九年级数学上册-随机事件与概率25.1.1随机事件导学案新版新人教版

合集下载

九年级数学上册 25.1.1 随机事件教案 新人教版(1)(2021年整理)

九年级数学上册 25.1.1 随机事件教案 新人教版(1)(2021年整理)

九年级数学上册25.1.1 随机事件教案(新版)新人教版(1)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(九年级数学上册25.1.1 随机事件教案(新版)新人教版(1))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为九年级数学上册25.1.1 随机事件教案(新版)新人教版(1)的全部内容。

25.1。

1 随机事件一、教学目标1。

会对必然事件,不可能事件和随机事件作出准确判断。

2.归纳出必然事件、不可能事件和随机事件的特点.(重点)3.知道事件发生的可能性是有大小的。

二、课时安排1课时三、教学重点归纳出必然事件、不可能事件和随机事件的特点。

四、教学难点知道事件发生的可能性是有大小的.五、教学过程(一)导入新课下列问题哪些是必然发生的?哪些是不可能发生的?(1)太阳从西边落下;(2)某人的体温是100℃;(3)a2+b2=—1(a,b都是实数);(4)水往低处流;(5)铁和硫酸铜溶液反应生成铜和硫酸亚铁;(6)三人性别各不相同;(7)一元二次方程x2+2x+3=0无实数解.回答:我们把上面的事件(1)、(4)、(5)、(7)称为必然事件,把事件(2)、(3)、(6)称为不可能事件.那么请问:什么是必然事件?什么又是不可能事件呢?它们的特点各是什么?(二)讲授新课探究1:活动1 五名同学参加演讲比赛,以抽签方式决定每个人的出场顺序.为了抽签,我们在盒中放五个完全一样的纸团,每个纸团里分别写着表示出场顺序的数字1,2,3,4,5.把纸团充分搅拌后,小颖先抽签,她任意(随机)从盒中抽取一个纸团.请考虑以下问题: (1)抽到的序号有几种可能的结果?(2)抽到的序号是0,可能吗?这是什么事件?(3)抽到的序号小于6,可能吗?这是什么事件?(4)抽到的序号是1,可能吗?这是什么事件?明确:(1)5种;(2)不可能,不可能事件;(3)一定会,必然事件;(4)可能,随机事件活动2 掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数。

数学人教版九年级上册25.1.1随机事件教案

数学人教版九年级上册25.1.1随机事件教案
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《随机事件》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过不确定的事情?”比如抛硬币、抽奖等。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索随机事件的奥秘。
数学人教版九年级上册25.1.1随机事件教案
一、教学内容
《数学人教版九年级上册》25.1.1随机事件教案:
1.理解随机事件的概念,掌握随机事件的表示方法。
2.掌握随机事件的分类:必然事件、不可能事件、可能事件。
3.掌握并Leabharlann 用概率的基本性质,求解简单随机事件的概率。
4.通过实例分析,学会判断和比较随机事件的可能性。
2.提高学生逻辑推理和数学思维能力,通过分类讨论和概率性质的应用,培养他们解决随机事件问题的策略。
3.强化学生的数学应用意识,将理论知识与生活实际相结合,学会在实际情境中发现、提出并解决与随机事件相关的问题。
4.培养学生的合作意识和团队精神,通过小组讨论和交流活动,共同探索随机事件的规律和解决方法。
举例:求解抛两枚硬币,同时出现正面的概率。
(3)在生活实际中,如何提取出随机事件并运用所学知识进行分析。
难点解析:学生可能在面对复杂的生活情境时,无法准确识别出随机事件。教师应通过案例分析,引导学生如何从实际问题中提炼出随机事件。
举例:分析某商场促销活动的中奖概率问题。
在教学过程中,教师要关注学生的掌握情况,针对重点和难点内容进行详细讲解,并通过丰富的实例和练习题,帮助学生突破难点,提高解决实际问题的能力。
5.激发学生对数学学科的兴趣,引导他们积极探索概率论及其在日常生活中的应用,为后续学习打下坚实基础。

