基于PLC的液位控制系统设计
基于PLC水箱液位控制系统毕业设计

基于PLC水箱液位控制系统毕业设计水箱液位控制系统是一种常见的自动化控制系统,通过控制水位的高低来实现水箱中水的供应与排放。
该系统常用于水处理、供水系统、工业生产等领域。
本篇毕业设计将基于可编程逻辑控制器(PLC)来设计一个水箱液位控制系统。
PLC作为控制器,能够实现对水位的监测、控制和保护。
首先,本设计将使用传感器来监测水箱的液位。
液位传感器将放置在水箱内部,在不同的液位位置测量水的高度。
传感器将通过模拟信号将液位信息传输给PLC。
PLC将读取并处理传感器的信号,得到水箱的液位信息。
其次,PLC将根据液位信息来控制水泵的运行。
当水箱的液位低于一定的阈值时,PLC将启动水泵,从水源处将水注入到水箱中。
当液位达到一定的高度时,PLC将关闭水泵,停止水的注入。
通过控制水泵的启动和停止,系统可以实现自动补水,从而保持水箱的水位在一个恰当的范围内。
此外,本系统还将具备一定的保护功能。
当水箱液位过高或过低时,PLC将触发报警装置,以便及时采取措施解决问题。
同时,系统将设置相应的安全控制,以防止水泵出现过载或短路等故障。
为了实现PLC控制系统的功能,本设计将使用PLC编程软件进行程序的编写和调试。
程序将根据液位传感器的输入信号,进行逻辑判断和控制指令的输出。
同时,本设计将与水泵、报警装置等硬件进行连接,以实现实际的控制功能。
最后,本设计将进行系统的仿真和调试。
通过模拟真实的液位变化情况,测试系统的控制性能和稳定性。
在确保系统正常运行的前提下,对系统进行各项性能指标的测试和评估。
通过该毕业设计的实施,我将能够掌握PLC水箱液位控制系统的原理和设计方法,提升自己在自动化控制领域的实践能力和工程应用能力。
同时,通过该设计的完成,也能为工业生产中的水箱液位控制问题提供一种可行的解决方案。
基于PLC的液位控制系统设计

基于PLC的液位控制系统设计液位控制系统是工业自动化中常见的一种控制系统,主要用于监测和控制液体或粉末在容器中的液位。
PLC(可编程逻辑控制器)是一种常用的自动化控制器,它通过编程逻辑和输入输出模块实现自动控制。
本文将基于PLC的液位控制系统进行设计和讨论。
首先,我们需要了解液位控制系统的基本原理。
液位控制系统主要由三个组成部分组成:传感器、控制器和执行器。
传感器用于监测液位高度,常用的传感器有浮球传感器、电容传感器和超声波传感器。
控制器根据传感器获得的液位信号,通过编程逻辑判断液位是否达到设定值,并根据结果控制执行器的开关状态。
执行器可以是电磁阀、泵或搅拌器,用于调节液位。
PLC作为控制器可以实现复杂的逻辑控制,并且具有可编程性和可扩展性。
下面是基于PLC的液位控制系统的设计步骤:第一步是确定系统需求和设计目标。
根据具体的液位控制需求,确定液位控制系统的功能要求和性能指标,例如需要实现液位的自动控制、报警功能和远程监控等。
然后确定设计目标,例如控制系统的稳定性、精度和可靠性。
第二步是选择适当的控制器和传感器。
根据设计目标和系统需求,选择适合的PLC控制器和液位传感器。
PLC控制器应具有足够的输入输出模块和计算能力,以满足液位控制系统的需求。
液位传感器的选择应考虑液体的性质、工作环境和控制精度等因素。
第三步是进行系统硬件设计。
根据选定的PLC控制器和传感器,设计系统的硬件连接和布置。
将传感器与PLC控制器连接,确保信号的稳定传输。
同时,还需要考虑系统的电气安全和防护措施。
第四步是进行PLC编程。
根据设计需求和目标,编写逻辑控制程序。
程序应能够实现液位的监测、判断和控制,同时具备保护和报警功能。
编程语言通常使用ladder diagram(梯形图),也可以使用其他编程语言如指令列表和函数图。
第五步是进行系统调试和优化。
完成PLC编程后,进行系统调试和优化。
对系统进行全面的测试,确保液位的检测和控制功能正常运行。
基于PLC的液位控制系统毕业设计论文

基于PLC的液位控制系统毕业设计论文摘要:本文基于PLC(可编程逻辑控制器)技术,设计了一种液位控制系统,该系统能够实时监测液位,并根据设定值进行液位控制。
本文详细介绍了该系统的硬件设计、软件设计以及系统测试,并对系统的性能进行了评估和分析。
