第三讲MATLAB的符号运算

合集下载

MATLAB应用第三章-符号计算

MATLAB应用第三章-符号计算
第三章 MATLAB符号计算
3. 1 数据类型 3.2 符号运算
数学运算中除了数值运算外,还有大量抽象运算(计算式中带有符号变 量、表达式的运算)。Matlab就是利用maple软件的符号运算功能来实 现这些符号运算的。 Maple : 通用的数学和工程软件,是世界上最值得信赖、最完整的数学 软件之一,被高等院校、研究机构和公司广泛应用,用户渗透超过97% 的世界主要高校和研究所,超过81%的世界财富五百强企业。 Maple提供世界上最强大的符号计算,无与伦比的数值计算,支持 用户界面开发和网络发布,内置丰富的数学求解库,覆盖几乎所有的数 学分支,所有的操作都是在一个所见即所得的交互式技术文档环境中完 成,完成计算的同时也生成了专业技术文件和演示报告。 Maple不仅仅提供编程工具,更重要的是提供数学知识。Maple是 教授、研究员、科学家、工程师、学生们必备的科学计算工具,从简单 的数字计算到高度复杂的非线性问题,Maple都可以帮助您快速、高效 地解决问题。用户通过Maple产品可以在单一的环境中完成多领域物理 系统建模和仿真、符号计算、数值计算、程序设计、技术文件、报告演 示、算法开发、外部程序连接等功能,满足各个层次用户的需要,从高 中学生到高级研究人员。
格 Eg 3-2 补充。 补充。 2)char函数创建:char(‘string1’,’string2’, …); Eg 3-3 各个字符串不须同大小, 各个字符串不须同大小,该函数自动补充空白 字符。 字符。 Eg 3-4
字符串与单元 1)cellstr将字符数组转换成单元数组。 2)char函数将单元数组转换成字符数组。 数组的转换 字符串的比较 1)strcmp(a,b):比较两个字符串所有字符是
Grand total is 33 elements using 462 bytes