人教版九年级数学上册导学案 第二十五章 概率初步 25.1.1 随机事件

人教版九年级数学上册导学案 第二十五章 概率初步 25.1.1 随机事件

人教版九年级数学上册导学案第二十五章概率初步25.1.1 随机事件【学习目标】1、归纳出必然事件,不可能事件和随机事件的特点,会根据这些特点对有关事件作出准确判断;2、形成对事件发生的可能性大小作定性分析的能力,了解影响随机事件发生的可能性大小的因素;【课前预习】1.下列事件:①打开电视机,正在播广告;②从只装红球的口袋中,任意摸出一个球恰好是白球;③同性电荷,相互排斥;④抛掷硬币1000次,第1000次正面向上.其中为随机事件的是()A.①②B.①④C.②③D.②④2.下列事件中,是必然事件的是( )A.购买一张彩票,中奖B.射击运动员射击一次,命中靶心C.经过有交通信号灯的路口,遇到红灯D.任意画一个三角形,其内角和是180°3.下列说法正确的是()A.“任意画出一个三角形,其内角和为180 ”为必然事件B.可能性是1%的事件在一次试验中一定不会发生C.检测某批次灯泡的使用寿命,适宜用全面检查D.“任意画出一个等边三角形,它是轴对称图形”是随机事件4.下列事件中必然发生的事件是()A.一个图形平移后所得的图形与原来的图形不全等B.不等式的两边同时乘以一个数,结果仍是不等式C.200件产品中有5件次品,从中任意抽取6件,至少有一件是正品D.随意翻到一本书的某页,这页的页码一定是偶数5.下列说法中正确的是()A.“打开电视,正在播放《新闻联播》”是必然事件B.“x2<0(x是实数)”是随机事件C.掷一枚质地均匀的硬币10次,可能有5次正面向上D.为了了解夏季冷饮市场上冰淇淋的质量情况,宜采用普查方式调查6.某班四个小组进行辩论比赛,赛前三位同学预测比赛结果如下:甲说:“第二组得第一,第四组得第三”;乙说:“第一组得第四,第三组得第二”;丙说:“第三组得第三,第四组得第一”;赛后得知,三人各猜对一半,则冠军是()A.第一组B.第二组C.第三组D.第四组7.下列事件中,必然事件是()A.抛掷1个均匀的骰子,出现6点向上B.两直线被第三条直线所截,同位角相等C.366人中至少有2人的生日相同D.实数的绝对值是非负数8.下列说法错误的是()A.某商场对顾客健康码的审查,选择抽样调查B.在复学后,某校为了检查全校学生的体温,选择全面调查C.为了记录康复后的新冠肺炎病人的体温情况,适合选用折线统计图D.“发热病人的核酸检测呈阳性”是随机事件9.下列事件中,属于必然事件的是()A.掷一枚硬币,正面朝上B.三角形任意两边之差小于第三边C.一个三角形三个内角之和大于180°D.在只有红球的盒子里摸到白球10.下列事件中必然发生的事件是()A.明天会下雨B.射击运动员射击一次,命中10环C.随意翻到一本书的某页,这页的页码一定是偶数D.200件产品中有5件次品,从中任意抽取6件,至少有一件是正品【学习探究】自主学习阅读课本,完成下列问题1、下列问题哪些是必然发生的?哪些是不可能发生的?(1)太阳从西边下山;(2)某人的体温是100℃;(3)a2+b2=-1(其中a,b都是实数);(4)水往低处流;(5)酸和碱反应生成盐和水;(6)三个人性别各不相同;(7)一元二次方程x2+2x+3=0无实数解。

九年级数学上册-25.1-随机事件与概率教案-(新版)新人教版

九年级数学上册-25.1-随机事件与概率教案-(新版)新人教版
2、一个人随意翻书三次,三次都翻到了偶数页,我们能否说翻到偶数页的可能性就大?
3、袋子里装有红、白两种颜色的小球,质地、大小、形状一样,小明从中随机摸出一个球,然后放回,如果小明5次摸到红球,能否断定袋子里红球的数量比白球多?怎样做才能判断哪种颜色的球数量较多?
4、已知地球表面陆地面积与海洋面积的比均为3:7。如果宇宙中飞来一块陨石落在地球上,“落在海洋里”与“落在陆地上”哪个可能性更大?
质疑:那么,这种直觉是否真的是正确的呢?
引导学生以投掷壹元硬币为例,不妨动手做投掷硬币的试验来验证一下.
说明:现实中不确定现象是大量存在的, 新课标指出:“学生数学学习内容应当是现实的、有意义、富有挑战的”,设置实际生活问题情境贴近学生的生活实际,很容易激发学生的学习热情,教师应对此予以肯定,并鼓励学生积极思考,为课堂教学营造民主和谐的气氛,也为下一步引导学生开展探索交流活动打下基础.
说明:注意帮助解决学生在填写统计表与统计图遇到的困难.通过以上实践探究活动,让学生真实地感受到、清楚地观察到试验所体现的规律,即大量重复试验事件发生的频率接近事件发生的可能性的大小(概率).鼓励学生在学习中要积极合作交流,思考探究.学会倾听别人意见,勇于表达自己的见解.
为了给学生提供大量的、快捷的试验数据,利用计算机模拟掷硬币试验的课件,丰富学生的体验、提高课堂教学效率,使他们能直观地、便捷地观察到试验结果的规律性--大量重复试验中,事件发生的频率逐渐稳定到某个常数附近.
在探究学习过程中,应注意评价学生在活动中参与程度、自信心、是否愿意交流等,鼓励学生在学习中不怕困难积极思考,敢于表达自己的观点与感受,养成实事求是的科学态度.
5.下面我们能否研究一下“反面向上”的频率情况?
学生自然可依照“正面朝上”的研究方法,很容易总结得出:“反面向上”的频率也相应稳定到0.5.

人教版九年级数学上25.1.1随机事件导学案(第一课时)-word文档

人教版九年级数学上25.1.1随机事件导学案(第一课时)-word文档

25.1.1随机事件教学目标:知识技能:①了解必然发生的事件、不可能发生的事件、随机事件的特点。

②会根据经验判断一个简单事件是属于必然事件、不可能事件、还是随机事件。

数学思考:①经历体验、操作、观察、归纳、总结的过程,发展学生从复杂的表象中,提炼出本质特征并加以抽象概括的能力。

②从事件的实际情形出发,会简单分析事件发生的可能性。

解决问题:能根据随机事件的特点,辨别哪些事件是随机事件,并在解决实际问题的过程中体会与他人的合作。

情感态度:学生通过亲自体验,亲自演示,感受数学就在身边,促进学生乐于亲近数学,感受数学,喜欢数学。

教学重难点:重点:随机事件的特点。

难点:判断现实生活中哪些事件是随机事件。

教学过程设计:引入新课:1、播放一段中央气象台的天气预报。

“天有不测风云”,这句话被引申为世界上有很多事情具有偶然性,人们不能事先判定这些事情是否会发生?但是随着人们对事件发生可能性的深入研究,人们发现许多偶然事件的发生也是有规律可循的。

