有机人名反应及其机理解析

合集下载

基础有机化学人名反应

基础有机化学人名反应

引言概述:基础有机化学是研究有机化合物的物理性质、化学性质、结构和合成方法的科学。

在有机化学领域,人名反应是一种重要的化学反应类别。

人名反应是以其发现者或主要贡献者的名字来命名的有机化学反应。

本文将介绍几个常见的基础有机化学人名反应,包括居里尔莫梅托反应、格里尼亚反应、梅林反应、勒纳-约翰逊反应和沃尔弗-克希尔反应。

正文内容:一、居里尔莫梅托反应1.居里尔莫梅托反应的概述和历史背景2.反应机理和关键步骤的详细解释3.应用和实例:居里尔莫梅托反应在有机合成中的应用领域和反应条件4.优势和局限性:居里尔莫梅托反应的优势以及在特定情况下的局限性5.进一步发展和改进:对居里尔莫梅托反应的未来发展和改进的前景进行讨论二、格里尼亚反应1.格里尼亚反应的基本原理和应用2.反应机理和关键步骤的详细解释3.不同类型的格里尼亚试剂的制备方法和特点4.格里尼亚反应在有机合成中的应用实例5.格里尼亚反应的改进和未来发展方向三、梅林反应1.梅林反应的概述和历史背景2.反应机理和关键步骤的详细解释3.梅林反应在合成有机化合物和天然产物中的应用4.梅林反应与其他反应的比较和优势5.对梅林反应未来研究和改进的展望四、勒纳-约翰逊反应1.勒纳-约翰逊反应的基本原理和历史背景2.反应机理和关键步骤的详细解释3.不同类型的勒纳-约翰逊试剂的制备方法和特点4.勒纳-约翰逊反应在有机合成中的应用实例5.对勒纳-约翰逊反应的改进和发展方向的讨论五、沃尔弗-克希尔反应1.沃尔弗-克希尔反应的概述和历史背景2.反应机理和关键步骤的详细解释3.沃尔弗-克希尔反应在药物合成中的应用4.不同类型的沃尔弗-克希尔试剂的制备方法和特点5.对沃尔弗-克希尔反应的改进和未来发展前景的展望总结:基础有机化学的人名反应是有机化学领域中的重要组成部分,各个人名反应都有其独特的反应机理和应用领域。

本文详细介绍了居里尔莫梅托反应、格里尼亚反应、梅林反应、勒纳-约翰逊反应和沃尔弗-克希尔反应的概述、反应机理、应用和改进方向。

有机化学人名反应机理

有机化学人名反应机理
醇:
液氨、乙二醇醚类、四氢呋喃、二甲亚砜、二甲苯等均能作为反应的溶剂。 反应机理
• 反应实例
Favorskii 重排 • α-卤代酮在氢氧化钠水溶液中加热重排生成含相同碳原子数的羧酸;如为环状α-卤代酮,则导致环缩小。
如用醇钠的醇溶液,则得羧酸酯: 此法可用于合成张力较大的四员环。
• 反应机理
有机化学人名反应
Arbuzov反应(艾伯佐夫反应) • 亚磷酸三烷基酯作为亲核试剂与卤代烷作用,生成烷基膦酸二烷基酯和一个新的卤代烷:
a
卤代烷反应时,其活性次序为:R'I >R'Br >R'Cl。除了卤代烷外,烯丙型或炔丙型卤化物、α-卤代醚、α-或 β-卤代 酸酯、对甲苯磺酸酯等也可以进行反应。当亚磷酸三烷基酯中三个烷基各不相同时,总是先脱除含碳原子数最少的 基团。
• 反应机理 反应实例
Gabriel 合成法(盖布瑞尔) • 邻苯二甲酰亚胺与氢氧化钾的乙醇溶液作用转变为邻苯二甲酰亚胺盐,此盐和卤代烷反应生成N-烷基邻苯
二甲酰亚胺,然后在酸性或碱性条件下水解得到一级胺和邻苯二甲酸,这是制备纯净的一级胺的一种方法。
有些情况下水解很困难,可以用肼解来代替:
反应机理 邻苯二甲酰亚胺盐和卤代烷的反应是亲核取代反应,取代反应产物的水解过程与酰胺的水解相似。
交叉反应实验证明:Claisen重排是分子内的重排。采用 g-碳 14C 标记的烯丙基醚进行重排,重排后 g-碳 原子与苯环相连,碳碳双键发生位移。两个邻位都被取代的芳基烯丙基酚,重排后则仍是a-碳原子与苯 环相连。
• 反应机理 Claisen 重排是个协同反应,中间经过一个环状过渡态,所以芳环上取代基的电子效应对重排无影响。
由于这个反应通常是在回流温度或高达400-450 °C的温度范围内进行,不用催化剂和溶剂,直到反应物没有 水放出为止,在这样的高温条件下,一部分原料和产物发生碳化,部分原料酮被释放出的水所裂解,烃基发生 消除或降解以及分子重排等副反应,致使产率不高。