实验结果表明,该液位控制系统能够稳定可靠地实现对液位的控制。
关键词:PLC;液位控制;硬件设计;软件设计;系统测试1.引言液位控制是工业中常见的一种控制过程。
在各种工业领域,如化工、能源、水利等,在液位控制方面都有较高的需求。
随着自动化技术的不断发展,PLC技术成为液位控制的一个重要工具。
2.系统硬件设计在本系统硬件设计中,我们采用了PLC、液位传感器、电磁阀等关键元件。
PLC作为控制中心,接收传感器的信号,根据设定值来控制电磁阀的开启和关闭。
液位传感器负责实时监测液位的变化,并将信号传输给PLC。
电磁阀根据PLC的指令来控制液位的增减。
3.系统软件设计在本系统软件设计中,我们使用了PLC编程语言来实现液位控制的逻辑。
首先,我们定义了PLC的输入和输出信号,然后根据设定的逻辑进行编程。
具体来说,当液位高于设定值时,PLC会关闭电磁阀,减少液位的上升;当液位低于设定值时,PLC会打开电磁阀,增加液位的下降。
通过循环执行这些逻辑,系统可以实现对液位的控制。
4.系统测试为了验证系统的可行性和性能,我们进行了一系列的测试。
首先,我们针对液位控制器的输入输出进行了测试,确保其正常工作。
然后,我们使用液位泵和液位计进行了实际测试,记录了系统在不同液位变化条件下的性能。
实验结果表明,该液位控制系统具有良好的稳定性和可靠性。
5.结果和分析通过对实验数据的分析,我们得出了以下结论:该液位控制系统能够满足不同液位变化条件下的控制需求;系统响应速度较快,能够在短时间内完成液位的调整;系统具有良好的稳定性,能够稳定地维持设定的液位。
6.结论本文基于PLC技术设计了一种液位控制系统,并进行了详细的硬件设计、软件设计和系统测试。
基于S7-1200PLC的水箱液位控制系统的设计

基于S7-1200PLC的水箱液位控制系统的设计重庆科技学院摘要水箱液位控制系统是一种用于监测、控制水箱液位的自动化设备。
它通过搭载传感器、控制器和执行机构等组件,实现对水箱液位的实时监控和自动控制。
通常,水箱液位控制系统由传感器,控制器,执行机构。
水箱液位控制系统的使用范围广泛,包括建筑物、工业生产、农业灌溉、城市给排水和环保等领域。
它具有结构简单、安装方便、实时性强等特点,该系统能够提高水资源的利用效率、减少用水浪费和防止水源的污染。
本文基于S7-1200 PLC实现水箱液位控制系统设计。
该系统由硬件和软件两部分组成,硬件包括PLC、人机界面触摸屏、传感器、执行器等;软件实现传感器数据处理、PID稳态控制、安全等功能;关键词:液位控制 PLC PID 传感器重庆科技学院本科生毕业设计 3水箱液位控制系统硬件设计1绪论在工业领域,几乎在各个行业都会或多或少的涉及到液位的检测等问题,然而液位变量具有延迟滞后性,参数不稳定,复杂多变等问题,因此,这就需要本文采取更为精确的控制器去实现液位变量的检测。
传统控制具有很多缺陷:比如精度低、速度慢、灵敏度低等。
一个稳定的液位系统,可以保证安全可靠的工业生产、高效的生产效率、充分合理的利用能源等,大大提高了工业生产的经济价值。
日益激烈的市场竞争,要求本文的控制技术必须更加先进,此前的控制技术已落伍,显然无法满足需求,这种对先进技术的需求加速了可编程逻辑控制器的问世。
引入PLC控制器后,能够使控制系统变得更集中、有效、及时。
2水箱液位控制总体方案设计2.1水箱液位控制系统实际应用特征水箱液位控制系统是一种广泛应用于水箱的自动化控制系统,常见于民用和工业领域。
实际应用中,水箱液位控制系统具有以下特征:①实时性强:系统能够实时检测水箱内的液位信息,并根据液位变化及时控制水泵的启停,保证水位稳定。
②可靠性高:系统通过各类安全措施确保水泵的正常启停,不会出现过量或不足的水位情况,避免因为水位变化带来的安全隐患。
基于PLC的液位控制系统设计_图文