设计意图:激发学生的兴趣,让学生体会数学来源于生活,生活中处处有数学。

2、下列现象哪些是必然发生的,哪些是不可能发生的?⑴将一小勺白糖放入一杯温水中,并用筷子不断搅拌,白糖溶解;⑵测量某天的最低气温,结果为—150℃;⑶物体在重力作用下自由下落;⑷两个正实数相加(在运算正确的前提下),结果是负实数。

⑸明天,地球还会转动。

⑹煮熟的鸭子飞了。

设计意图:从日常生活的经验和常识入手,调动学生的积极性,让学生在感性上接受“必然事件”、“不可能事件”的概念。

新知探究:1、问题一:5名同学参加讲演比赛,以抽签方式决定每个人的出场顺序,签筒中有5根形状、大小相同的纸签,上面分别标有出场序号1,2,3,4,5。

小军首先抽签,他在看不到签上的数字的情况下从签筒中随机(任意)地取一根纸签,考虑以下问题:①抽到的序号有几种可能的结果?②抽到的序号小于6吗?③抽到的序号会是0吗?④抽到的序号会是1吗?设计意图:引导学生理解在我们的现实生活中,除了一些必然发生的事件,还有一些事件既可能发生,也可能不发生。

2024年人教版九年级数学上册教案及教学反思第25章25.1.2 概 率

2024年人教版九年级数学上册教案及教学反思第25章25.1.2 概  率

25.1 随机事件与概率25.1.2 概率一、教学目标【知识与技能】1.了解什么是概率,认识概率是反映随机事件发生可能性大小的量.2.了解频率可以看作为事件发生概率的估计值,了解必然事件和不可能事件的概率.3.理解概率反映可能性大小的一般规律.【过程与方法】通过试验得出和理解概率的意义,正确鉴别有限等可能性事件,了解简单事件发生概率的计算方法.【情感态度与价值观】通过分析探究简单随机事件的概率,培养学生良好的动脑习惯,提高运用数学知识解决实际问题的意识,激发学习兴趣,体验数学的应用价值.二、课型新授课三、课时1课时四、教学重难点【教学重点】1.正确理解有限等可能性.2.用概率定义求简单随机事件的概率.【教学难点】正确理解有限等可能性,准确计算随机事件的概率.五、课前准备课件、图片等.六、教学过程(二)导入新课篮球比赛中,裁判员一般是通过掷硬币决定哪个队先发球,这样的游戏公平吗?为什么?(出示课件2)学生思考并交流.出示课件3,4:5名同学参加讲演比赛,以抽签方式决定每个人的出场顺序,签筒中有5根形状、大小相同的纸签,上面分别标有出场的序号1,2,3,4,5.小军首先抽签,他在看不到纸签上的数字的情况下从签筒中随机(任意)地取一根纸签,请考虑以下问题:教师问:抽到的序号有几种可能的结果?学生答:每次抽签的结果不一定相同,序号1,2,3,4,5都有可能抽到,共有5种可能的结果,但是事先不能预料一次抽签会出现哪一种结果.教师问:抽到的序号小于6吗?学生答:抽到的序号一定小于6;教师问:抽到的序号会是0吗?学生答:抽到的序号不会是0.想一想:能算出抽到每个数字的可能数值吗?(板书课题)(二)探索新知探究一概率的定义出示课件6:活动1 抽纸团从分别有数字1、2、3、4、5的五个纸团中随机抽取一个,这个纸团里的数字有5种可能,即1、2、3、4、5.师生共同分析:因为纸团看上去完全一样,又是随机抽取,所以每个数字被表示每一个数字被抽到的可能性大抽取的可能性大小相等,所以我们可以用15小.出示课件7:活动2 掷骰子掷一枚骰子,向上一面的点数有6种可能,即1、2、3、4、5、6.师生共同分析:因为骰子形状规则、质地均匀,又是随机掷出,所以每种点表示每一种点数出现的可能性大小.数出现的可能性大小相等.我们用16教师归纳:(出示课件8)一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记为P(A).例如:“抽到1”事件的概率:P(抽到1)=1.5探究二简单概率的计算出示课件9:试验1:抛掷一个质地均匀的骰子.教师问:它落地时向上的点数有几种可能的结果?学生答:6种.教师问:各点数出现的可能性会相等吗?学生答:相等.教师问:各点数出现的可能性大小是多少?学生答:1.6出示课件10:试验2:掷一枚硬币,落地后:教师问:会出现几种可能的结果?学生答:两种.教师问:正面朝上与反面朝上的可能性会相等吗?学生答:相等.教师问:正面朝上的可能性有多大呢?学生答:1.2出示课件11:上述试验都具有什么样的共同特点?师生共同解答:具有两个共同特征:⑴每一次试验中,可能出现的结果只有有限个;⑵每一次试验中,各种结果出现的可能性相等.教师强调:在这些试验中出现的事件为等可能事件.出示课件12:教师归纳:具有上述特点的试验,我们可以用事件所包含的各种可能的结果数在全部可能的结果数中所占的比,来表示事件发生的概率.出示课件13:一个袋中有5个球,分别标有1、2、3、4、5这5个号码,这些球除号码外都相同,搅匀后任意摸出一个球.教师问:会出现哪些可能的结果?学生答:1、2、3、4、5.教师问:每个结果出现的可能性相同吗?猜一猜它们的概率分别是多少?学生答:相同;1.5出示课件14,15:教师归纳:一般地,如果一个试验有n个可能的结果,并且它们发生的可能性都相等.事件A包含其中的m个结果,那么事件A发生的概率为:().m=p An事件发生的可能性越大,它的概率越接近于1;反之,事件发生的可能性越小,它的概率越接近于0.即:0≤P(A)≤1.特别地:当A为必然事件时,P(A)=1,当A为不可能事件时,P(A)=0.出示课件16:例1 任意掷一枚质地均匀骰子.(1)掷出的点数大于4的概率是多少?(2)掷出的点数是偶数的概率是多少?师生共同分析:任意掷一枚质地均匀的骰子,所有可能的结果有6种:掷出的点数分别是1、2、3、4、5、6,因为骰子是质地均匀的,所以每种结果出现的可能性相等.师生共同解答:(出示课件17)解:(1)掷出的点数大于4的结果只有2种:掷出的点数分别是5、6.所以P(掷出的点数大于4)=21;=63(2)掷出的点数是偶数的结果有3种:掷出的点数分别是2、4、6.所以P(掷出的点数是偶数)=21=.63教师强调:概率的求法关键是找准两点:①全部情况的总数;②符合条件的情况数目.二者的比值就是其发生的概率.巩固练习:(出示课件18)掷一个骰子,观察向上的一面的点数,求下列事件的概率:(1)点数为2;(2)点数为奇数;(3)点数大于2小于5.