有机人名反应——机理及合成应用

有机人名反应——机理及合成应用

有机人名反应——机理及合成应用有机化学里,有一个有趣的领域叫做“人名反应”,听到这个名字是不是觉得有点像是某种神秘的仪式?其实,人名反应是指那些以某个人名命名的经典化学反应。

就像有人给你起个外号,化学家们也给这些反应起了名字,以纪念那些对化学有重大贡献的前辈。

今天我们就来聊聊这些反应的机理以及它们在合成中的应用,让大家对这个领域有个直观的了解。

1. 有机人名反应的机理1.1 什么是机理?简单来说,机理就是解释化学反应为什么会这样发生的故事。

就像你在看一部悬疑剧时,想知道凶手怎么作案一样,化学家们也想弄清楚反应的“幕后黑手”是什么。

机理告诉我们每一步反应过程中的分子怎么舞动,反应怎么一步步进行,就像揭开了化学反应的神秘面纱。

1.2 经典人名反应的机理我们先从最著名的几个反应说起吧,比如费林反应(FriedelCrafts反应)和迈克尔加成反应。

费林反应是由化学家费林(Friedel)和克拉夫茨(Crafts)一起开发的,它主要用来生成芳香族化合物的衍生物。

简单来说,就是把一个芳香环(比如苯)跟一个其他的基团结合起来,形成新化合物。

这就好比把你喜欢的几个菜肴混合在一起,变成一道新的美味。

迈克尔加成反应就像是个“组合拳”,它把两个分子合并,形成一个新的结构。

具体来说,它是一种加成反应,其中一个分子上的亲电中心(可以理解成化学反应中的“吸引力中心”)和另一个分子的亲核中心(“发射点”)发生反应。

这个过程有点像一个化学版的“双簧”——需要两个分子之间的默契配合,才能奏效。

2. 有机人名反应的合成应用2.1 药物合成中的应用说到应用,那可真是五花八门。

药物合成中,有机人名反应简直就是神兵利器。

比如说,某些复杂的药物分子可以通过这些反应合成出来,像阿莫西林这样的抗生素就是通过特定的反应步骤制作的。

想象一下,你要制作一款超级复杂的料理,怎么做呢?得有可靠的食谱和技巧对吧?化学家们也是如此,他们用这些反应作为合成的“食谱”,让复杂的药物分子得以顺利生成。

常见人名反应及其机理

常见人名反应及其机理

常见人名反应及其机理1.Arbuzov 反应卤代烷反应时,其活性次序为:R'I >R'Br >R'Cl。

除了卤代烷外,烯丙型或炔丙型卤化物、a-卤代醚、a- 或b-卤代酸酯、对甲苯磺酸酯等也可以进行反应。

当亚酸三烷基酯中三个烷基各不相同时,总是先脱除含碳原子数最少的基团。

本反应是由醇制备卤代烷的很好方法,因为亚磷酸三烷基酯可以由醇与三氯化磷反应制得:一般认为是按S N2 进行的分子内重排反应:2.Arndt-Eister 反应酰氯与重氮甲烷反应,然后在氧化银催化下与水共热得到酸。

重氮甲烷与酰氯反应首先形成重氮酮(1),(1)在氧化银催化下与水共热,得到酰基卡宾(2),(2)发生重排得烯酮(3),(3)与水反应生成酸,若与醇或氨(胺)反应,则得酯或酰胺。

