遗传算法学习心得

合集下载

遗传算法的基本原理和对生活的启示

遗传算法的基本原理和对生活的启示

遗传算法的基本原理和对生活的启示一、遗传算法的基本原理遗传算法是一种受自然界进化机制启发的优化算法,其基本原理主要包括基因编码、初始种群的产生、适应度函数的确定、选择操作、交叉操作和变异操作等几个方面。

1.基因编码:遗传算法需要对问题进行编码,将问题的解空间映射到基因空间。

常见的编码方式有二进制编码、实数编码等。

2.初始种群的产生:通过随机方式生成一定数量的初始解,构成初始种群。

3.适应度函数的确定:根据问题的目标函数,定义适应度函数,用于评估种群中每个个体的优劣。

4.选择操作:根据适应度函数,选择适应度较高的个体进行遗传操作,生成下一代种群。

5.交叉操作:通过交叉配对和重组,生成新的个体。

6.变异操作:对个体的一定概率发生基因位的变异,增加种群的多样性。

遗传算法通过不断的迭代,不断优化种群中的个体,最终得到满足要求的最优解。

二、对生活的启示遗传算法的原理不仅在计算机科学中有着广泛的应用,而且也能给我们的生活带来很多启示。

以下是一些主要的启示:1.适应环境:在自然界中,生物通过进化适应环境。

同样,在生活中,我们也应该积极适应环境,不断学习和改进自己。

2.多样性思维:遗传算法中的变异操作增加了种群的多样性,使得算法能够更好地搜索解空间。

在解决问题时,我们也应该尝试多种方法,不要局限于一种思路。

3.持续优化:遗传算法通过不断迭代优化种群中的个体,最终得到最优解。

在生活中,我们也应该不断优化自己的行为和思维,提升自己的能力和素质。

4.合作与竞争:遗传算法中的选择和交叉操作体现了竞争和合作的机制。

在竞争中,优秀的个体得以保留;在合作中,新的个体得以产生。

这启示我们在生活中要学会竞争与合作,互相促进,共同成长。

遗传算法报告

遗传算法报告

遗传算法实验报告一、实验目的1、 掌握遗传算法原理;2、 学会编写遗传算法程序寻找函数最大值。

二、实验设备装有matlab7.0以上版本软件的PC 机一台三、实验原理传统的优化理论都是通过调整模型的参数来得到期望的结果,而遗传优化算法是根据生物界的遗传和自然选择的原理来实现的,它的学习过程是通过保持和修改群体解中的个体特性,并且保证这种修改能够使下一代的群体中的有利于与期望特性相近的个体在整个群体份额中占有的比例越来越多。

与基于代数学的优化方法一样,遗传算法是通过连续不断地队群体进行改进来搜索函数的最大值。

遗传算法的搜索结果会有很大的差异。

遗传学习的基本机理是使那些优于群体中其他个体的个体具有生存、繁殖以及保持更多基因给下一代的机会。

遗传算法实质上是在群体空间中寻求较优解。

四、实验步骤及内容1、实验步骤:(1)群体初始化;(2)评价群体中每一个体性能;(3)选择下一代个体;(4)执行简单的操作算子(如交叉、变异);(5)评价下一代群体的性能;(6)判断终止条件满足否?若不,则转(3)继续,若满足,则结束。