matlab中的数学符号与运算

matlab中的数学符号与运算

matlab中的数学符号与运算MATLAB(Matrix Laboratory)是一种用于数值计算和科学工程应用的高级编程语言和环境。

MATLAB中包含了丰富的数学符号和运算,用于进行矩阵操作、线性代数、微积分等数学计算。

以下是MATLAB中一些常见的数学符号和运算:1. 数学符号:-矩阵:MATLAB 中的基本数据类型是矩阵,可以使用方括号`[]` 来表示。

例如,`A = [1, 2; 3, 4]` 表示一个2x2的矩阵。

-向量:向量可以表示为一维矩阵,例如,`v = [1, 2, 3]` 表示一个包含3个元素的行向量。

-转置:使用单引号`'` 来进行转置操作。

例如,`A'` 表示矩阵A的转置。

-点乘和叉乘:点乘使用`.*`,叉乘使用`.*`。

例如,`A .* B` 表示矩阵A和B的对应元素相乘,`A * B` 表示矩阵A和B的矩阵乘法。

2. 数学运算:-基本算术运算:MATLAB支持基本的算术运算,如加法、减法、乘法和除法。

例如,`result = 2 + 3`。

-元素-wise 运算:MATLAB 支持元素-wise 的运算,即对矩阵或向量中的每个元素进行运算。

例如,`C = A .* B` 表示矩阵A和B的对应元素相乘。

-矩阵操作:MATLAB 提供了许多用于矩阵操作的函数,如`inv`(求逆矩阵)、`det`(求行列式)、`eig`(求特征值)等。

-积分和微分:MATLAB 提供了`int`(积分)和`diff`(微分)等函数,用于进行积分和微分运算。

-方程求解:MATLAB 提供了`solve` 函数,用于求解方程组。

这些是MATLAB中一些常见的数学符号和运算。

MATLAB 的强大之处在于它的矩阵操作能力,使得它非常适用于数学和工程领域的计算和建模。

如果你有特定的数学运算需求,可以查阅MATLAB 的官方文档或在线资源以获取详细信息。

第3章 MATLAB符号计算

第3章  MATLAB符号计算
指数和对数函数。在符号计算中,指数函数sqrt、exp、expm的使用 方法与数值计算的使用方法完全相同;对数函数在符号计算中只有 自然对数log(表示ln),而没有数值计算中的log2和log10。
复数函数。在符号计算中,复数的共轭conj、求实部real、求虚部 imag和求模abs函数与数值计算中的使用方法相同。但注意,在符号 计算中,MATLAB没有提供求相角的命令。
2.使用syms命令创建符号变量和符号表达式
语法:
syms('arg1', ' arg2',…,参数) syms arg1 arg2 … 参数
%把字符变量定义为符号变量 %把字符变量定义为符号变量的简洁形式
说明:syms用来创建多个符号变量,以上两种方式创建的符号对象是相同的。参数设置和前面的sym命令 相同,省略时符号表达式直接由各符号变量组成。 【例3.2续】 使用syms命令创建符号变量和符号表达式。
>> syms x y real >> z=x+i*y; >> real(z) ans = x >> sym('x','unreal'); >> real(z) ans = x/2 + conj(x)/2
%创建实数符号变量 %创建z为复数符号变量 %复数z的实部是实数x
%清除符号变量的实数特性 %复数z的实部
符号运算中的运算符有以下2种。 (1)基本运算符。
① 运算符“”、“”、“*”、 “\”、“/”、“^”分别实现符号 矩阵的加、减、乘、左除、 右除、求幂运算。
② 运算符“.*”、“./”、“.\”、 “.^”分别实现符号数组的乘、 左除、右除、求幂,即数 组间元素与元素的运算。

MATLAB符号运算运用

MATLAB符号运算运用

MATLAB符号运算运用MATLAB 是一种数值计算和编程环境,它可以进行符号运算,即对代数表达式进行操作和计算。

在 MATLAB 中,符号运算的主要工具是符号计算工具箱(Symbolic Math Toolbox),它提供了一系列函数和命令,用于处理和求解符号表达式。

1.创建符号表达式首先,我们可以通过使用符号变量来创建符号表达式。

符号变量可以使用 sym 函数定义。

例如,创建一个符号变量 x:```syms x```然后,可以使用这个符号变量来创建符号表达式。

例如,创建一个简单的二次多项式表达式:```f=x^2+2*x+1;```2.符号表达式运算一旦有了符号表达式,就可以对其进行各种运算,包括求导、积分、求解方程等。

- 求导:使用 diff 函数可以对符号表达式进行求导。

例如,对上述的 f 求导:```df = diff(f, x);```- 积分:使用 int 函数可以对符号表达式进行积分。

例如,对 f 在区间 [0, 1] 上进行积分:```I = int(f, 0, 1);```- 求解方程:使用 solve 函数可以对符号表达式进行求解。

例如,求解方程 f = 0:```sol = solve(f == 0, x);```3.简化符号表达式有时,符号表达式可能过于复杂,可以使用 simplify 函数对其进行简化。

例如,简化一个复杂的三角函数表达式:```syms xf = sin(x)^2 + cos(x)^2;sf = simplify(f);```4.数值近似符号表达式可以通过使用 vpa 函数进行数值近似。

例如,将一个符号表达式近似为 5 位小数:```syms xf = exp(x);f_num = vpa(f, 5);```在MATLAB中,符号运算可以应用于各种数学问题,包括求解方程、微积分、矩阵计算等。

它提供了一种便捷的方式来处理代数表达式,而不需要将其转化为数值形式进行计算。

符号运算 matlab

符号运算 matlab

符号运算 matlab符号运算是一种在数学上进行推导和计算的重要方法,在Matlab 中也有相应的符号运算功能。

通过符号运算,可以进行高精度计算、求解方程、求导积分、代数化简等操作。

本文将介绍 Matlab 中符号运算的基本使用方法和相关函数。

1. 符号变量的定义和赋值在 Matlab 中,可以使用 syms 函数定义符号变量,并使用等号将其赋值。

例如,定义符号变量 x 和 y:syms x yx = 2;y = x + 3;这里,定义了两个符号变量 x 和 y,并将 x 赋值为 2,y 赋值为 x+3。

需要注意的是,符号变量和数值变量在 Matlab 中是不同的类型,不能直接进行运算。

2. 符号表达式的运算在 Matlab 中,可以使用符号表达式进行各种运算,包括加减乘除、幂运算、三角函数、指数函数等。

例如,定义符号表达式 f(x) = 2*x^3 + 3*x^2 - 5*x + 1:syms xf(x) = 2*x^3 + 3*x^2 - 5*x + 1;然后可以对 f(x) 进行各种运算,如求导、积分、代数化简等。

例如,求 f(x) 的一阶导数:diff(f(x), x)这里使用 diff 函数求 f(x) 的一阶导数,结果为 6*x^2 + 6*x - 5。

3. 方程求解在 Matlab 中,可以使用 solve 函数求解方程。

例如,求解方程 x^2 + 3*x + 2 = 0:syms xsolve(x^2 + 3*x + 2 == 0)solve 函数返回的是符号变量的解,需要使用 double 函数将其转换为数值变量。

