有机人名反应之Rosenmund 还原

合集下载

有机人名反应

有机人名反应

有机人名反应有机人名反应1.Baeyer-Villiger氧化:酮过酸氧化成酯迁移规则:叔>仲>环己基>苄>伯>甲基>氢2.Corey-Kim 氧化:醇在NCS/DMF作用后,碱处理氧化成醛酮3.Criegee邻二醇裂解:邻二醇由Pb(OAc)4氧化成羰基化合物4.Criegee臭氧化:烯烃臭氧化后水解成醛酮5.Dakin反应:对羟基苯甲醛由碱性H2O2氧化成对二酚6.Dess-Martin过碘酸酯氧化:仲醇由过碘酸酯氧化成酮7.Fleming氧化:硅烷经过酸化,过酸盐氧化,水解以后形成醇8.Hooker氧化:2-羟基-3烷基-1,4-醌被KMnO4氧化导致侧链烷基失去一个亚甲基,同时羟基和烷基位置互变9.Moffatt氧化(Pfitzner-Moffatt)氧化:用DCC和DMSO氧化醇,形成醛酮10.Oppenauer氧化:烷氧基催化的仲醇氧化成醛酮11.Riley氧化:活泼亚甲基(羰基α位等)被SeO2氧化成酮12.Rubottom氧化:烯醇硅烷经过m-CPBA和K2CO3处理后α-羟基化13.Sarett氧化:CrO3?Py络合物氧化醇成醛酮14.Swern氧化:用(COCl)2,DMSO为试剂合Et3N淬灭的方法将醇氧化成羰基化合物15.Tamao-Kumada氧化:烷基氟硅烷被KF,H2O2,KHCO3氧化成醇16.Wacker氧化:Pd催化剂下,烯烃氧化成酮1..Barton-McCombie去氧反应:从相关的硫羰基体中间用n-Bu3SnH,AIBN试剂经过自由基开裂发生醇的去氧作用2.Birch 还原:苯环由Na单质合液胺条件下形成环内二烯烃(带供电子基团的苯环:双键连接取代基;带吸电子基团的苯环,取代基在烯丙位。