2、实验内容:寻找函数 22212121(,)100()(1)f x x x x x =-+- 的最大值及所对应的x1和x2的值。

( 2.048 2.048i x -≤≤)五、实验程序clc;clear;%**************************遗传算法*****************************num=80;A1=rand(num,10); %生成随机数A2=rand(num,10);A1=round(A1); %编码A2=round(A2);times=100;for k=1:times %遗传次数SIZE(k)=size(A1,1);for i=1:size(A1,1)B1(i)=binvec2dec(A1(i,:));%二进制转换十进制B2(i)=binvec2dec(A2(i,:));X1(i)=4.096*B1(i)/1023-2.048;%映射到实际取值范围X2(i)=4.096*B2(i)/1023-2.048;H(i)=100*(X1(i)^2-X2(i))^2+(1-X1(i))^2;%计算函数值endJ=1./H;[J1,IX]=sort(J);Hm(k)=H(IX(1)); %得本次迭代的函数最大值Xm1(k)=X1(IX(1));%得本次迭代的使函数值最大的X1值Xm2(k)=X2(IX(1));%得本次迭代的使函数值最大的X2值S=sum(H)/size(H,2); %求适应度C1=[];C2=[];for i=1:size(A1,1)%复制过程if round(H(i)/S)==0 %为0则淘汰C1=C1;C2=C2;elseif round(H(i)/S)==1 %为1保留一次C1=[C1;A1(i,:)];C2=[C2;A2(i,:)];elseif round(H(i)/S)==2 %为2保留两次C1=[C1;A1(i,:);A1(i,:)];C2=[C2;A2(i,:);A2(i,:)];elseif round(H(i)/S)==3 %为3保留三次C1=[C1;A1(i,:);A1(i,:);A1(i,:)];C2=[C2;A2(i,:);A2(i,:);A2(i,:)];elseif round(H(i)/S)==4 %为4保留四次C1=[C1;A1(i,:);A1(i,:);A1(i,:);A1(i,:)];C2=[C2;A2(i,:);A2(i,:);A2(i,:);A2(i,:)];else %其他值时保留五次C1=[C1;A1(i,:);A1(i,:);A1(i,:);A1(i,:);A1(i,:)]; C2=[C2;A2(i,:);A2(i,:);A2(i,:);A2(i,:);;A2(i,:)]; endendA1=C1;A2=C2;for i=1:size(A1,1) %交叉a=rand;%生成本次交叉概率b=round(rand*9+1);%确定交叉位置if a>=0.6c=round(rand*(size(A1,1)-1)+1);%开始交叉D=A1(i,1:b);A1(i,1:b)=A2(c,1:b);A2(c,1:b)=D;endendfor i=1:size(A1,1) %变异e=rand;%生成变异概率f=round(rand*9+1);%确定变异位置if e<=0.1A1(i,f)=~A1(i,f);%开始变异A2(i,f)=~A2(i,f);endendendHH=1./Hm;[Q,IY]=sort(HH);Hmax=Hm(IY(1)) %最优解X1you=Xm1(IY(1)) %最优解时X1值X2you=Xm2(IY(1)) %最优解时X2值t=IY(1)%寻得最优解时的迭代次数s=SIZE(t)%训得最优解时种群中个体个数%************************寻优曲线********************** count=1:times;%figure(1);subplot(2,1,1);plot(count,Hm,'r.-');grid on;title('寻优曲线');xlabel('迭代次数');ylabel('函数取值');%figure(2);subplot(2,1,2);plot(count,SIZE,'b.-');grid on;title('种群个数曲线');xlabel('迭代次数');ylabel('种群个数');六、实验结果第一次运行结果:Hmax = 3.9059e+003 ,X1you = -2.0480,X2you = -2.0480,t =26,s = 42(此结果是最优解)第二次运行结果:Hmax = 3.8855e+003,X1you =-2.0440,X2you =-2.0480,t = 27,s =44(此结果不为最优解)第三次运行结果:Hmax = 3.9059e+003,X1you = -2.0480,X2you =-2.0480,t =17,s =60(此结果是最优解)改变初始种群个体个数为30Hmax = 3.8308e+003,X1you = -2.0440,X2you =-2.0040,t = 7,s = 24 (此结果不为最优解)改变迭代次数为30Hmax =3.8805e+003,X1you = -2.0440,X2you =-2.0440,t = 28,s = 57(此次不为最优解)七、分析实验结果在初始种群为80,迭代次数为100情况下,第一次和第三次运行结果寻得了最优解,而第二次并没寻得最优解,并且第一次和第三次寻得最优解时的迭代次数t和寻得最优解时的种群中个体个数s也不一样。

人工智能导论学习体会及遗传算法应用

人工智能导论学习体会及遗传算法应用

《人工智能》课程学习体会兼论遗传算法在最优化问题的应用与发展一、《人工智能》课程学习体会1.课程学习历程这学期,在《人工智能》课程学习中,我们以中国大学MOOC网上浙江工业大学王万良教授主讲的《人工智能导论》课程为主。