4. 代数化简在 Matlab 中,可以使用 simplify 函数对符号表达式进行代数化简。

例如,代数化简表达式 (x^2 + 2*x + 1)/(x + 1):syms xsimplify((x^2 + 2*x + 1)/(x + 1))simplify 函数会自动将表达式化简为最简形式。

第3章 MATLAB符号计算-习题讲解

第3章 MATLAB符号计算-习题讲解

9.微分 对x、y、c、d进行微分: f=sym('a*x^3+b*y^2+c*z+d') diff(f) //x为自由变量,可缺省 diff(f,'y') diff(f,'c') diff(f,'d') 求y趋向于1的极限: limit(f,'y',1) 对x的2、3次微分: diff(f,2) diff(f,3)
P296: 1,3,4,5,7,8,9,11,15
>> A.*B ans = [ a*c, b*d] [ c*e, d*f]
1. f=sym(‘a*x^3+b*x^2+c* x+d’) 3. A=sym('[a b;c d]')
B=sym('[c d;e f]') A+B ans = [ a+c, b+d] [ c+e, d+f] >> A-B ans = [ a-c, b-d] [ c-e, d-f]
7.复合函数/逆函数f =1-sin(x)^2 算值:
g=2*x+1
f=sym('1-sБайду номын сангаасn(x)^2')
g=sym('2*x+1') subs(f,1) 复合: compose(f,g) 逆函数: finverse(g)
8.多项式转换 多项式系数形式: f=sym('x^3+3*x^2-6*x+5') sym2poly(f) 代替: subs(f,'a') subs(f,5)
11.泰勒级数展开式 >> syms x; >> taylor(sin(x),10) ans = x-1/6*x^3+1/120*x^5-1/5040*x^7+1/362880*x^9

3.符号运算

3.符号运算
对于一些习惯于实用计算器或者只想做一些简单 的符号运算及图形处理的用户来说,下面的内容可能 很有用,这就是Matlab提供的图示符号函数计算器, 它虽然功能简单,但操作方便,可视性强,深受用户 欢迎。 在Matlab的命令窗口中输入funtool,即可进入图 示化函数计算器的用户界面。 1.输入框的控制操作 2.命令按钮的操作 (1).函数自身的运算 (2).函数与常数之间的运算 (3).两函数间的运算
2.非线性方程组的符号解法 (1).非线性方程求解: solve(‘fun’),求得解析解 x=solve(‘x^2+3*x+4=0’) %得解析解 x1=vpa(x,6) %化为数值解 (2).非线性方程组求解 fsolve(‘fun’,x0) fun由M文件给出函数, x0为初值,是一种迭代解法.
2. 绘制函数图函数 fplot fplot(fun,lims) %fun为M文件的函数名或是对 变量x的可执行字符串. fplot(fun,lims,n) %n--线条的宽度 fplot(fun,lims,’LinSpec’) %LinSpec线条的类型 演示8: fuhao08.m
22
3.10 图示化函数计算器
23
3.11 Maple接口
相对于Maple软件的2000多条的符号计算命令来说, 前面介绍的内容只是利用了Maple中最常用的计算命令中 的一部分。为了在Matlab的工作环境下进一步熟悉Maple 的其他符号计算功能,本节将介绍如何在Matlab中直接调 用Maple的内部命令进行计算。 在Matlab中实现Maple函数的直接调用可由maple和 mfun两个命令来实现。
1. maple命令 在Matlab的环境下,为了实现对Maple绝大多数的 符号计算命令的调用,Symbolic Toolbox工具箱中提 供了一个通用的命令maple。

实验三MATLAB的符号运算

实验三MATLAB的符号运算

实验三 MATLAB 的符号运算一 实验目的:1.掌握符号对象的创建及符号表达式化简的基本方法;2.掌握符号微积分、符号方程的求解的基本方法。

二 实验装置:计算机三 实验内容:1.符号对象的创建(1) 建立符号变量使用sym 函数把字符表达式'2*sin(x)*cos(x)'转换为符号变量。

2.符号表达式的化简(1)因式分解对表达式f=x 3-1 进行因式分解。

(2) 符号表达式的展开对符号表达式f=cos(x+y)进行展开。

(3)符号表达式的同类项合并对于表达式f=(2x 2*(x+3)-10)*t ,分别将自变量x 和t 的同类项合并。

(4)符号表达式的化简(5)符号表达式的分式通分对表达式 进行通分。

(6)符号表达式的替换用新变量替换表达式a+b 中变量b 。

3.符号微积分(1) 符号极限计算表达式 的极限。

(2)符号微分计算表达式f=sinx 的微分。

(3)符号积分。

例:简化32381261+++=xx x f 22x y y x f +=xtgx x lim 0→()⎰+dzz x31计算表达式 的积分。

(4)符号求和计算表达式 4.符号方程的求解求解代数方程组 四 实验要求:1.按照要求预习实验;2.在MATLAB 中运行实验程序验证仿真结果;3. 按照要求完成实验报告。