学生自主解决,一生板演:解:(1)点数为2有1种可能,因此P(点数为2)=1;6(2)点数为奇数有3种可能,即点数为1,3,5,因此P(点数为奇数)=1;2(3)点数大于2且小于5有2种可能,即点数为3,4,因此P(点数大于2且小于5)=1.3出示课件19:例2 袋中装有3个球,2红1白,除颜色外,其余如材料、大小、质量等完全相同,随意从中抽取1个球,抽到红球的概率是多少?学生独立思考后师生共同解答.解:抽出的球共有三种等可能的结果:红1、红2、白,三个结果中有两个结果使得事件A(抽得红球)发生,故抽得红球这个事件的概率为:P(抽到红球)=2.3巩固练习:(出示课件20)袋子里有1个红球,3个白球和5个黄球,每一个球除颜色外都相同,从中任意摸出一个球,则P(摸到红球)= ;P(摸到白球)= ;P(摸到黄球)= .学生独立思考后口答:19;13;59.出示课件21:例3 如图所示是一个转盘,转盘分成7个相同的扇形,颜色分为红黄绿三种,指针固定,转动转盘后任其自由停止,某个扇形会停在指针所指的位置,(指针指向交线时当作指向其右边的扇形)求下列事件的概率.(1)指向红色;(2)指向红色或黄色;(3)不指向红色.学生观察交流后师生共同解答.(出示课件22)解:一共有7种等可能的结果.(1)指向红色有3种等可能的结果,P(指向红色)=37;(2)指向红色或黄色一共有5种等可能的结果,P(指向红或黄)=57;(3)不指向红色有4种等可能的结果,P(不指向红色)=4.7巩固练习:(出示课件23)如图是一个转盘.转盘分成8个相同的部分,颜色分为红、绿、黄三种.指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个图形的交线时,当作指向其右边的图形).求下列事件的概率:(1)指针指向红色;(2)指针指向黄色或绿色.学生观察思考后独立解答:⑴14;⑵34.出示课件24,25:例4 如图是计算机中“扫雷”游戏的画面.在一个有9×9的方格的正方形雷区中,随机埋藏着10颗地雷,每个方格内最多只能藏1颗地雷.小王在游戏开始时随机地点击一个方格,点击后出现如图所示的情况.我们把与标号3的方格相邻的方格记为A区域(画线部分),A区域外的部分记为B 区域.数字3表示在A区域有3颗地雷.下一步应该点击A区域还是B区域?教师问:可能出现哪些点数?师生共同分析:第二步怎样走取决于踩在哪部分遇到地雷可能性的大小,因此,问题的关键是分别计算在两个区域的任何一个方格内踩中地雷的概率并比较大小就可以了.3解:A 区域的方格总共有8个,标号3表示在这8个方格中有3个方格各藏有1颗地雷.因此,点击A 区域的任一方格,遇到地雷的概率是38; B 区域方格数为9×9-9=72.其中有地雷的方格数为10-3=7.因此,点击B 区域的任一方格,遇到地雷的概率是772; 由于38>772,即点击A 区域遇到地雷的可能性大于点击B 区域遇到地雷的可能性,因而第二步应该点击B 区域.巩固练习:(出示课件26)小红和小明在操场上做游戏,他们先在地上画了半径分别为2m 和3m 的同心圆(如下图),然后蒙上眼睛,并在一定距离外向圈内掷小石子,掷中阴影小红胜,否则小明胜,未掷入圈内(半径为3m 的圆内)不算.你认为游戏公平吗?为什么?学生独立思考交流后自主解答,一生板演.解:不公平,因为P (小红胜)=9π4π59π9-=, P (小明胜)=.49所以小红胜的可能性更大.(三)课堂练习(出示课件27-34)1.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°、90°、210°.让转盘自由转动,指针停止后落在黄色区域的概率是()A.16B.14C.13D.7122.掷一枚质地均匀的骰子,向上一面的点数为5的概率是______.3.从一副扑克牌(除去大小王)中任抽一张.P(抽到红心)=______;P(抽到黑桃)=______;P(抽到红心3)=______;P(抽到5)=______.4.将A、B、C、D、E这五个字母分别写在5张同样的纸条上,并将这些纸条放在一个盒子中.搅匀后从中任意摸出一张,会出现哪些可能的结果?它们是等可能的吗?5.一个桶里有60个弹珠——一些是红色的,一些是蓝色的,一些是白色的.拿出红色弹珠的概率是35%,拿出蓝色弹珠的概率是25%.桶里每种颜色的弹珠各有多少?6.某种彩票投注的规则如下:你可以从00~99中任意选取一个整数作为投注号码,中奖号码是00~99之间的一个整数,若你选中号码与中奖号码相同,即可获奖.请问中奖号码中两个数字相同的机会是多少?7.有7张纸签,分别标有数字1、1、2、2、3、4、5,从中随机地抽出一张,求:(1)抽出标有数字3的纸签的概率;(2)抽出标有数字1的纸签的概率;(3)抽出标有数字为奇数的纸签的概率.8.如图所示,转盘被等分为16个扇形.请在转盘的适当地方涂上颜色,使得自由转动这个转盘,当它停止转动时,指针落在红色区域的概率为38.你还能再举出一个不确定事件,使得它发生的概率也是38吗?参考答案:1.B2.1 6解析:掷一枚质地均匀的骰子,向上一面的点数为5的概率是:16.3.1 4;14;⑶152;⑷113.4.解:出现A、B、C、D、E五种结果.它们是等可能的.5.解:拿出白色弹珠的概率是1-35%-25%=40%;红色弹珠有60×35%=21;蓝色弹珠有60×25%=15;白色弹珠有60×40%=24.6.解:P (中奖号码数字相同)=110. 7.解:⑴P (数字3)=17; ⑵P (数字1)=27; ⑶P (数字为奇数)=47.8.解:选择任意六块涂色;8张卡片分别写上1,2,3,…,8,任意抽一张,抽到的数比4小的概率为38.(四)课堂小结本节课你学到了哪些数学知识和数学方法?请与同伴交流 .(五)课前预习预习下节课(25.2第1课时)的相关内容.七、课后作业配套练习册内容八、板书设计:一般地,如果一个试验有n 个等可能的结果,事件A 包含其中的m 个结果,那么事件A 发生的概率为:().m P A n(0≤P (A )≤1) 九、教学反思:1.用学生喜欢的抽签,抽纸团和掷骰子试验,吸引学生迅速进入状态,让学生充分认识概率的意义;由学生自主探索、合作交流此类型概率的求法,利用学生掌握本节课的知识,学生在解决问题的过程中,发展了思维能力,增强思维的缜密性,并且培养了学生解决问题的信心.2.在概率的古典定义基础上,教科书给出了概率的取值范围为0-1的性质,事件发生的可能性越大,它的概率越接近1,其中必然事件的概率为1,不可能事件的概率为0,两个确定事件可以看作特殊的随机事件.。