3.Baeyer-Villiger 反应过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂。

因此,这是一个重排反应具有光学活性的3-苯基丁酮和过酸反应,重排产物手性碳原子的枸型保持不变,说明反应属于分子内重排:不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还是有一定的选择性,按迁移能力其顺序为:4. Beckmann 重排肟在酸如硫酸、多聚磷酸以及能产生强酸的五氯化磷、三氯化磷、苯磺酰氯、亚硫酰氯等作用下发生重排,生成相应的取代酰胺,如环己酮肟在硫酸作用下重排生成己内酰胺:在酸作用下,肟首先发生质子化,然后脱去一分子水,同时与羟基处于反位的基团迁移到缺电子的氮原子上,所形成的碳正离子与水反应得到酰胺。

迁移基团如果是手性碳原子,则在迁移前后其构型不变。

5.Bouveault-Blanc 还原脂肪族羧酸酯可用金属钠和醇还原得一级醇。

α,β-不饱和羧酸酯还原得相应的饱和醇。

芳香酸酯也可进行本反应,但收率较低。

本法在氢化锂铝还原酯的方法发现以前,广泛地被使用,非共轭的双键可不受影响。

有机合成常用人名反应

有机合成常用人名反应

有机合成常用人名反应有机合成是化学领域中的一个重要分支,它研究有机化合物的合成方法和反应过程。

在有机合成中,常常会使用一些常用的人名反应,这些反应以人名命名,代表了该反应的发现者或者重要贡献者。

本文将介绍一些常用的人名反应,并对其原理和应用进行阐述。

一、格氏反应(Gattermann Reaction)格氏反应是一种用于合成醛的重要反应。

它是由德国化学家格氏(Gattermann)于1898年发现的。

格氏反应通过在芳香化合物上引入氰基,然后将其加氢还原,得到相应的醛。

格氏反应是一种重要的合成醛的方法,广泛应用于有机合成领域。

二、斯特雷克反应(Strecker Reaction)斯特雷克反应是一种合成α-氨基酸的方法,由德国化学家斯特雷克(Strecker)于1850年发现。

该反应通过使用醛、氰化物和胺,经过缩合和水解反应,合成出具有氨基酸结构的化合物。

斯特雷克反应是合成氨基酸的重要方法之一,广泛应用于生物化学和药物化学领域。

三、沃尔夫-克尼希反应(Wolf-Kishner Reduction)沃尔夫-克尼希反应是一种将醛或酮转化为对应的烷烃的方法。

该反应由德国化学家沃尔夫(Wolf)和克尼希(Kishner)于1912年发现。

沃尔夫-克尼希反应通过使用氨水和氢醇钠,将醛或酮转化为相应的烷烃。

这种还原反应在有机合成中具有重要的应用价值。

四、格里格纳德试剂(Grignard Reagent)格里格纳德试剂是一类由法国化学家格里格纳德(Grignard)于1900年发现的有机金属试剂。

格里格纳德试剂可以与卤代烃反应,生成烷基镁试剂。

这些烷基镁试剂可以与酮、醛、酸等化合物发生加成反应,合成出复杂的有机分子。

格里格纳德试剂是一种重要的有机合成试剂,在有机合成中具有广泛的应用。

五、费舍尔试剂(Fisher Reagent)费舍尔试剂是一种用于合成酮的试剂,由德国化学家费舍尔(Fisher)于1895年发现。

有机人名反应——机理及合成应用

有机人名反应——机理及合成应用

有机人名反应——机理及合成应用1. 引言:有机反应的魅力大家好,今天我们聊聊有机化学中的一个特别的玩意儿——有机人名反应。

听名字就有点儿高大上对吧?其实说白了,就是那些化学反应背后,有一群化学大咖的名字在闪闪发光。

别急着打哈欠,这些反应可是有着很酷的故事和广泛的应用哦!这些反应背后的机理复杂得像迷宫,但如果你愿意跟我走一遭,我们就能一起揭开这些化学秘密的面纱,了解它们如何在实验室里翻云覆雨,甚至在我们的生活中大显神威。