课程设计说明书名称2010年 6月7日至 2010年6月11日共 1 周院系班级姓名学号系主任教研室主任指导教师目录绪论 . (2)第1章液位控制系统总体方案设计 . (3)1.1单回路控制系统 (3)1.2水箱液位的串级控制系统 (4)第2章过程控制装置概述 . (6)2.1系统简介 (6)2.2系统装置 (7)2.3 S7-300PLC 控制柜的组成 . (8)第3章硬件组态设计 . (10)3.1PLC 的选择 (10)3.2组态硬件 (11)第4章软件组态设计 . (12)4.1 实现WINCC 与S 7-300的软件通讯 (12)4.2 程序设计 (15)第5章调试过程及结果分析 . (20)5.1单容液位控制系统调试结果及分析 (20)5.2双容串级液位控制系统调试结果及分析 (23)第6章课程设计总结 . (26)参考文献: . (27)绪论课程设计是检验我们本学期学习的情况的一项综合测试,它要求我们把所学的知识全部适用,融会贯通的一项训练,是对我们能力的一项综合评定,它要求我们充分发掘自身的潜力,开拓思路设计出合理适用的自动控制系统。
课程设计也是教学过程中的一个重要环节,通过设计可以巩固各课程理论知识,培养独立分析和解决实际工程技术问题的能力,同时对工业的有关方针、技术规程有一定的了解,在计算绘图、编号、设计说明书等方面得到训练,为以后工作奠定基础。
工业生产过程控制是现代工业自动化的一个重要领域。
它是控制理论、生产工艺、计算机技术和仪器仪表等知识相结合的一门综合性应用学科,理论性、综合性和实践性都很强。
随着人们物质生活水平的提高以及市场竞争的日益激烈,产品的质量和功能也向更高的档次发展,制造产品的工艺过程变得越来越复杂,为满足优质、高产、低消耗,以及安全生产、保护环境等要求,做为工业自动化重要分支的过程控制的任务也愈来愈繁重。
在控制方式上经历了从人工控制到自动控制两个发展时期。
在自动控制时期内,过程控制系统又经历了三个发展阶段, 它们是:分散控制阶段, 集中控制阶段和集散控制阶段。
基于PLC的液位控制系统设计

基于PLC的液位控制系统设计液位控制系统是一种自动控制系统,用于控制液体在容器中的液位。
PLC(可编程逻辑控制器)被广泛应用于液位控制系统中,因为它具有可编程性、易于安装和维护以及可靠性高的特点。
在本文中,我们将基于PLC设计一个液位控制系统。
首先,我们需要选择适合的PLC设备。
根据液位控制系统的规模和需求,我们可以选择不同型号和品牌的PLC,例如西门子、施耐德等。
一个PLC系统通常包括CPU、输入和输出模块、通信模块等组成部分。
根据液位控制系统的需求,我们可以选择适当的输入和输出模块来连接传感器和执行器。
接下来,我们将设计液位传感器和执行器的布置。
液位传感器用于检测液位的高度,并将信号传输给PLC系统。
常用的液位传感器包括浮球传感器、压力传感器等。
根据液位控制系统的需求,我们可以将传感器布置在不同的位置和高度。
执行器用于控制液位,例如开关泵来增加液位或者打开泄水阀来降低液位。
然后,我们需要设计PLC的逻辑控制程序。
PLC的逻辑控制程序决定了液位控制系统的工作方式。
我们可以使用PLC编程语言(如ladder diagram)来编写逻辑控制程序。
在程序中,我们可以定义液位的上下限,并根据实际液位与设定值之间的偏差来控制执行器的开关状态。
例如,当液位低于设定值时,PLC会启动泵来增加液位;当液位高于设定值时,PLC会打开泄水阀来降低液位。
最后,我们需要测试和调试液位控制系统。
在测试过程中,我们可以使用仿真工具来模拟真实情况,并验证PLC的逻辑控制程序是否正确。
如果发现问题,我们可以对逻辑控制程序进行修改或优化。
一旦测试通过,我们就可以将液位控制系统部署到实际环境中,并进行调试。
在调试过程中,我们需要确保PLC系统能够稳定地控制液位,并及时响应外部输入和输出信号。
总结起来,基于PLC的液位控制系统设计包括选择PLC设备、设计液位传感器和执行器布置、编写逻辑控制程序以及测试和调试系统等步骤。
通过合理设计和调试,PLC可以有效地控制液位,提高系统的自动化程度和稳定性。
基于PLC的液位控制系统研究毕业设计(论文)

毕业设计论文基于PLC的液位控制系统研究摘要本文设计了一种基于PLC的储罐液位控制系统。
它以一台S7-200系列的CPU224和一个模拟量扩展模块EM235进行液位检测和电动阀门开度调节。
系统主要实现的功能是恒液位PID控制和高低限报警。
本文的主要研究内容:控制系统方案的选择,系统硬件配置,PID算法介绍,系统建模及仿真和PLC编程实现。
本设计用PLC编程实现对储罐液位的控制,具有接线简单、编程容易,易于修改、维护方便等优点。