)3.Brown硼氢化:烯烃和硼烷加成产生的有机硼烷经过碱性H2O2氧化得到醇4.Cannizzaro歧化:碱在芳香醛,甲醛或者其他无α-氢的脂肪氢之间发生氧化还原反应给出醇和酸5.Clemmensen还原:用锌汞齐和氯化氢将醛酮还原为亚甲基化合物6.Corey-Bakshi-Shibata(CBS)还原:酮在手性恶唑硼烷催化下的立体选择性还原7.Gribble吲哚还原:用NaBH4直接还原会导致N-烷基化,NaBH3CN在冰醋酸当中还原吲哚双键可以解决8.Gribble二芳基酮还原:用NaBH4在三氟乙酸中还原二芳基酮和二芳基甲醇为二芳基甲烷,也可以应用于二杂芳环酮和醇的还原9.Luche还原:烯酮在NaBH4-CeCl3下发生1,2-还原形成烯丙位取代烯醇10.McFadyen-Stevens还原:酰基苯磺酰肼用碱处理成醛11.Meerwein-Ponndorf-Verley还原:用Al(OPr’)3/Pr’OH体系将酮还原为醇12.Midland还原:用B-3-α-蒎烯-9-BBN对酮进行不对称还原13.Noyori不对称氢化:羰基在Ru(II)BINAP络合物催化下发生不对称氢化还原14.Rosenmund还原:用BaSO4/毒化Pd催化剂将酰氯氢化成醛,如催化剂未被毒化,会氢化为醇15.Wolff-Kishner-黄鸣龙还原:用碱性肼将羰基还原为亚甲基C成烯反应1.Boord反应:β-卤代烷氧基与Zn作用生成烯烃2.Chugaev消除:黄原酸酯热消除成烯3.Cope消除:胺的氧化物热消除成烯烃4.Corey-Winter olefin烯烃合成:邻二醇经1,1-硫代羰基二咪唑和三甲氧基膦处理转化为相应的烯5.Doering-LaFlamme丙二烯合成:烯烃用溴仿以及烷氧化物处理以后生成同碳二溴环丙烷再反应生成丙二烯6.Horner-Wadsworth-Emmons反应:从醛合磷酸酯生成烯烃.副产物为水溶性磷酸盐,故以后处理较相应的Witting反应简单的多7.Julia-Lythgoe成烯反应:从砜合醛生成(E)-烯烃8.Peterson成烯反应:从α-硅基碳负离子合羰基化合物生成烯烃.也成为含硅的Witting 反应9.Ramberg-Backlund烯烃合成:Α-卤代砜用碱处理生成烯烃10.Witting反应:羰基用膦叶立德变成烯烃11.Zaitsev消除:E2消除带来更多取代的烯烃D偶联反应1.Cadiot-Chodkiewicz偶联:从炔基卤和炔基酮合成双炔衍生物2.Castro-Stephens偶联:芳基炔合成,同Cadiot-Chodkiewicz偶联3.Eglinton反应:终端炔烃在化学计量(常常过量)Cu(Oac)2促进下发生的氧化偶联反应4.Eschenmoser偶联:从硫酰胺和烷基卤生成烯胺5.Glaser偶联:Cu催化终端炔烃的氧化自偶联6.Gomberg-Bachmann偶联:碱促进下芳基重氮盐和一个芳烃之间经自由基偶联生成二芳基化合物7.Heck反应:Pb催化的有机卤代物或者三氟磺酸酯和烯烃之间的偶联反应8.杂芳基Heck反应:发生在杂芳基受体上的Pd(Ph3P)4,Ph3P,CuI,Cs2CO3催化下的分子内或者分子间Heck反应9.Hiyama交叉偶联反应:Pb催化有机硅和有机卤代物或者三氟磺酸酯等在诸如F-或者OH-之类的活化剂Pd(Ph3P)4,TBAF催化剂存在下发生的交叉偶联反应10.Kumada交叉偶联(Kharasch交叉偶联):Ni和Pd催化下,格氏试剂和一个有机卤代物或者三氟磺酸酯之间的交叉偶联11.Liebeskind-Srogl偶联:硫酸酯和有机硼酸之间经过Pd催化发生交叉偶联生成酮12.McMurry 偶联:羰基用低价Ti,如TiCl3/LiAlH4产生的Ti(0)处理得到双键,反应是一个单电子过程13.Negishi交叉偶联:Pd催化的有机Zn和有机卤代物,三氟磺酸酯等之间发生的交叉偶联反应14.Sonogashira反应:Pd/Cu催化的有机卤和端基炔烃之间的交叉偶联反应15.Stille偶联:Pd催化的有机Sn和有机卤,三氟磺酸酯之间的交叉偶联反应16.Stille-Kelly偶联:双Sn试剂进行Pd催化下二芳基卤代物的分子交叉偶联17.Suzuki偶联:Pd催化下的有机硼烷和有机卤,三氟磺酸酯在碱存在下发生的交叉偶联18.Ullmann反应:芳基碘代物在Cu存在下的自偶联反应19.Wurtz反应:烷基卤经Na或Mg金属处理后形成碳碳单键20.Ymada偶联试剂:用二乙基氰基磷酸酯(EtO)2PO-CN活化羧酸E缩合反应:21.Aldol缩合:羰基和一个烯醇负离子或一个烯醇的缩合22.Blaise反应:腈和α-卤代酯和Zn反应得到β-酮酯23.Benzoin 缩合:芳香醛经CN-催化为安息香(二芳基乙醇酮)24.Buchner-Curtius-Schlotterbeck反应:羰基化合物和脂肪族重氮化物反应给出同系化的酮25.Claisen缩合:酯在碱催化下缩合为β-酮酯26.Corey-Fuchs反应:醛发生一碳同系化生成二溴烯烃,然后用BuLi处理生成终端炔烃27.Darzen缩水甘油酸酯缩合:碱催化下从α-卤代酯和羰基化合物生成α,β-环氧酯(缩水甘油醛)28.Dieckmann缩合:分子内的Claisen缩合29.Evans aldol反应:用Evans手性鳌合剂,即酰基恶唑酮进行不对称醇醛缩合30.Guareschi-Thorpe缩合(2-吡啶酮合成):氰基乙酸乙酯和乙酰乙酸在氨存在下生成2-吡啶酮31.Henry硝醇反应:醛和有硝基烷烃在碱作用下去质子化产生氮酸酯32.Kharasch加成反应:过渡金属催化的CXCl3对于烯烃的自由基加成33.Knoevenagel缩合:羰基化合物和活泼亚甲基化合物在胺的催化下缩合34.Mannnich缩合(羰基胺甲基化):胺,甲醛,和一个带有酸性亚甲基成分的化合物之间的三组分反应发生胺甲基化35.Michael加成:亲核碳原子对α,β-不饱和体系的共扼加成36.Mukaiyama醇醛缩合:Lewis酸催化下的醛和硅基烯醇醚之间的Aldol缩合37.Nozaki-Hiyama-KIshi反应:Cr-Ni双金属催化下的烯基卤对于醛的氧化还原加成38.Pechmann缩合(香豆素合成):Lewis酸促进的酸和β-酮酯缩合成为香豆素39.Perkin反应:芳香醛和乙酐反应合成肉桂酸40.Prins反应:烯烃酸性条件下对于甲醛的加成反应41.Reformatsky反应:有机Zn试剂(从α-卤代酯来)对羰基的亲核加成反应42.Reimer-Tiemann反应:从碱性介质当中从酚和氯仿合成邻甲酰基苯酚43.Schlosser对Witting反应的修正:不稳定的叶立德和醛发生的Witting反应生成Z-烯烃,而改进的Schlosser反应可以得到E-烯烃44.Stetter反应(Michael-Stetter反应):从醛和α,β-不饱和酮可以得到1,4-二羰基衍生物。

