直接冲击到配电变压器上,造成绝缘破损、设备内部结构变形或燃烧等现象,严重情况下可能导致设备报废。
2. 引发电弧和火灾:雷击会引发强电弧,给周围环境带来高温和火源,如果未及时处理,可能引发火灾。
3. 传导电压冲击:雷电经过地线传导到地面时,会产生传导电压冲击现象,使变压器主绕组和绝缘体受到较大电压冲击,进而破坏绝缘系统。
为了预防雷击对配电变压器的影响,我们可以采取以下措施:1. 合理选择变压器的安装位置:在选址时,要选择地势较低、较为开阔没有高建筑物、树木等物体过多的地方,并保持周围的电气设备和金属结构物与变压器有一定距离。
2. 安装避雷装置:在配电变压器上安装合适的避雷装置,例如避雷针、避雷器等,能够将雷电引导到地下,降低雷击的可能性。
3. 提高绝缘等级:在变压器的设计和制造过程中,加强对绝缘材料和结构的选择和改进,提高绝缘等级,增强其抗雷击能力。
4. 增加接地电阻:通过增加变压器的接地电阻,降低雷电进入设备的可能性,减少雷击损害。
5. 定期检测和维护:定期对配电变压器进行绝缘电阻测试、避雷器检查和设备清洁等工作,发现问题及时处理,确保设备的正常运行。
打雷烧坏电器的原理
打雷烧坏电器的原理打雷是一种天气现象,在大气运动过程中会产生巨大的静电场,当这些静电积聚到一定程度时,就会发生放电现象,也就是我们常说的闪电。
当闪电发生时,其强大的电流和电压可能会对电气设备造成损坏。
1.静电放电:打雷是大气中静电积累释放的情况之一、雷云在形成的过程中,大量的水蒸汽和冰晶云粒子之间会发生摩擦,从而使得其中的电荷分离。
冰晶云粒子带负电,而水蒸汽带正电。
正负电荷的积聚会导致雷云发生静电放电,形成一道电流通道,这就是我们看到的闪电。
由于闪电放电时产生的电流非常强大,达到数十千安甚至更高,而且放电过程非常短暂,只有几百分之一秒。
这样的强大电流瞬间通过电器设备,可能会引发设备内部的短路或过电流。
2.感应电压:当闪电发生时,经过长导线或电缆的电流会产生感应电压。
这是由于电流通过导线或电缆时,会在周围产生一个磁场。
当闪电靠近导线或电缆时,由于闪电放电产生的磁场强度极大,会引起导线或电缆中的感应电流。
这样的感应电流也会通过电器设备,可能引发设备内部的短路或过电压。
3.电磁辐射:雷电产生的电磁辐射也可能对电器设备产生负面影响。
雷电是一种强烈的电磁波源,有很高的频率和能量。
当雷电电流通过大地时,会产生地电磁场,进而产生电磁辐射。
这些电磁辐射会通过电器设备的电源线或其他金属部件,导致设备内部电子元件的过电压或过电流,从而损坏设备。
综上所述,打雷烧坏电器的原理主要是由于雷电产生的强大电流和电压,以及其产生的感应电压和电磁辐射。
这些因素都可能对电器设备产生不可预测的损坏。
为了避免这种情况发生,我们可以采取一些预防措施,例如安装避雷装置,使用防雷插座,或者在打雷时及时拔掉电器设备的电源,防止雷电的电流和电压传入设备内部。
此外,还可通过正确接地电器设备,减轻雷电对设备的影响。
雷击跳闸的成因分析
一、雷电对电力系统运行的影响
雷击架空输电线路引起的停运是我国输电线路的主要事 故之一。2005— 年国家电网公司线路雷击跳闸次数 逐年增加,各年雷击跳闸次数约占总跳闸次数的40%。 雷击引起的线路跳闸占输电线路总跳闸次数的近一半。
线路雷害事故的形成一般要经历如下阶段:在雷电过电 压作用下,线路绝缘发生闪络,然后从冲击闪络转化为 稳定的工频电弧,引起线路跳闸。
三、雷击的种类——反击与绕击
雷击杆塔塔顶时,如果雷电流较大或接地情况不够好, 就会使杆塔电位升高,造成反击,引起线路绝缘闪络。
雷电绕击导线。运行经验表明输电线路绕击耐雷水平比 较低,装设双避雷线情况下,雷电绕击导线的概率较小, 但是一旦出现,很容易引起线路绝缘闪络。
四、雷击的危害(1)
(1)造成线路绝缘子串闪络,严重时引起绝缘子串炸裂或 绝缘子串脱开,引起单相接地或相间短路,其短路电流 可能把导线、金具、接地引下线烧伤甚至烧断。其烧伤 的严重程度取决于短路功率及其作用的持续时间。
四、防雷措施——防反击措施
四、防雷措施——防反击措施
(1)降低杆塔接地电阻是预防反击的主要措施之一。 (2) 架设耦合地线。架设耦合地线能在雷击杆塔时起
分流作用和耦合作用,降低杆塔绝缘子串上承受的电压, 提高线路的耐雷水平。 (3)线路型氧化锌避雷器。 (4) 增加杆塔绝缘。 (5)安装可控放电避雷针。