关键字:储罐;液位控制;仿真;PLCAbstractThis article is designed based on PLC, tank level control system. It takes a series s7-200 CPU224 and an analog quantities of EM235 expansion module to level detection and electric valve opening regulation.System main function is to achieve constant low level PID control and limiting alarm.The main contents of this paper: the choice of the control system plan, system hardware configuration, PID algorithm introduced, system modeling and simulation, and PLC programming. PLC programming with the design of the tank level control have the advantage of simple wiring, easy programming, easy to modify, easy maintenance and so on.Key word: tank ; level ;control ;simulation ;plc目录摘要 (I)ABSTRACT ........................................................... I I 1 绪论. (1)1.1盐酸储罐恒液位控制任务 (1)1.2本文研究的意义 (2)1.3本文研究的主要内容 (2)2 控制系统方案设计 (3)2.1储罐液位控制的发展及现状 (3)2.2系统功能分析 (3)2.3系统方案设计 (4)3 系统硬件配置 (5)3.1电动控制阀的选择 (5)3.1.1 控制阀的选择原则 (5)3.1.2 ZAJP 精小型电动单座调节阀性能和技术参数介绍 (10)3.2液位测量变送仪表的选择 (13)3.2.1 液位仪表的现状及发展趋势 (13)3.2.2 差压变送器的测量原理 (13)3.2.3 差压式液位变送器的选型原则 (14)3.2.4 DP系列LT型智能液位变送器产品介绍 (15)3.3PLC机型选择 (16)3.3.1 PLC历史及发展现状 (16)3.3.2 PLC机型的选择 (18)3.3.3 S7-200系列CPU224和EM235介绍 (20)4 PID算法原理及指令介绍 (21)4.1PID算法介绍 (22)4.2PID回路指令 (24)5 系统建模及仿真 (28)5.1系统建模 (28)5.2系统仿真 (30)5.2,1 MATLAB语言中Simulink交互式仿真环境简介 (30)5.2.2 系统仿真 (31)第6章系统编程实现 (33)6.1硬件设计 (33)6.1.1 绘制控制接线示意图 (33)6,1.2 I/O资源分配 (33)6.2软件设计 (34)6.2.1 STEP 7 Micro/Win V4.0 SP6编程软件介绍 (34)6.2.2 恒液位PID控制系统的PLC控制流程 (35)6.2.3 编写控制程序 (36)6.2.4 程序清单 (39)结束语 (40)参考文献 (41)致谢 (42)1 绪论1.1 盐酸储罐恒液位控制任务如图1.1所示为某化工厂稀盐酸储罐,该罐为钢衬聚四氟乙烯储罐,罐体高6米,容量为50立方米,重500千克。
基于PLC的液位控制系统设计

毕业设计开题报告1. PID 简述简述 过程控制通常是指石油、化工、冶金、轻工、纺织、制药、建材等工业生产过程中的自动控制程中的自动控制,它是自动化技术的一个极其重要的方面。
本次毕业设计是基于PLC 的液位控制系统的设计,它的控制对象是水箱的液位,是过程控制中经常遇到热工参数。
本人在这次设计中主要负责控制策略——PID 算法的确定,就在次将PID 算法作个简要的介绍。
算法作个简要的介绍。