课上老师给我们讲解了一些课程中的难点,课下老师发放了很多的人工智能课外阅读资料,供我们参考学习。

在学习的过程中,我们先对智能有了初步了解,之后再谈人工智能的概念。

要想实现人工智能,就需要把我们人的思维形式化,于是学习了谓词逻辑知识表示,之后是产生式,然后是概率论和数理统计的一些内容。

掌握了这些之后,我们就可以根据知识去解决问题了。

可是怎么去解决,如何去推出结果,又是一个问题,于是我们学习了一些推理方法,如模糊推理等。

按照智能的定义,那么现在已经基本实现智能了。

即实现了智能=知识+智力,虽然不是真正意义上的智能。

虽然现在可以去处理一些问题了,但是很明显的,它的效率非常的低,甚至于有些问题找到答案花费的时间特别长,是我们无法接受的。

于是我们学习了如A*算法、遗传算法、粒子群优化算法、蚁群算法等一些加快处理问题的算法。

最后,我们学习了神经网络、专家系统、机器学习和智能体系等内容。

对于这些学习的知识,基本上还处于一个了解的水平,要想实际应用还需要更深入的学习。

课下,我们也看了一些和人工智能的书籍,诸如《浪潮之巅》,向我们讲述了科技公司像IBM,微软,英特尔等公司的兴衰;《智能革命》向我们讲述了AI 与我们的生活密切相关,并且越来越离不开智能。

通过阅读这些课外读物,也使得我们对人工智能有了更深的理解与思考。

2.课程学习体会与感悟学习完主要课程之后,给我的第一感觉就是:“哎!怎么还没有学呢!课程就结束了”。

有这样的感觉主要还是受到疫情的影响,在家不能像在学校一样学的那么精细。

很多的知识几乎是走一个概念便草草离场了,同时,人工智能这门课程本身涉及的知识面也比较广,如讲到神经网络的时候提到了生物学中的神经元、突触等这些结构,想一下子掌握这些内容是不可能的。

遗传算法——耐心看完,你就掌握了遗传算法

遗传算法——耐心看完,你就掌握了遗传算法

遗传算法入门到掌握读完这个讲义,你将基本掌握遗传算法,要有耐心看完。

想了很久,应该用一个怎么样的例子带领大家走进遗传算法的神奇世界呢遗传算法的有趣应用很多,诸如寻路问题,8数码问题,囚犯困境,动作控制,找圆心问题(这是一个国外网友的建议:在一个不规则的多边形中,寻找一个包含在该多边形内的最大圆圈的圆心。