.10005∑k⎪⎩⎪⎨⎧=--=-+=+-043035218472z y x z y x z y x。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例:syms a x
f=sin(a*x)
df=diff(f)
dfa=diff(f,a,2)
符号表达式的极限
• limit(F,x,a) 求当x→a时,表达式F的极限
• limit(F, a) 默认自变量时,趋于a的极限
• limit(F)
默认自变量,默认a=0
• limit(F,x,a, 'left') 取F的左极限
泰勒级数逼近分析
• 该界面用于观察函数f(x)在给定区间被N
阶泰勒多项式Tn(x)逼近的情况。
• f(x)的输入可由命令taylortool(fx)引入,
或者在栏中直接输入表达式,回车确定。
• N默认值为7,a是级数的展开点。 • 函数的观察区间默认为(-2piபைடு நூலகம்2pi)。
符号运算的功能
• 符号表达式、符号矩阵的创建 • 符号线性代数 • 因式分解、展开和简化 • 符号代数方程求解 • 符号微积分 • 符号微分方程
vpa(x,n) —— 求符号解的近似解,该近似解的有 效位数由n来决定。
digits(25) vpa(1/2+1/3) ans = .8333333333333333333333333
vpa(5/6,40) ans = .8333333333333333333333333333333333333333
第三讲 MATLAB的符号运算
• 科学与工程技术中的数值运算固然重要,但自
然科学理论分析中各种各样的公式、关系式及 其推导就是符号运算要解决的问题。
• 在Matlab7.0中,符号计算虽以数值运算的补充
身份出现,但它们都是科学计算研究的重要内 容。
• Matlab开发了实现符号计算的工具包Symbolic
例:用函数命令sym( )和syms( )来创建符号对 象并检测数据类型。
a=sym('a')
注意两个 a的区别
b=sym('c')
classa=class(a)
classb=class(b) 可看出两个变量均为符号对象
syms a b c d e f g h
whos
也可以查看所有变量类型
从上述比较来看:当需要同时定义多个符号 变量时,使用syms( )更简洁一些。
行是自变量 x 的取值范围和常数 a 的值。
• 第四行只对 f 起作用,如求导、积分、简
化、提取分子和分母、倒数、反函数。
• 第五行是处理 f 和 a 的加减乘除等运算。
• 第六行前四个进行 f 和 g 之间的运算,后
三个分别是:求复合函数;把 f 传递给 ; swap是实现 f 和 g 功能的交换。
• 虽然并非表达式中的字符越少,表达式
就越简单,但采用这个标准往往能够得 到满意的结果,尤其是对于包含三角函 数的表达式。
例:sym x
simple(cos(x)^2+sin(x)^2)
• 从结果看出,simple比较这些不同函数的
结果,最终把最少字符作为标准。
4. 符号微积分与积分变换
• diff(f) — 对缺省变量求f的微分 • diff(f,v) — 对指定变量v求微分 • diff(f,n) — 对默认变量求n阶微分 • diff(f,v,n) —对指定变量v求f的n阶微分
多项式,三角函数、指数函数、对数函数。 例:syms x y;
f=(x+y)^3; f1=expand(f) f1 = x^3+3*x^2*y+3*x*y^2+y^3 例:h=cos(x-y) expand(h)
• factor(S) 将系数为有理数的多项式(矩
阵)S,表示成低阶多项式相乘的形式, 如果不能分解,则返回S本身。 例:syms x y
符号常量
• 当数值常量作为sym( )的输入参量时,就
建立了一个符号对象——符号常量。
• 虽然看上去是一个数值量,但已经是一
个符号对象了。
例:a=3/4; b='3/4'; c=sym(3/4); d=sym('3/4'); whos 查看变量类型
a为实双精度浮点数值类型;b为实字符类 型;c和d都是符号对象类型。
• 最后一行是对计算器自身进行操作。
• Funtool计算器存有一张函数列表fxlist
这7个功能键分别是:
• Insert:把当前激活窗的函数写入列表 • Cycle:依次循环显示fxlist中的函数 • Delete:从fxlist列表中删除激活窗的函数 • Reset:使计算器恢复到初始调用状态 • Help:获得关于界面的在线提示说明 • Demo:自动演示 • Close:关闭整个计算器