2. 有机人名反应的基本概念2.1 反应的定义和背景有机人名反应,其实就是那些以化学家的名字命名的反应。

这些反应都是有着超高应用价值的,有的能帮我们合成药物,有的能让我们制造新材料。

每一个反应背后都有一个动人的故事,像是你听过的那些传奇人物一样。

比如,有个叫做“DielsAlder反应”的家伙,就是由两位化学大神的名字组合而成的。

他们发明的这个反应,可以帮助我们把两种化合物“合二为一”,就像魔法一样。

2.2 机理的揭秘接下来,我们来聊聊这些反应是怎么工作的。

简单来说,机理就是反应的“操作指南”,告诉我们每一步怎么做。

比如在DielsAlder反应中,我们有两个重要的角色:一个是“内烯”,另一个是“二烯”。

这两个角色就像是一对搭档,在化学的舞台上跳起了华尔兹,它们的结合过程就像是一场精心编排的舞蹈,每一步都需要精准把握。

3. 人名反应的实际应用3.1 合成药物的魔法我们说了这么多,这些反应到底能干啥呢?让我们看看药物的合成。

药物合成中的许多步骤都离不开这些反应,比如抗生素的制造。

如果没有这些反应,我们可能还在为感冒发愁。

DielsAlder反应不但能合成药物,还能用于制造天然产物,让我们在生活中得到更多的好东西。

比如,维生素K的合成过程就涉及到这个反应,没有它,骨头可能会变得脆弱得像干枯的树枝。

3.2 新材料的创新除了药物,这些反应在新材料的制造上也大展身手。

比如,用来制造高科技的塑料、合成纤维、甚至是液晶显示屏的材料。

有机合成人名反应及机理

有机合成人名反应及机理

有机合成人名反应及机理
有机合成中有很多重要的反应,这些反应的机理大多数都是经过
详细论证的。

下面具体介绍几个重要的反应及其机理。

1. 化学家霍夫曼发明了非常有用的反应,叫做“霍夫曼降解反应”。

这个反应可以用来从胺中制备出烷基卤化物。

具体反应步骤是:首先将胺和次氯酸钠混合,然后将水加入混合液中,这样就可以生成
亚氯酰胺。

接下来,将氢氧化钠加入混合液中,反应会生成氯化胺和
氢氧化钠。

最后,烷基化剂加入反应混合物中,生成的产物就是烷基
化合物。

2. 另一个非常重要的有机反应称为“Suzuki–Miyaura偶联反应”,这个反应可以用来将芳香化合物和烯丙基铜或锂互相连接。


个反应的机理是:首先,碘化物和芳基卤化物混合,这样就可以形成
碘化芳基化合物。

然后,在其上添加烯丙基铜或锂,这样就可以连接
两种芳香化合物。

最后,加入铜催化剂来促进反应的进行。

3. 最后一个重要的反应是“Diazo反应”,这个反应可以用来制
备罕见的化合物,并且这个反应的机理也比较简单。

首先,从亚硝酸
和苯甲酸中制备出叠氮化物。

接下来,将目标化合物与叠氮化物混合,这样就可以生成新的化合物。

这个反应的一个很好的例子是,将间苯
二酚转化成二苯基二烯。

以上三个反应是有机合成中非常常见的反应,掌握这些反应及其
机理可以为有机合成研究提供非常有用的指导。

有机化学人名反应机理(比较完整)

有机化学人名反应机理(比较完整)

1.Arbuzov 反应卤代烷反应时,其活性次序为:R'I >R'Br >R'Cl。

除了卤代烷外,烯丙型或炔丙型卤化物、a-卤代醚、a- 或 b-卤代酸酯、对甲苯磺酸酯等也可以进行反应。

当亚酸三烷基酯中三个烷基各不相同时,总是先脱除含碳原子数最少的基团。

本反应是由醇制备卤代烷的很好方法,因为亚磷酸三烷基酯可以由醇与三氯化磷反应制得:一般认为是按 S N2 进行的分子内重排反应:2.Arndt-Eister 反应酰氯与重氮甲烷反应,然后在氧化银催化下与水共热得到酸。

重氮甲烷与酰氯反应首先形成重氮酮(1),(1)在氧化银催化下与水共热,得到酰基卡宾(2),(2)发生重排得烯酮(3),(3)与水反应生成酸,若与醇或氨(胺)反应,则得酯或酰胺。