),TSP问题(在以后的章节里面将做详细介绍。

),生产调度问题,人工生命模拟等。

直到最后看到一个非常有趣的比喻,觉得由此引出的袋鼠跳问题(暂且这么叫它吧),既有趣直观又直达遗传算法的本质,确实非常适合作为初学者入门的例子。

这一章将告诉读者,我们怎么让袋鼠跳到珠穆朗玛峰上去(如果它没有过早被冻坏的话)。

问题的提出与解决方案让我们先来考虑考虑下面这个问题的解决办法。

已知一元函数:图2-1现在要求在既定的区间内找出函数的最大值。

函数图像如图2-1所示。

极大值、最大值、局部最优解、全局最优解在解决上面提出的问题之前我们有必要先澄清几个以后将常常会碰到的概念:极大值、最大值、局部最优解、全局最优解。

学过高中数学的人都知道极大值在一个小邻域里面左边的函数值递增,右边的函数值递减,在图里面的表现就是一个“山峰”。

当然,在图上有很多个“山峰”,所以这个函数有很多个极大值。

而对于一个函数来说,最大值就是在所有极大值当中,最大的那个。

所以极大值具有局部性,而最大值则具有全局性。

因为遗传算法中每一条染色体,对应着遗传算法的一个解决方案,一般我们用适应性函数(fitness function)来衡量这个解决方案的优劣。

所以从一个基因组到其解的适应度形成一个映射。

所以也可以把遗传算法的过程看作是一个在多元函数里面求最优解的过程。

在这个多维曲面里面也有数不清的“山峰”,而这些最优解所对应的就是局部最优解。

而其中也会有一个“山峰”的海拔最高的,那么这个就是全局最优解。

而遗传算法的任务就是尽量爬到最高峰,而不是陷落在一些小山峰。

遗传算法学习心得体会

遗传算法学习心得体会

遗传算法学习心得体会引言遗传算法是一种搜索算法,它模仿了生物进化的过程。

它通过模拟自然选择过程,获取最优解决方案。

遗传算法已经成为优化问题中常用的方法之一。

本文将介绍我在学习遗传算法时的心得体会。

遗传算法的基本模型遗传算法的基本模型包含4个步骤,即初始化、选择、交叉、变异。

1.初始化:随机生成一组初始解,也称为种群。

2.选择:根据适应度函数,选择一些个体作为父代。

3.交叉:将父代之间随机交换染色体的一部分,产生一个新的个体。

4.变异:对新个体的某些基因进行修改,以增加解的多样性。

以上步骤依次执行,产生新的种群。

新种群中的个体的适应度一般比前一代的要好。

遗传算法的应用遗传算法已经被广泛应用于各种问题的优化中,比如函数优化、组合优化、旅行商问题等。

在函数优化问题中,遗传算法可以帮助我们找到一个全局最优解,而不是一个局部最优解。

在组合优化问题中,遗传算法可以帮助我们找到最优的组合方案,比如电路布局问题和调度问题。

在旅行商问题中,遗传算法可以帮助我们找到最短的旅行路线。

遗传算法的优化在使用遗传算法解决问题时,我们需要进行一些优化。

第一个优化点是种群大小的选择。

如果种群太小,则可能会陷入局部最优解;如果种群太大,则可能会增加计算复杂度。

因此,我们需要选择一个适当的种群大小,以便在不牺牲算法效率的情况下,获得较好的结果。

第二个优化点是交叉概率和变异概率的选择。

交叉概率决定了父代个体交叉产生新后代的概率,变异概率决定了新后代染色体上基因变异的概率。

如果交叉概率过大,则可能会导致过早收敛;如果交叉概率过小,则可能会导致收敛速度过慢。

如果变异概率过大,则可能会导致搜索过于随意;如果变异概率过小,则可能会导致陷入局部最优解。

因此,我们需要根据问题的特点,选择一个适当的交叉概率和变异概率。

第三个优化点是适应度函数的定义方式。

适应度函数是遗传算法的核心,它反映了每个个体的生存能力。

如果适应度函数定义方式不当,则可能会导致算法收敛速度下降。

遗传算法实验报告

遗传算法实验报告

1.定义种群和个体定义种群为S , 种群数N=50, 其中x,y 是染色体中的两个基因组。

2. 算法设计(1)确定编码设计由于原函数的变量取值包含负数,不方便进行编码,所以将原函数的变量进行转换,从[-10 10]转换成[0 20],相应的,函数也要进行变换。

根据要求分辨率为0.0001,即编码范围至少为[0 200000],设编码位数为n+1,则20/(2^(n+1)-1)<=0.0001,所以求得n=18。

因此将变量域[0 20]离散化为二值域[0 2^18-1]即[0 262143],若由a, b 代表随机二值数,则x=20*a/262143, y=20*b/262143。

(2)确定目标函数和适应度函数由于所求目标函数值包含负数,若直接当做适应度函数值,负数无法被选择,会产生一定的不公平现象,故采用下界构造法,将函数值整体上移,使得被选择的机会相对公平。

而且由于变量域进行了变化,故目标函数为sin(10)sin(10)(,)*11010x y f x y x y --=+-- 而适应度函数,还要将负值转化为零(一般采用下界构造法后没有负值)。

(3)产生种群Init 函数实现种群的初始化,函数变量为种群规模N 以及染色体位数length 。

采用随机函数rand 生成随机矩阵,并使用round 函数对产生的随机数进行四舍五入,即进行二值化操作,每一行代表一个个体。

(4)选择复制选择和复制操作是可以决定哪些个体可以进入下一代。

选择的方法通常有轮盘赌选择法、锦标赛选择法、随机遍历选择法等。

由于相对来说轮盘赌选择法编程简单,故本次采用轮盘赌选择法,但是这里采用连续均匀分布的随机函数unifrnd ,可以提高公平性。

根据方程i f i i i sumf f P f ==∑ 1)计算fsum 和Pi2)产生{0,1}的随机数,求s=unifrnd(0,1,1,36)*fsum3) 求fi 和>=s 中最小的个体并选择复制。