秋九年级数学上册25.1.1随机事件教案(新版)新人教版【精品教案】

秋九年级数学上册25.1.1随机事件教案(新版)新人教版【精品教案】

25.1.1 随机事件教学目标:了解确定性事件、随机事件的特点,并能辨别哪些事件是必然事件、不可能事件、随机事件。

教学重点:理解随机事件的含义教学难点:认识事件发生的种类;理解不同的随机事件发生的可能性大小不同教学过程:简记一、复习导入:下列现象必然发生的是,不可能发生的是(填序号)①将一小勺白糖放入一大杯温水中,并用筷子不断的搅拌,白糖溶解;②测量博兴某天的最低气温,结果为-150℃;③物体(比如一小段粉笔或石块)在重力作用下自由下落;④两个正数相加,(在运算正确的前提下)结果是负实数;⑤明天是晴天;⑥购买1张体育彩票,中奖.二、新课探讨:研讨一㈠5名同学参加演讲比赛,以抽签方式决定每个人的出场顺序,签筒中有5根形状、大小相同的纸签,上面分别标有出场的序号1,2,3,4,5,小军首先抽签,他在看不到纸签上的数字的情况下从签筒中随机(任意)地取一根纸签.请考虑以下问题:①抽到的序号有几种可能的结果?②抽到的序号小于6吗?③抽到的序号会是0吗?④抽到的序号会是1吗?㈡小伟掷一个质地均匀的正方形骰子,骰子的六个面上分别刻有1到6的点数,掷一次骰子,在骰子向上的一面上,请考虑:①可能出现哪些点数?②出现的点数会是7吗?③出现的点数大于0吗? ④出现的点数会是4吗?概念:1.在一定条件下,有些事件必然会发生,这样的事件称为_________.2.在一定条件下,有些事件必然不会发生,这样的事件称为__________.必然事件与不可能事件统称为3.在一定条件下,可能发生也有可能不发生的事件,称为_________.知识应用:下列事件:①从一副扑克牌中随意抽出一张,结果是红桃;②两个负数的商小于0;③去看球赛随意买了一张票,座位号是偶数;;④抛向空中的篮球会下落;⑤测量一个三角形的三边长分别是6cm、4cm、10cm ;⑥明天刮大风其中_______是必然事件;_________是不可能事件;__________随机事件.研讨二袋子中装有4个黑球2个白球,这些球的形状、大小、质地等完全相同。