3.Baeyer----Villiger 反应过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂。

因此,这是一个重排反应具有光学活性的3---苯基丁酮和过酸反应,重排产物手性碳原子的枸型保持不变,说明反应属于分子内重排:不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还是有一定的选择性,按迁移能力其顺序为:4.Beckmann 重排肟在酸如硫酸、多聚磷酸以及能产生强酸的五氯化磷、三氯化磷、苯磺酰氯、亚硫酰氯等作用下发生重排,生成相应的取代酰胺,如环己酮肟在硫酸作用下重排生成己内酰胺:在酸作用下,肟首先发生质子化,然后脱去一分子水,同时与羟基处于反位的基团迁移到缺电子的氮原子上,所形成的碳正离子与水反应得到酰胺。

迁移基团如果是手性碳原子,则在迁移前后其构型不变。

5.Bouveault---Blanc 还原脂肪族羧酸酯可用金属钠和醇还原得一级醇。

α,β-不饱和羧酸酯还原得相应的饱和醇。

芳香酸酯也可进行本反应,但收率较低。

本法在氢化锂铝还原酯的方法发现以前,广泛地被使用,非共轭的双键可不受影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本文整理出常见的有机人名反应80多个,共计约100页,大部分内容在竞赛考察范围之内。

全国初赛有机难度虽然有所降低,但有能力冲刺决赛的选手对于有机反应必须熟练掌握,熟记反应实例与机理。

熟记有机人名反应不仅是化学竞赛的要求,也是考研的重要内容,更是对化学先驱们的尊重与缅怀。

索引:Arbuzov反应Arndt-Eister反应Baeyer-Villiger 氧化Beckmann 重排Birch 还原Bischler-Napieralski 合成法Bouveault-Blanc还原Bucherer 反应Cannizzaro 反应Chichibabin 反应Claisen 酯缩合反应Claisen-Schmidt 反应Clemmensen 还原Combes 合成法Cope 重排Cope 消除反应Curtius 反应Dakin 反应Darzens 反应Demjanov 重排Dieckmann 缩合反应Elbs 反应Eschweiler-Clarke 反应Favorskii 反应Favorskii 重排Friedel-Crafts烷基化反应Friedel-Crafts酰基化反应Fries 重排Gabriel 合成法Gattermann 反应Gattermann-Koch 反应Gomberg-Bachmann 反应Hantzsch 合成法Haworth 反应Hell-V olhard-Zelinski 反应Hinsberg 反应Hofmann 烷基化Hofmann 消除反应Hofmann 重排(降解) Houben-Hoesch 反应Hunsdiecker 反应Kiliani 氰化增碳法Knoevenagel 反应Knorr 反应Koble 反应Koble-Schmitt 反应Leuckart 反应Lossen反应Mannich 反应Meerwein-Ponndorf 反应Meerwein-Ponndorf 反应Michael 加成反应Norrish I和II 型裂解反应Oppenauer 氧化Paal-Knorr 反应Pictet-Spengler 合成法Pschorr 反应Reformatsky 反应Reimer-Tiemann 反应Reppe 合成法Robinson 缩环反应Rosenmund 还原Ruff 递降反应Sandmeyer 反应Schiemann 反应Schmidt反应Skraup 合成法Sommelet-Hauser 反应Stephen 还原Stevens 重排Strecker 氨基酸合成法Tiffeneau-Demjanov 重排Ullmann反应Vilsmeier 反应Wagner-Meerwein 重排Wacker 反应Williamson 合成法Wittig 反应Wittig-Horner 反应Wohl 递降反应Wolff-Kishner-黄鸣龙反应Yurév 反应Zeisel 甲氧基测定法亚磷酸三烷基酯作为亲核试剂与卤代烷作用,生成烷基膦酸二烷基酯和一个新的卤代烷:卤代烷反应时,其活性次序为:R'I >R'Br >R'Cl。

除了卤代烷外,烯丙型或炔丙型卤化物、α-卤代醚、α-或β-卤代酸酯、对甲苯磺酸酯等也可以进行反应。

当亚磷酸三烷基酯中三个烷基各不相同时,总是先脱除含碳原子数最少的基团。

本反应是由醇制备卤代烷的很好方法,因为亚磷酸三烷基酯可以由醇与三氯化磷反应制得:如果反应所用的卤代烷R'X 的烷基和亚磷酸三烷基酯(RO)3P 的烷基相同(即R' = R),则Arbuzov 反应如下:这是制备烷基膦酸酯的常用方法。