遗传算法入门到掌握

遗传算法入门到掌握

遗传算法入门到掌握遗传算法是一种模拟自然进化过程的优化算法,常用于解决复杂的优化问题。

它模拟了自然界中的进化过程,通过不断地迭代和交叉变异来最优解。

遗传算法的基本思想是通过对种群中的个体进行选择、交叉和变异,逐步优化个体的适应度,从而找到更接近于最优解的解决方案。

下面是遗传算法的基本步骤:1.初始化种群:随机生成初始种群,种群中的每个个体都表示问题的一个可能解,可以是一个二进制串、一个实数向量等。

2.评估适应度:对于每个个体,根据问题的具体要求计算其适应度值,适应度值一般用来评估个体对问题的解决能力,值越大表示个体的解决能力越好。

3.选择操作:从当前种群中选择一部分个体作为父代,通常选择适应度较高的个体,可以使用轮盘赌选择、竞争选择等算法。

4.交叉操作:选取父代中的两个个体,通过其中一种方式将它们的基因表达进行交换,产生下一代的个体。

交叉操作可以有单点交叉、多点交叉、均匀交叉等方式。

5.变异操作:对新生成的个体进行基因的随机变异,引入新的基因信息,增加种群的多样性。

变异操作可以有位变异、插入变异、颠倒变异等方式。

6.更新种群:将新生成的个体加入到种群中,替代原来的个体,形成新一代种群。

7.终止条件检测:判断是否满足终止条件,如达到最大迭代次数或找到满意的解决方案。

8.返回结果:返回满足终止条件的最优个体作为算法的解。

通过不断的迭代和优化,遗传算法能够到较优的解决方案。

它的优点是可以解决很多实际问题,不依赖于问题的具体形式,且能够在搜素空间中快速收敛到最优解。

然而,遗传算法也有一些缺点,如易陷入局部最优解、运算速度较慢等问题。

因此,要掌握遗传算法,首先需要了解它的基本思想和步骤,理解各个步骤的作用及参数的选择。

然后需要学习遗传算法的编程实现方法,掌握如何将具体问题抽象成遗传算法的模型,如何实现适应度评估、选择、交叉、变异等操作。

此外,还需要了解一些遗传算法的变种和改进方法,如进化策略、粒子群优化等。

学习算法的心得体会

学习算法的心得体会

学习算法的心得体会篇一:计算智能学习心得体会计算智能学习心得体会本学期我们水利水电专业开了“计算智能概论”这门课,有我们学院的金菊良教授给我们授课,据说这门课相当难理解,我们课下做了充分的准备,借了计算智能和人工智能相关方面的书籍,并提前了解了一点相关知识,我感觉看着有点先进,给我们以往学的课程有很大区别,是一种全新的概念和理论,里面的遗传算法、模糊集理论、神经网络更是闻所未闻,由于课前读了一些书籍,我以为课堂上应该能容易理解一点,想不到课堂上听着还是相当玄奥,遗传算法还好一点,因为高中学过生物遗传,遗传算法还能理解一点。

像模糊集理论神经网络便不知所云了。

虽然金老师讲课生动形象,幽默风趣,而且举了好多实际的例子,但有一些理论有点偏难。

计算智能(Computational Interlligence,简称CI)并不是一个新的术语,早在1988年加拿大的一种刊物便以CI为名。

1992年,美国学者在论文《计算智能》中讨论了神经网络、模式识别与智能之间的关系,并将留能分为生物智能、人工智能和计算智能三个层次。

1993年,Bob Marks 写了一篇关于计算留能和人工留能区别的文章,并在文中给出了对CI的理解。

1994年的国际计算智能会议(WCCL)的命名就部分地源于Bob的文章,这次IEEE会议特国际神经网络学会(NNC)发起的神经网络(ICNN)、模糊系统(FuZZ)和进化计算(ICEc)三个年度性会议合为一体,并出版了名为《计算智能》的论文集。