100种有机化学人名反应

100种有机化学人名反应

100种有机化学人名反应1. Arndt-Eistert反应醛、酮与重氮甲烷反应,失去氮并重排成多一个CH2基的相应羰基化合物,这个反应对于环酮的扩环反应很重要。

O+CH2N22. Baeyer-Villiger氧化由樟脑生成内酯:-OO+-N2CH2NN重排应用过氧酸使酮氧化成酯。

反应中在酮的羰基和相邻的碳原子之间引人一个氧原子。

如OCH3CH3CH3 OOCH3CH3H2SO5有时反应能生成二或多过氧化物,但环状酮转变为内酯能得到单一的预期产物。

合适的酸为过硫酸(Caro’s 酸)、过氧苯甲酸、三氟过氧乙酸。

除环酮外,无环的脂肪、芳香酮也可发生此反应。

二酮生成酸酐类、α、β-不饱和酮得到烯醇酯类。

3.Bechamp还原(可用于工业制备)在铁、亚铁盐和稀酸的作用下,芳香族硝基化合物能还原成相应的芳香胺。

C6H5-NO2 + 2Fe + 6HClC6H5-NH2 + 2FeCl3 + 2H2O。

当某些盐(FeCl2、FeCl3、FeSO4、CaCl2等)存在时,所用酸无论是过量还是少量,甚至在中性溶液中都能够进行这种还原。

此方法适用于绝大部分各种不同结构的芳香族化合物,有时也用来还原脂肪族硝基化合物。

4.Beckmann重排醛肟、酮肟用酸或路易斯酸处理后,最终产物得酰胺类。

单酮肟重排仅得一种酰胺,混酮肟重排得两种混合酰胺。

但一般质子化羟基的裂解和基团R的转移是从相反的位置同OR OH ORR'NRN时进行的。

R'NHR' R' OH NHR无论酯酮肟和芳酮肟都会发生此反应。

环酮肟重排得内酰胺,这在工业生产上很重要,利用此反应可帮助决定异构酮肟的结构。

5.Beyer喹啉类合成法芳香伯胺与一分子醛及一分子甲基酮在浓盐酸或ZnCl2存在下,反应生成喹啉类化合物。

HHNN R'HClNH2R'-H2+ R'CHO+RCOCH3RR这是对Doebner-Miller喹啉合成法的改进。

有机人名反应(pdf版)

有机人名反应(pdf版)