除了亚磷酸三烷基酯外,亚膦酸酯RP(OR')2和次亚膦酸酯R2POR'也能发生该类反应,例如:反应机理一般认为是按S N2进行的分子内重排反应:反应实例Arndt-Eister反应反应机理反应实例Baeyer-Villiger氧化反应机理反应实例Beckmann重排肟在酸如硫酸、多聚磷酸以及能产生强酸的五氯化磷、三氯化磷、苯磺酰氯、亚硫酰氯等作用下发生重排,生成相应的取代酰胺,如环己酮肟在硫酸作用下重排生成己内酰胺:反应机理在酸作用下,肟首先发生质子化,然后脱去一分子水,同时与羟基处于反位的基团迁移到缺电子的氮原子上,所形成的碳正离子与水反应得到酰胺。

迁移基团如果是手性碳原子,则在迁移前后其构型不变,例如:反应实例Birch还原反应机理反应实例Bischler-Napieralski合成法反应机理反应实例Bouveault-Blanc还原反应机理反应实例Bucherer反应反应机理Cannizzaro反应反应机理Chichibabin反应反应机理反应实例吡啶类化合物不易进行硝化,用硝基还原法制备氨基吡啶甚为困难。

本反应是在杂环上引入氨基的简便有效的方法,广泛适用于各种氮杂芳环,如苯并咪唑、异喹啉、吖啶和菲啶类化合物均能发生本反应。

Claisen酯缩合反应二元羧酸酯的分子内酯缩合见Dieckmann 缩合反应反应机理反应实例Claisen-Schmidt反应一个无α-氢原子的醛与一个带有α-氢原子的脂肪族醛或酮在稀氢氧化钠水溶液或醇溶液存在下发生缩合反应,并失水得到α,β-不饱和醛或酮:反应机理反应实例Clemmensen还原醛类或酮类分子中的羰基被锌汞齐和浓盐酸还原为亚甲基:此法只适用于对酸稳定的化合物。

对酸不稳定而对碱稳定的化合物可用Wolff-Kishner-黄鸣龙反应还原。

反应机理本反应的反应机理较复杂,目前尚不很清楚反应实例Combes合成法在氨基的间位有强的邻、对位定位基团存在时,关环反应容易发生;但当强邻、对位定位基团存在于氨基的对位时,则不易发生关环反应。

反应实例Cope重排1,5-二烯类化合物受热时发生类似于O-烯丙基重排为C-烯丙基的重排反应(Claisen 重排)反应称为Cope重排。

这个反应30多年来引起人们的广泛注意。

1,5-二烯在150—200℃单独加热短时间就容易发生重排,并且产率非常好。

Cope重排属于周环反应,它和其它周环反应的特点一样,具有高度的立体选择性。

例如:内消旋-3,4-二甲基-1,5-己二烯重排后,得到的产物几乎全部是(Z, E)-2,6辛二烯:反应机理Cope重排是[3,3] -迁移反应,反应过程是经过一个环状过渡态进行的协同反应:在立体化学上,表现为经过椅式环状过渡态:反应实例Cope消除反应反应机理反应实例Curtius反应酰基叠氮化物在惰性溶剂中加热分解生成异氰酸酯:异氰酸酯水解则得到胺:反应机理反应实例Dakin反应反应机理反应实例Darzens反应反应机理反应实例Demjanov重排环烷基甲胺或环烷基胺与亚硝酸反应,生成环扩大与环缩小的产物。

如环丁基甲胺或环丁胺与亚硝酸反应,除得到相应的醇外,还有其它包括重排的反应产物:这是一个重排反应,在合成上意义不大,但可以了解环发生的一些重排反应。

反应机理反应实例1 氨甲基环烷醇也能发生类似的重排反应,详见Tiffeneau-Demjanov重排Dieckmann缩合反应反应机理反应实例Elbs反应羰基的邻位有甲基或亚甲基的二芳基酮,加热时发生环化脱氢作用,生成蒽的衍生物:由于这个反应通常是在回流温度或高达400-450 °C的温度范围内进行,不用催化剂和溶剂,直到反应物没有水放出为止,在这样的高温条件下,一部分原料和产物发生碳化,部分原料酮被释放出的水所裂解,烃基发生消除或降解以及分子重排等副反应,致使产率不高。