在生产过程自动控制的发展历程中在生产过程自动控制的发展历程中,PID ,PID 控制是历史最久、生命力最强的基本控制方式。
它简单实用制方式。
它简单实用,,易于实现易于实现,,适用范围广适用范围广,,鲁棒性好鲁棒性好,,在现今的工业过程中获得了广泛的应用广泛的应用..据统计据统计,,目前工业控制器中约有90%90%仍是仍是PID 控制器。
PID 控制器的设计及其参数整定一直是控制领域所关注的问题。
其设计和整定方法得到国内外广泛研究, 著名的如Ziegler-Nichols 法、基于内模控制的方法及基于误差的积分的优化方法。
基于误差的积分准则由于能较好地反映闭环系统的性能以及易于计算的原因基于误差的积分准则由于能较好地反映闭环系统的性能以及易于计算的原因,,在PID 优化设计中被广泛采用。
(1)在工业生产过程控制中,模拟量的模拟量的 PID (比例、比例、积分、积分、微分)调节是常见的一种控制方式,这是由于这是由于PID 调节不需要求出控制系统的数学模型,至今为止,很难求出许多控制对象准确的数学模型,对于这一类系统,使用使用PID 控制可以取得比较令人满意的效果,同时同时PID 调节器又具有典型的结构,可以根据被控对象的具体情况,采用各种PID 的变种,有较强的灵活性和适用性。
在模拟量的控制中,经常用到经常用到PID 运算来执行来执行PID 回路的功能,PID 回路指令使这一任务的编程和实现变得非常容易。
如果一个果一个 PID 回路的输出回路的输出M ( t)是时间的函数,则可以看作是比例项、积分项和微分项三部分之和(2),即:,即:dt de K M edt K e K t M C tc C *+++*=⎰00)( 式中式中 e ——偏差;——偏差;T i ——积分常数;——积分常数;T d ——微分常数;——微分常数;K c ——放大倍数(比例系数)——放大倍数(比例系数)M 0——偏差为零时的控制值,有积分环节存在,此项也可不加——偏差为零时的控制值,有积分环节存在,此项也可不加以上各量都是连续量,第一项为比例项,最后一项为微分项,中间两项为积分项。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题目:基于PLC的液位控制系统设计*名:**学号:************系别:物理与电子工程系专业:电子信息工程年级班级:2009级1班指导教师:郭荣艳副教授2013年5月18日毕业论文(设计)作者声明本人郑重声明:所呈交的毕业论文是本人在导师的指导下独立进行研究所取得的研究成果。
除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。
本人完全了解有关保障、使用毕业论文的规定,同意学校保留并向有关毕业论文管理机构送交论文的复印件和电子版。
同意省级优秀毕业论文评选机构将本毕业论文通过影印、缩印、扫描等方式进行保存、摘编或汇编;同意本论文被编入有关数据库进行检索和查阅。
本毕业论文内容不涉及国家机密。
论文题目:基于PLC的液位控制系统设计作者单位:物理与电子工程系作者签名:(学号:200913010027)年月日目录摘要 (1)引言 (1)1.PLC简介与系统方案及原理 (2)1.1液位控制系统方案 (2)1.2系统的工作原理 (3)2.器件的选取及其特点 (3)2.1西门子S7-200PLC简介 (3)2.2 NS8触摸屏简介 (4)2.3浮球式液位变送器简介 (5)3.硬件电路的设计 (6)3.1 PLC与触摸屏的连接 (7)3.2直流电动机控制电路的设计 (7)3.3控制电路与PLC接线的设计 (8)3.4液位传感器与PLC的连接 (9)4.系统软件的设计 (9)5.软件调试 (10)6.结束语 (12)参考文献 (12)附录 (13)附录1:硬件电路连接示意图 (13)附录2:输入/输出元件及控制功能表 (14)附录3:系统主要程序 (15)致谢 (17)基于PLC的液位控制系统设计摘要:以可编程控制器(PLC)为核心,把智能传感器检测、电机和PLC控制相结合,提出了一种基于PLC的液位控制系统的设计方案。
系统运用液位传感器实时检测水箱液位的变化;并且由PLC处理,并控制电机来实现对液位的控制,液位情况有触屏显示器上显示出来。