一、符号运算的基本操作
1. 什么是符号运算 • 与数值运算的区别
※ 数值运算中必须先对变量赋值, 然后才能参与运算。 ※ 符号运算无须事先对独立变量 赋值,运算结果以标准的符号形式 表达。
• 特点:
运算对象可以是没赋值的符号变量,以推理解析的方 式进行,因此不受计算误差累积所带来的困扰。
可以给出完全正确的封闭解或任意精度的数值解(当封 闭解不存在时)。
1.符号矩阵运算
数值运算中,所有矩阵运算操作指令都比 较直观、简单。例如:a=b+c; a=a*b ; A=2*a^2+3*a-5等。
符号运算中,很多方面在形式上同数值计 算都是相同的,没必要重新学习新的规则。
2. 任意精度的数学运算
在symbolic中有三种不同的算术运算:
1. 数值类型 matlab的浮点算术运算 2. 有理数类型 maple的精确符号运算 3. vpa类型 maple的任意精度算术
A(2,2)='4*b' A1 = [ a, 2*b]
[3*a, 4*b] A2=subs(A1, 'c', 'b') A2 =[ a, 2*c]
[3*a, 4*c]
符号矩阵与数值矩阵的转换
❖将数值矩阵转化为符号矩阵
函数调用格式:sym(A) clear A=[1/3,2.5;1/0.7,2/5] A=
由符号变量构成的符号函数和 符号方程
• 符号表达式是由符号常量、符号变量、符号函
数运算符以及专用函数连接起来的符号对象。
• 包括:符号函数和符号方程。判断看带不带等
号。 例:syms x y z; f1=x*y/z;
f2=x^2+y^2+z^2; f3=f1/f2;
e1=sym('a*x^2+b*x+c')
※ 注意与'[a,b;c,d]'的区别
例如:A = sym('[a , 2*b ; 3*a , 0]') A= [ a, 2*b] [3*a, 0]
这就完成了一个符号矩阵的创建。 注意:符号矩阵的每一行的两端都有方
括号,这是与 Matlab数值矩阵的 一个重要区别。
用字符串直接创建矩阵
❖ 模仿Matlab数值矩阵的创建方法 ❖ 需保证同一列中各元素字符串有相
Math Toolbox 。
图示化符号计算器
• 由三个独立的窗口构成,通过函数运算
控制窗口来演示另外两个图形窗口,任 何时候,只有一个窗口属于激活状态。 而被激活的函数图像可随运算控制窗口 的操作而做相应的变化。
• 下面给出运算控制窗口的键位功能。
• 前两行是函数 f 和 g 的具体解析式,第三
f —— 字符串名
sin(x)+5x—— 函数表达式
'
'—— 字符串标识
❖字符串表达式一定要用' '单引
号括起来Matlab才能识别。
❖用class( )来返回对象的数据类型。
‘ ’ 里的内容可以是函数表达式,也 可以是方程。
例:
f1='a*x^2+b*x+c' —— 二次三项式 f2= 'a*x^2+b*x+c=0' —— 方程 f3='Dy+y^2=1' ——微分方程
运算
• 浮点算术运算
format long --(定义输出格式) 1/2+1/3 ans = 0.83333333333333
• 符号运算
sym(1/2)+(1/3) 或sym(1/2+1/3) ans = 5/6 --精确解
• 任意精度算术运算
digits(n) —— 设置近似解的精读为n位有效数字, 默认32位有效数字。
③符号计算指令的调用简单,和经典教科书公式相近。
④计算所需的时间较长。
• Symbolic Math Toolbox——符号运算工具包通过调用
Maple软件实现符号计算的。
• Maple软件——主要功能是符号运算,它占据符号软件
的主导地位。
2. 字符串与符号变量、符号常量
字符串对象 f = 'sin(x)+5x'
• limit(F,x,a, 'right') 取F的右极限
例:syms h n x
dc=limit((sin(x+h)-sin(x))/h,h,0)
%按照导数的定义求sin的导数
注意:对于极限不存在,返回NaN 例: limit(1/x,x,0)
limit(1/x,x,0, 'left') limit(1/x,x,0, 'right') 结果分别为:
factor(x^3-y^3)
• simplify( ) 该函数是一个强有力的具有
普遍意义的工具,它利用Maple化简规则 对表达式进行简化。
例:S=sym('[(x^2+5*x+6)/(x+2);sqrt(16)]')
相关文档
最新文档