反应机理本反应的机理尚不清楚反应实例Eschweiler-Clarke反应在过量甲酸存在下,一级胺或二级胺与甲醛反应,得到甲基化后的三级胺甲醛在这里作为一个甲基化试剂。

反应机理反应实例Favorskii反应炔烃与羰基化合物在强碱性催化剂如无水氢氧化钾或氨基钠存在下于乙醚中发生加成反应,得到炔醇液氨、乙二醇醚类、四氢呋喃、二甲亚砜、二甲苯等均能作为反应的溶剂。

反应机理反应实例Favorskii重排α-卤代酮在氢氧化钠水溶液中加热重排生成含相同碳原子数的羧酸;如为环状α-卤代酮,则导致环缩小。

如用醇钠的醇溶液,则得羧酸酯此法可用于合成张力较大的四员环。

反应机理反应实例Friedel-Crafts烷基化反应芳烃与卤代烃、醇类或烯类化合物在Lewis催化剂(如AlCl3,FeCl3, H2SO4, H3PO4, BF3, HF 等)存在下,发生芳环的烷基化反应。

卤代烃反应的活泼性顺序为:RF > RCl > RBr > RI ; 当烃基超过3个碳原子时,反应过程中易发生重排。

反应机理首先是卤代烃、醇或烯烃与催化剂如三氯化铝作用形成碳正离子:所形成的碳正离子可能发生重排,得到较稳定的碳正离子:碳正离子作为亲电试剂进攻芳环形成中间体 络合物,然后失去一个质子得到发生亲电取代产物:反应实例Friedel-Crafts酰基化反应芳烃与酰基化试剂如酰卤、酸酐、羧酸、烯酮等在Lewis酸(通常用无水三氯化铝)催化下发生酰基化反应,得到芳香酮:这是制备芳香酮类最重要的方法之一,在酰基化中不发生烃基的重排。

反应机理反应实例Fries重排酚酯在Lewis酸存在下加热,可发生酰基重排反应,生成邻羟基和对羟基芳酮的混合物。

重排可以在硝基苯、硝基甲烷等溶剂中进行,也可以不用溶剂直接加热进行。

邻、对位产物的比例取决于酚酯的结构、反应条件和催化剂等。

例如,用多聚磷酸催化时主要生成对位重排产物,而用四氯化钛催化时则主要生成邻位重排产物。

反应温度对邻、对位产物比例的影响比较大,一般来讲,较低温度(如室温)下重排有利于形成对位异构产物(动力学控制),较高温度下重排有利于形成邻位异构产物(热力学控制)。

反应机理反应实例Gabriel合成法邻苯二甲酰亚胺与氢氧化钾的乙醇溶液作用转变为邻苯二甲酰亚胺盐,此盐和卤代烷反应生成N-烷基邻苯二甲酰亚胺,然后在酸性或碱性条件下水解得到一级胺和邻苯二甲酸,这是制备纯净的一级胺的一种方法。

有些情况下水解很困难,可以用肼解来代替:反应机理邻苯二甲酰亚胺盐和卤代烷的反应是亲核取代反应,取代反应产物的水解过程与酰胺的水解相似。

反应实例Gattermann反应重氮盐用新制的铜粉代替亚铜盐(见Sandmeyer反应)作催化剂,与浓盐酸或氢溴酸发生置换反应得到氯代或溴代芳烃:本法优点是操作比较简单,反应可在较低温度下进行,缺点是其产率一般较Sandmeyer反应低。

反应机理见Sandmeyer反应Gattermann-Koch反应芳香烃与等分子的一氧化碳及氯化氢气体在加压和催化剂(三氯化铝及氯化亚铜)存在下反应,生成芳香醛:反应机理Gomberg-Bachmann反应芳香重氮盐在碱性条件下与其它芳香族化合物偶联生成联苯或联苯衍生物:反应机理反应实例Hantzsch合成法两分子β-羰基酸酯和一分子醛及一分子氨发生缩合反应,得到二氢吡啶衍生物,再用氧化剂氧化得到吡啶衍生物。

相关文档
最新文档