2024年人教版九年级数学上册教案及教学反思全册第25章 概率初步(教案)25.1.1 随机事件教案

2024年人教版九年级数学上册教案及教学反思全册第25章 概率初步(教案)25.1.1 随机事件教案

25.1随机事件与概率25.1.1随机事件一、教学目标【知识与技能】1.理解必然发生的事件,不可能发生的事件,随机事件的概念,掌握判断随机事件的方法.2.了解随机事件发生的可能性有大有小,并会对随机事件发生的可能性大小做出判断.【过程与方法】通过本节课的学习,会根据经验判断一个简单事件是属于必然事件,不可能事件还是随机事件.【情感态度与价值观】感受数学与现实生活的联系,积极参与对数学问题的探讨,利用数学的思维方式解决现实问题.二、课型新授课三、课时1课时。

四、教学重难点【教学重点】随机事件的特点,会判断现实生活中的随机事件.【教学难点】判断现实生活中哪些事件是随机事件.五、课前准备课件、图片等.六、教学过程(一)导入新课你能确定明天是什么天气吗?(出示课件2)解决这个问题要研究随机事件.(板书课题)(二)探索新知探究一必然事件、不可能事件和随机事件出示课件4,5:活动1掷骰子掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数.请思考以下问题:掷一次骰子,则骰子向上的一面:教师问:可能出现哪些点数?学生答:1点、2点、3点、4点、5点、6点.教师问:出现的点数是7,可能发生吗?学生答:不可能发生.教师问:出现的点数大于0,可能发生吗?学生答:一定会发生.教师问:出现的点数是4,可能发生吗?学生答:可能发生,也可能不发生.出示课件6-8:活动2摸球游戏教师问:小明从盒中任意摸出一球,一定能摸到红球吗?学生答:不一定.教师问:小麦从盒中摸出的球一定是白球吗?学生答:一定.教师问:小米从盒中摸出的球一定是红球吗?学生答:一定.教师问:三人每次都能摸到红球吗?学生答:小明不一定;小麦一定不能;小米一定能.出示课件9:“从如下一堆牌中任意抽一张牌,可以事先知道抽到红牌的发生情况”吗?学生交流,回答问题:第一组一定会发生;第二组一定不会发生;第三组有可能发生,也可能不发生.教师归纳:(出示课件10,11)在一定条件下,有些事件必然会发生,这样的事件称为必然事件.有些事件必然不会发生,这样的事件称为不可能事件.在一定条件下,可能发生也可能不发生的事件称为随机事件.教师强调:事件一般用大写字母A,B,C···表示.出示课件12:例判断下列事件是必然事件、不可能事件和随机事件:(1)乘公交车到十字路口,遇到红灯;(2)把铁块扔进水中,铁块浮起;(3)任选13人,至少有两人的出生月份相同;(4)从上海到北京的D314次动车明天正点到达北京.学生思考交流后,教师抽查学生口答:⑴随机事件;⑵不可能事件;⑶必然事件;⑷随机事件.巩固练习:(出示课件13)下列现象哪些是必然发生的,哪些是不可能发生的?学生独立思考后口答:必然事件;必然事件;不可能事件;不可能事件;必然事件;必然事件;不可能事件;不可能事件.探究二随机事件发生的可能性大小出示课件15-17:活动3:摸球袋中装有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出一个球.教师问:这个球是白球还是黑球?学生答:可能是白球也可能是黑球.教师问:如果两种球都有可能被摸出,那么摸出黑球和摸出白球的可能性一样大吗?学生答:摸出黑球的可能性大.由于两种球的数量不等,所以“摸出黑球”和“摸出白球”的可能性的大小是不一样的,且“摸出黑球”的可能性大于“摸出白球”的可能性.教师问:能否通过改变袋子中某种颜色的球的数量,使“摸出黑球”和“摸出白球”的可能性大小相同?学生答:可以.白球个数不变,拿出两个黑球或黑球个数不变,加入2个白球.出示课件18:教师归纳:随机事件的特点:一般地,⑴随机事件发生的可能性是有大小的;⑵不同的随机事件发生的可能性的大小有可能不同.出示课件19:例1有一个转盘(如图所示),被分成6个相等的扇形,颜色分为红、绿、黄三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,重新转动).下列事件:①指针指向红色;②指针指向绿色;③指针指向黄色;④指针不指向黄色.估计各事件的可能性大小,完成下列问题:(1)可能性最大的事件是_____,可能性最小的事件是_____(填写序号);(2)将这些事件的序号按发生的可能性从小到大的顺序排列:____________.学生观察交流后,师生共同解答.⑴④;②;⑵②<③<①<④.巩固练习:(出示课件20,21)1.随意从一副扑克牌中抽到Q和K的可能性大小是()A.抽到Q的可能性大B.抽到K的可能性大C.抽到Q和K的可能性一样大D.无法确定2.如果一件事情不发生的可能性为99.99%,那么它()A.必然发生B.不可能发生C.很有可能发生D.不太可能发生学生思考后独立解答:1.C解析:因为在一副扑克牌中,Q和K的数量相同,所以它们的可能性相同.2.D解析:一件事情不发生的可能性为99.99%,说明这个事件是随机事件,这个事件发生的可能性不大,即不太可能发生.