另一种情况是,在雷电闪击时,由于雷电流的变化率大而在雷电 流的通道附近就形成了一个很强的感应电磁场,对建筑物内的电 子设备造成干扰、破坏,又可能使周围的金属构件产生感应电流, 从而产生大量的热而引起火灾。
另外,当架空线遭受直击雷或产生感应雷,高电位便会沿着导线 电源线以及信号侵入变电站或建筑物内,这种雷电波侵入也会对 电气设备造成危害或使建筑物内的金属设备放电,引起破坏作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电气设备雷击分析
摘要:雷电严重威胁着配电设备的安全,轻则配电设备失灵,重则配电设备烧坏,甚至导致人员伤亡。
因此,需要加强重视防雷措施,在工程设计阶段就应该认真考虑配电系统的防雷,按照等电位的原则,根据实际情况,做好符合要求的共用接地网,避免雷击的危害。
关键词:雷击危害等电位接地网
1.概述
对雷电的危害大家众所周知,如森林、油气挥发场所等的火灾大部分为雷击所致。
近几年来我厂仪表、计算机等电子设备屡被雷击,造成很大的经济损失。
雷电严重威胁着配电设备的安全,轻则配电设备失灵,重则配电设备烧坏,甚至导致人员伤亡。
因此加强对雷电的认识,做好相应的防雷措施不容忽视。
目前的防雷措施局限性普遍存在,不能做到完全有效地防止雷电的破坏,人们对复杂的雷电机理将进一步研究,努力将雷击造成的损害降低。
2.雷击的危害
当雷击现象发生时,建筑物的外部防雷装置确实能有效地抵御了雷击对建筑物的破坏,同时均匀的避雷引下线与建筑物接地的均压环也起到法拉第网笼的作用,保证建筑物内的人员不致因跨步电压升高而导致触电事故。
但这时当雷电击中建筑物防雷装置或击中附近其他建筑物的避雷针(带)并由引下线导入大地时,瞬间内在引下线自上而下的产生一个很强的变化磁场。
处在这个电磁场作用下的导体,便会感应产生电压,其数值也可达数十千伏,处在这个磁场作用范围的电气、信号、电源及它们的传输线路都因相对地切割了这个变化的磁场磁力线而产生出感应高压,从而将用电设备击坏。
3.电气设备的防雷措施
建筑物本身的防雷性能至关重要,按照国家强制性标准GB50054-95,对设备与建筑物的防雷接地应采用等电位连接,建筑物本身和其内外各种导电物用导体焊接起来。
现代建筑物防雷主要由顶部接闪器、网状避雷带、建筑物的梁、柱、楼板和四周墙体内的主钢筋作引下线,利用地下钢筋混凝土基础作为接地体。
为了防止直击雷,保护室外所有设备,可根据实际情况,安装不定数量的避雷针。
加装避雷器保护室外配电设备,做统一接地网,保证该接地网与所有设备的接地引下线体焊接。
室内各种柜外皮、金属屏与底座槽钢连接,槽钢与电缆沟道内的电缆支架用镀锌扁钢焊接,与室外接地网形成一个完整的大接地网,成为一个整体。
从人身和设备安全以及抗干扰的角度来说,保护地的可靠接地非常重要,一般情况下保护地和设备的信号地在其内部连接在一起,设备采用共用接地系统。
实行等电位连接可以彻底消除雷电引起的毁坏性的电位差,将金属管道、信号线、电源线通过过压保护器进行连接,内层保护区的界面处依此进行局部等电位连接,最终与等电位连接母排相连。
4.仪表设备的防雷措施
仪表设备防雷接地是很重要的。
按照石油化工仪表接地规范SH-T3081-2003,仪表电缆槽、仪表电缆保护管应在进入控制室处、雷电涌保护器均与电气专业的防雷电感应的接地排相连。
仪表及控制系统工作接地的各接地干线应分别接到工作接地汇总板,再由工作接地汇总板经两根单独的工作接地干线接到总接地板。
接地电阻小于4Ω。
屏蔽是减少雷击电磁波干扰的有效措施。
首先可以利用建筑物进行自然屏蔽,在建造建筑物时,将建筑物结构中的自然金属构件连接在一起,初级屏蔽侵入的雷击电磁脉冲,降低内部配电设备的屏蔽要求。
而精密的配电设备,则应采用连续金属层封
闭,全面截断雷电电磁脉冲波入侵的通道,并置于专门的屏蔽室内。
5.结束语
随着电子技术的发展,数字控制技术被广泛运用于配电设备中,电路的微电子技术成份逐年增加,耐受雷击及其电磁效应的能力却降低了,抗雷击的防护标准逐步提高,必须构建合理高效的分流、屏蔽机制、拦截平台、接地信号等科技技术措施来加以保护,在现实生产生活中应得到足够的重视。
为了防止雷电对配电设备的侵害,保证配电设备的安全运行,有必要有选择性的采取适当的防雷击保护措施。
在工程设计阶段就应该认真考虑配电系统的防雷,按照等电位的原则,根据实际情况,做好符合要求的共用接地网,避免雷击的危害。