此后,CI这个术语就开始被频繁地使用,同时也出现了许多关于CI的解释。

1992年,James C .Bezdek提出,CI是依靠生产者提供的数字、数据材料进行加工处理,而不是依赖于知识;而AIglJ必须用知识进行处理.1994年,James在F1orida,Orlando,IEEE WCCI会议上再次阐述他的观点,即智能有三个层次:(1)生物智能(Biological Intelligence,简称BI),是由人脑的物理化学过程反映出来的,人脑是有机物,它是智能的基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基本概念
遗传算法(Genetic Algorithms, GA)是一类借鉴生物界自然选择和自然遗传机制的随机化搜索算法。

它模拟自然选择和自然遗传过程中发生的繁殖、交叉和基因突变现象,在每次迭代中都保留一组候选解,并按某种指标从解群中选取较优的个体,利用遗传算子(选择、交叉和变异)对这些个体进行组合,产生新一代的候选解群,重复此过程,直到满足某种收敛指标为止。

GA的组成:
(1)编码(产生初始种群)
(2)适应度函数
(3)遗传算子(选择、交叉、变异)
(4)运行参数
编码
基因在一定能够意义上包含了它所代表的问题的解。

基因的编码方式有很多,这也取决于要解决的问题本身。

常见的编码方式有:
(1)二进制编码,基因用0或1表示(常用于解决01背包问题)
如:基因A:00100011010 (代表一个个体的染色体)
(2)互换编码(用于解决排序问题,如旅行商问题和调度问题)
如旅行商问题中,一串基因编码用来表示遍历的城市顺序,如:234517986,表示九个城市中,先经过城市2,再经过城市3,依此类推。

(3)树形编码(用于遗传规划中的演化编程或者表示)
如,问题:给定了很多组输入和输出。

请你为这些输入输出选择一个函数,使得这个函数把每个输入尽可能近地映射为输出。

编码方法:基因就是树形结构中的一些函数。

(4)值编码(二进制编码不好用时,解决复杂的数值问题)
在值编码中,每个基因就是一串取值。

这些取值可以是与问题有关任何值:整数,实数,字符或者其他一些更复杂的东西。

适应度函数
遗传算法对一个个体(解)的好坏用适应度函数值来评价,适应度函数值越大,解的质量越好。

适应度函数是遗传算法进化过程的驱动力,也是进行自然选择的唯一标准,它的设计应结合求解问题本身的要求而定。

如TSP问题,遍历各城市路径之和越小越好,这样可以用可能的最大路径长度减去实际经过的路径长度,作为该问题的适应度函数。

遗传算子——选择
遗传算法使用选择运算来实现对群体中的个体进行优胜劣汰操作:适应度高的个体被遗传到下一代群体中的概率大;适应度低的个体,被遗传到下一代群体中的概率小。

选择操作的任务就是按某种方法从父代群体中选取一些个体,遗传到下一代群体。

SGA(基本遗传算法)中采用轮盘赌选择方法。

轮盘赌选择又称比例选择算子,基本思想:各个个体被选中的概率与其适应度函数值大小成正比。

设群体大小为n ,个体i 的适应度为Fi,则个体i 被选中遗传到下一代群体的概率为:
遗传算子——交叉
所谓交叉运算,是指对两个相互配对的染色体依据交叉概率按某种方式相互交换其部分基因,从而形成两个新的个体。

交叉运算在GA中起关键作用,是产生新个体的主要方法。

1. 单交叉点法(用于二进制编码)
选择一个交叉点,子代在交叉点前面的基因从一个父代基因那里得到,后面的部分从另外一个父代基因那里得到。

如:交叉前:
00000|01110000000010000
11100|00000111111000101
交叉后:
00000|00000111111000101
11100|01110000000010000
2. 双交叉点法(用于二进制编码)
选择两个交叉点,子代基因在两个交叉点间部分来自一个父代基因,其余部分来自于另外一个父代基因.
如:交叉前:
01 |0010| 11
11 |0111| 01
交叉后:
11 |0010| 01
01 |0111| 11
3. 基于“ 与/或”交叉法(用于二进制编码)
对父代按位"与”逻辑运算产生一子代A;按位”或”逻辑运算产生另一子代B。

该交叉策略在解背包问题中效果较好 .
如:交叉前:
01001011
11011101
交叉后:
01001001
11011111
4. 单交叉点法(用于互换编码)。

相关文档
最新文档