出示课件22:例2一个不透明的口袋中有7个红球,5个黄球,4个绿球,这些球除颜色外没有其他区别,现从中任意摸出一球,如果要使摸到绿球的可能性最大,需要在这个口袋中至少再放入多少个绿球?请简要说明理由.师生共同解答.解:至少再放入4个绿球.理由:袋中有绿球4个,再至少放入4个绿球后,袋中有不少于8个绿球,即绿球的数量最多,这样摸到绿球的可能性最大.巩固练习:(出示课件23,24)甲口袋中放着22个红球和8个黑球,乙口袋中则放着200个红球、8个黑球和2个白球,这三种球除了颜色以外没有任何区别,两袋中的球都各自搅匀,蒙上眼睛从口袋中取一个球,如果你想取一个红球,你选哪个口袋成功的机会大?小红认为选甲较好,因为里面的球较少,容易摸到红球;小明认为选乙较好,因为里面的球较多,成功的机会越大;小亮认为都一样,因为只摸一次,谁也无法预测会取出什么颜色的球.你觉得他们说的有道理吗?学生交流后口答.解:他们的说法都没有道理.因为摸到一个红球的可能性的大小和袋子中球的总数量没关系,而是取决于红球占总数量的比例.在甲口袋中取一个红球的可能性为2230,在乙口袋中取一个红球的可能性为200 210,即2021,因为2021>2230,所以在乙口袋中取一个红球的可能性大.(三)课堂练习(出示课件25-30)1.下列说法正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,|a|≥0”是不可能事件2.下列事件中,是必然事件的是()A.任意买一张电影票,座位号是2的倍数B.13个人中至少有两个人生肖相同C.车辆随机到达一个路口,遇到红灯D.明天一定会下雨3.下列事件是必然事件,不可能事件还是随机事件?(1)太阳从东边升起.(2)篮球明星林书豪投10次篮球,次次命中.(3)打开电视正在播中国新航母舰载机训练的新闻片.(4)一个三角形的内角和为181度.4.如果袋子中有4个黑球和x个白球,从袋子中随机摸出一个,“摸出白球”与“摸出黑球”的可能性相同,则x=______.5.已知地球表面陆地面积与海洋面积的比约为3:7,如果宇宙中飞来一块陨石落在地球上,“落在海洋里”发生的可能性()“落在陆地上”的可能性.A.大于B.等于C.小于D.三种情况都有可能6.桌上扣着背面图案相同的5张扑克牌,其中3张黑桃、2张红桃.从中随机抽取1张扑克牌.(1)能够事先确定抽取的扑克牌的花色吗?(2)你认为抽到哪种花色扑克牌的可能性大?(3)能否通过改变某种花色的扑克牌的数量,使“抽到黑桃”和“抽到红桃”的可能性大小相同?7.你能说出几个与必然事件、随机事件、不可能事件相联系的成语吗?数量不限.参考答案:1.C2.B3.解:⑴必然事件;⑵随机事件;⑶随机事件;⑷不可能事件.4.45.A6.解:⑴不能确定;⑵黑桃;⑶可以,去掉一张黑桃或增加一张红桃.7.解:必然事件:种瓜得瓜,种豆得豆;黑白分明.随机事件:海市蜃楼,守株待兔.不可能事件:海枯石烂,画饼充饥,拔苗助长.(四)课堂小结本节课你学到了哪些数学知识和数学方法?请与同伴交流.(五)课前预习预习下节课(24.2.2第1课时)的相关内容.七、课后作业1.教材129页练习1,2.2.配套练习册内容八、板书设计:九、教学反思:通过这些生动的、有趣的实例,自然地引出必然事件和不可能事件;其次,必然事件和不可能事件相对于随机事件来说,特征比较明显,学生容易判断,把它们首先提出来,符合由浅入深的理念,容易激发学生的学习积极性.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十五章概率初步
25.1 随机事件与概率
25.1.1 随机事件
一、新课导入
1.导入课题:
情景:5名同学参加演讲比赛,现要确定选手的比赛出场顺序,为了体现比赛的公平性,决定采取临时抽签的方式决定出场先后顺序. 签筒中有5张形状、大小相同的纸签,上面分别标有出场的序号1,2,3,4,5.小军首先抽签,他在看不到纸签上的数字的情况下从签筒中随机(任意)地抽取一张纸签.
问题:你能猜一猜小军会抽到几吗?
今天我们来学习随机事件.(板书课题)
2.学习目标:
(1)认识必然事件、不可能事件和随机事件.
(2)会确定随机事件发生可能性的大小.
3.学习重、难点:
重点:认识必然事件、不可能事件和随机事件,随机事件发生可能性的大小.
难点:确定随机事件发生可能性的大小.
二、分层学习
1.自学指导:
(1)自学内容:教材第127页到第128页“练习”以上的内容.
(2)自学时间:5分钟.
(3)自学方法:结合自学提纲互相交流.
(4)自学提纲:
①问题1中(2)~(4)哪种情况可能发生?哪种情况不可能发生?
(4)可能发生,(3)不可能发生.
②问题2中(2)~(4)哪种情况可能发生?哪种情况不可能发生?
(4)可能发生,(3)不可能发生.
③问题1和2中的情况(2)一定发生吗?
一定发生.
④什么叫必然事件?什么叫不可能事件?什么叫随机事件?
在一定条件下,有些事件必然会发生,这样的事件称为必然事件;相反地,有些事件必然不会发生,这样的事件称为不可能事件;在一定条件下,可能发生也可能不发生的事件,称为随机事件.