触屏显示器与PLC相联,可以通过触屏显示器改变液位阈值。
这种液位控制系统具有控制灵活,精度高,易于操作的特点。
关键词:PLC;液位;自动控制;传感器The Liquid Level Control System Based on PLC Is Designed Abstract:With the programmable controller (PLC) as the core, the intelligent sensor, motor and PLC control, this paper puts forward a design scheme of control system based on PLC. System uses liquid level sensor to check the real-time changes of liquid level of water tank; and the PLC control the liquid level through controlling motor , and level is displayed on a touch-screen display. The touch screen display is connected with PLC, through changing the touch screen display level threshold is set. The control system of liquid level has the characteristics of flexible control, high accuracy, easy operation .Key words:PLC; Liquid level; Control system; Sensor引言液位控制在工业生产中是一个比较常见的控制过程,他在工业生产的作用毋庸置疑。
随着科技的进步,液位控制也从人工控制发展到了自动控制。
早期,用继电器、定时器、接触器及其触点按照电路关系连接起来就组成了人工继电接触器控制系统,然而这种继电接触器控制是存在诸多问题的,例如操作的灵敏度、控制的精度等,现在的电气液位自动控制系统已经解决了人工控制中存在的问题。
本文设计一种基于PLC的液位控制系统,PLC具有抗干扰能力强、控制结构简单、可编程、操作容易等优点,因而在工业的液位控制系统中应用非常广泛,具有较广阔的发展前景。
1. PLC简介与系统方案及原理可编程序控制器是新一代工业自动化控制装置,近年来得到迅速发展并广泛应用的。
前期的PLC在功能上只是实现逻辑控制,所以被称为可编程序逻辑控制器(Programmable Logic Controller,PLC)。
随着科技的进步,微处理器获得了广泛的应用,一些PLC生产厂商就选用微处理器用作PLC的中央处理器,使PLC 的功能得到了加强。
因此,美国电器制造协会于1980年将它正式命名为可编程序控制器(Programmable Controller,PC)。
该名称已在工业界使用多年,但近年来个人计算机(Personal Computer)也简称PC,为了区别,目前可编程控制器常被称为PLC[1]。
在1985年,国际电工委员会颁布的标准中,对可编程序控制器定义为:一种转为工业环境下应用而设计的数字运算操作的电子系统。
它采用可编程序的存储器,在其内部存储进行逻辑与算术运算、顺序控制、计数与定时等操作指令,通过数字式、模拟式的输入与输出,控制各种各样的生产机械与过程。
近年来,PLC发展非常迅速,其功能已经大大超出以上所述定义范围。
1.1 液位控制系统方案论文的主要内容是设计一个基于PLC的液位控制系统,要求控制系统可以根据生产的需要对液位进行设定,当液位低于或高于限定值时自动启动电机加液或排液,当液位达到设定值时电机停转,操作人员可以改变限定值,并达到阈值报警功能。
根据要求系统设计方案如图1所示。
图1 系统设计方案图1.2 系统的工作原理液位控制系统工作原理:液位传感器监控水箱液位变化并转化成电信号发送给PLC,然后PLC根据不同的电信号来控制电机的正转、反转与停止。
同时液位信息也同步发送给触摸屏,在触摸屏上显示出液位变化,而且触摸屏通过数据线与PLC相接可以设置水箱内的液位参数。