⑤各举一、两例说明必然事件,不可能事件和随机事件,然后相互交流一下.
必然事件:太阳从东边升起;水涨船高
不可能事件:太阳从西边升起
随机事件:明天是晴天
2.自学:学生可参考自学指导进行自学.
3.助学:
(1)师助生:
①明了学情:了解学生的答题情况.
②差异指导:教师对个别突出问题进行点拨引导.
(2)生助生:引导学生相互交流帮助认识问题.
4.强化:
(1)必然事件、不可能事件、随机事件的概念.
(2)练习:指出下列事件中,哪些是必然事件,哪些是不可能事件,哪些是随机事件.
①通常加热到100℃时,水沸腾;
②篮球队员在罚球线上投篮一次,未投中;
③掷一次骰子,向上的一面是6点;
④度量三角形的内角和,结果是360°;
⑤经过城市中某一有交通信号灯的路口,遇到红灯;
⑥某射击运动员射击一次,命中靶心.
解:必然事件:①;不可能事件:④;随机事件:②③⑤⑥.
1.自学指导:
(1)自学内容:教材第128页问题3到第129页的内容.
(2)自学时间:5分钟.
(3)自学方法:动手实验,从实验中感受随机事件发生的可能性大小.
(4)探究提纲:
①在问题3中,摸到哪种球的可能性大些?摸到球的可能性大小与什么有关?
摸到黑球的可能性大些,摸到球的可能性大小与袋子中该种球的多少有关.
②一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能相同 .
③举一些说明不同的随机事件发生的可能性大小不同的例子,与同桌交流一下.
2.自学:学生可参考自学指导进行自学.
3.助学:
(1)师助生:
①明了学情:教师深入课堂了解学生对问题3的实验过程和结果的探究以及由问题3的实验过程和结果得出的结论.
②差异指导:教师对个性和共性问题进行点拨和引导.
(2)生助生:小组内相互交流研讨.
4.强化:
(1)归纳:随机事件发生的可能性是有大小的.
(2)练习:
①已知地球表面陆地面积与海洋面积的比约为3∶7.如果宇宙中飞来一块陨石落在地球上,“落在海洋里”与“落在陆地上”哪个可能性更大?
解:“落在海洋里”的可能性更大.
②你能列举一些生活中的随机事件、不可能事件和必然事件的例子吗?
解:明天会下雨,老张明天6:00起床等都是随机事件,从一个装有5个黑球和4个白球的袋子里任意取一个球,取到红球为不可能事件,取到黑球或白球为必然事件.
三、评价
1.学生的自我评价(围绕三维目标):这节课我学习了哪些知识,掌握了哪些技能和解决问题的方法?
2.教师对学生的评价:
(1)表现性评价:重点点评学生的学习态度、学习方法和实际效果及存在的问题.
(2)纸笔评价:课堂评价检测.
3.教师的自我评价(教学反思):通过这些生动有趣的实例,自然地引出必然事件和不可能事件;其次,必然事件和不可能事件相对于随机事件来说,特征比较明显,学生容易判断,把它们首先提出来,符合由浅入深的理念,容易激发学生的学习积极性.“抽签”这个活动是
学生容易理解或亲身经历过的,操作简单省时,又具有很好的代表性,最主要的是活动中含有大量的随机事件,可激发学生的探知欲.
(时间:12分钟满分:100分)
一、基础巩固(70分)
1.(10分)“任意打开一本200页的数学书,正好是第50页”,这是随机事件(选填“随机”“必然”或“不可能”).
2.(10分)从数1、2、3、4、5中任取两个数字,得到的都是偶数,这一事件是随机事件 .
3.(10分)下列所描述的事件:①某个数的绝对值小于0;②守株待兔;③某两个负数的积大于0;④水中捞月.其中属于不可能事件的有①④ .
4.(10分)一个口袋中装有红、黄、蓝三个大小和形状都相同的球,从中任取一球,得到红球与得到蓝球的可能性相同 .
5.(10分)小明参加普法知识竞答,共有10个不同的题目,其中选择题6个,判断题4个,今从中任选一个,选中判断题的可能性较小.
6.(20分) 请指出在下列事件中,哪些是随机事件,哪些是必然事件,哪些是不可能事件.
(1)通常温度降到0℃以下,纯净的水结冰;
(2)随意翻到一本书的某页,这页的页码是奇数;
(3)地面发射1枚导弹,未击中空中目标;
(4)测量某天的最低气温,结果为-150℃;
(5)汽车累积行驶1万千米,从未出现故障.
解:(2) (3) (5)是随机事件,(1)是必然事件,(4)是不可能事件.
二、综合应用(20分)
7.(10分)从一副扑克牌中任取一张,摸到大王与摸到小王的可能性(A)
A.相等
B.不相等
C.有时相等,有时不等
D.无法确定
8.(10分)某班共有学生36人,其中男生20人,女生16人,今从中选一名班长,所有人都有同样的机会当选,下列叙述正确的是(B)
A.男生当选与女生当选的可能性相等
B.男生当选的可能性大于女生当选的可能性
C.男生当选的可能性小于女生当选的可能性
D.无法确定
三、拓展延伸(10分)
9.(10分)一个不透明的袋子中装有6个红球和4个白球,请根据此信息设计一个随机事件、一个必然事件和一个不可能事件.
解:随机事件:从袋子中任取一球,取到的球是红球;
必然事件:从袋子中任取一球,取到的球是红球或白球;
不可能事件:从袋子中任取一球,取到的球是黑球.。

相关文档
最新文档