当系统出现故障时工作人员可以通过接触器来控制电机正转、反转和停止。
2. 器件的选取及其特点PLC在市场上主要有三菱(日本)和西门子(德国)两个品牌,西门子具有较强的过程控制与通信控制能力,而且程序简单,模拟量模块价格也适宜,而三菱的模拟量模块价格昂贵,程序复杂,三菱在过程控制和通信方面的功能较弱。
所以针对液位控制系统选取西门子的PLC,而且此次设计的所需要的设备中有很多仪表的数据要用通信进行采集,选取西门子一系列产品便于控制。
因此本设计选取的主要器件有:西门子S7-200型号的PLC,欧姆龙公司NS8触摸屏,浮球式液位变送器和直流电动机。
2.1 西门子S7-200PLC简介S7-200PLC的硬件由主机、I/O扩展机及外部设备组成,其简化框图如图2所示。
主机:由微处理器通过数据总线、地址总线、控制总线和一些辅助电路联接存储器、接口与I/O口单元,检测PLC的硬件工作状态;由编程器感应并接收用户键入的程序与数据;读取、翻译并运行输入的程序;按所定的时序接收输入状态、更新输出状态,与外部设备进行交换信息等[1]。
在主机中包含有微处理器和存储器及I/O接口。
电源:PLC都会配有开关式稳压电源,电源的交流输入端一般接有尖峰脉冲吸收电路,来增加抗干扰的能力输入输出模块:输入输出模块就是I/O模块,是PLC与现场I/O设备或其他外部设备之间的连接部件。
输入模块用于调理输入信号,把输入信号安全地传递到PLC内部。
输出模块用于把用户程序的逻辑运算结果输出到PLC外部。
功能模块:除了开关量输入/输出外,PLC的其他输入/输出功能由功能模块来实现。
较常见的功能模块有A/D模块、D/A模块、动态输入/输出模块、温度传感器模块、计数器模块、PID模块、远程I/O模块与通信模块等。
图2 PLC硬件简化框图扩展口:扩展口为PLC的总线接口。
主机和近程扩展机之间都是由扩展口来连接的。
编程器:编程器为PLC经常使用的外设,也是PLC中唯一不需要通过功能模块而直接与总线相连接的外部设备。
它在主机上通过编程器接口与其相连。
编程器装配着一个方式选择开关,用于控制PLC的工作方式。
也就是编程方式和监控方式。
其他外设:PLC可带打印机、显示器、键盘等外设。
本设计就用到了触摸屏外设。
S7-200PLC的器件参数如表1所示。
2.2 NS8触摸屏简介触摸式可编程终端是由显示器与触摸屏系统组成,习惯上称为触摸屏,是通过触摸方式来进行人机信息交换的可视人机界面,具有安全耐用、灵敏度高、节省空间、便于交流的优点。
本设计采用OMRON公司NS8触摸屏,如图3所示。
NS8PT是一款整体机,具有简单灵活的系统配置和无缝网络通信配置,连接设备简单,监控功能强大,高性能专用软件等特点。
它通过串行口(RS-232C)表1 S7-200PLC的主要器件参数用户数据大小10240字节变量存储器(V)VB0~VB10239输入映像寄存器I0.0~I15.7 局部存储器(L)LB0~LB63输出映像寄存器Q0.0~Q15.7 位存储器(M)M0.0~M31.7模拟量输入(只读)AIW0~AIW62 特殊存储器(SM)只读SM0.0~SM549.7 SM0.0~SM29.7模拟量输出(只写)AQW0~AQW62 定时器(T)256(T0~T255)计数器(C)C0~C255 跳转/标号0~255高速计数器(HC)HC0~HC5 调用/子程序0~127顺序控制继电器(S)S0.0~S31.7 中断程序0~127累加器寄存器(AC)AC0~AC3 正/负跳变256PID回路0~7 端口端口0,端口1图3 欧姆龙NS8外观图和以太网与PLC连接,串行口连接是最基本,最常用的连接方式。
NS8PT最基本的使用方法是:在PC上用CX-Designer软件编写程序,下载到PT上,再把PT与PLC连接起来,实现预期的功能。
2.3 浮球式液位变送器简介浮球式液位变送器是有磁性浮球、信号单元、测量导管、电子单元、接线盒及其安装组件构成。
常用的磁性浮球的比重低于0.5,能漂浮在液面之上并可沿测量玻璃管上下浮动。
导管内装配有测量单元,根据外磁作用变送器把被测液位信号转换成正比于液位变化的电阻信号,并通过电子单元转换成4~20mA电流信号或其它类型信号输出。