迁移基团如果是手性碳原子,则在迁移前后其构型不变,例如:
反应实例
14
参考文献
[1] [2] [3] [4] E. Beckmann, Ber., 1886, 19,988; 1887, 20, 1507. W. Z. Heldt, Org. Reactions, 1960, 11, 1~156. J. Kenyonn, A. Campbell, J. Chem. Soc., 1946, 25. J. Kenyonn, D. P. Young, J. Chem. Soc., 1941, 263.
Bucherer 反应
反应机理
20
反应实例
参考文献
[1] [2] [3] [4] [5] [6] [7] H. T. Bucherer, J. Prakt. Chem ., 1904, 69(2), 49. H. T. Bucherer, J. Prakt. Chem ., 1904, 70(2), 345. H. T. Bucherer, J. Prakt. Chem ., 1907, 75(2), 249. H. T. Bucherer, J. Prakt. Chem ., 1905, 75(2), 433. N. L. Drake, Org. Reactions, 1942, 1, 105. A. Rieche, H. Seeboth, Ann., 1960, 638, 66, 43, 76. H. Seeboth, Angew. Chem. Int. Ed., Engl., 1967, 6, 307-317.
X
Y Yurev 反应
Z
Zeisel 甲氧基测定法
Arbuzov 反应
亚磷酸三烷基酯作为亲核试剂与卤代烷作用,生成烷基膦酸二烷基酯和一个新的卤代烷:

基础有机化学人名反应

基础有机化学人名反应

基础有机化学人名反应第四章狄尔斯–阿尔德反应(Diels–Alder reaction)(140)1921年,狄尔斯和其研究生巴克(Back)研究偶氮二羧酸二乙酯(半个世纪后因光延反应而在有机合成中大放光芒的试剂)与胺发生的酯变胺的反应,当他们用2-萘胺做反应的时候,根据元素分析,得到的产物是一个加成物而不是期待的取代物。

狄尔斯敏锐地意识到这个反应与十几年前阿尔布莱希特做过的古怪反应的共同之处。

这使他开始以为产物是类似阿尔布莱希特提出的双键加成产物。

狄尔斯很自然地仿造阿尔布莱希特用环戊二烯替代萘胺与偶氮二羧酸乙酯作用,结果又得到第三种加成物。

通过计量加氢实验,狄尔斯发现加成物中只含有一个双键。

如果产物的结构是如阿尔布莱希特提出的,那么势必要有两个双键才对。

这个现象深深地吸引了狄尔斯,他与另一个研究生阿尔德一起提出了正确的双烯加成物的结构。

1928年他们将结果发表。

这标志着狄尔斯-阿德尔反应的正式发现。

他们也因此获得1950年的诺贝尔化学奖。

含有一个活泼的双键或叁键的化合物(亲双烯体)与共轭二烯类化合物(双烯体)发生1,4-加成,生成六员环状化合物:这个反应极易进行并且反应速度快,应用范围极广泛,是合成环状化合物的一个非常重要的方法。

带有吸电子取代基的亲双烯体和带有给电子取代基的双烯体对反应有利。

常用的亲双烯体有:下列基团也能作为亲双烯体发生反应:常用的双烯体有:a.反应机理这是一个协同反应,反应时,双烯体和亲双烯体彼此靠近,互相作用,形成一个环状过渡态,然后逐渐转化为产物分子:反应是按顺式加成方式进行的,反应物原来的构型关系仍保留在环加成产物中。

例如:正常的Diels-Alder反应主要是由双烯体的HOMO(最高已占轨道)与亲双烯体的LUMO(最低未占轨道)发生作用。

反应过程中,电子从双烯体的HOMO“流入”亲双烯体的LUMO。

也有由双烯体的LUMO与亲双烯体的HOMO作用发生反应的。

b.反应实例本反应具有很强的区域选择性,当双烯体与亲双烯体上均有取代基时,主要生成两个取代基处于邻位或对位的产物:当双烯体上有给电子取代基、亲双烯体上有不饱和基团如:第五章1.傅克反应(Friedel-Crafts reaction)(159)芳烃在Lewis酸(无水氯化铝、氯化锌、三氯化铁、三氟化硼等)存在下发生的酰基化和烷基化反应。

人名反应(类型整理)

人名反应(类型整理)

人名反应1氧化:1.Baeyer-Villiger氧化:酮过酸氧化成酯迁移规则:叔>仲>环己基>苄>伯>甲基>氢2.Corey-Kim 氧化:醇在NCS/DMF作用后,碱处理氧化成醛酮3.Criegee邻二醇裂解:邻二醇由Pb(OAc)4氧化成羰基化合物4.Criegee臭氧化:烯烃臭氧化后水解成醛酮5.Dakin反应:对羟基苯甲醛由碱性H2O2氧化成对二酚6.Dess-Martin过碘酸酯氧化:仲醇由过碘酸酯氧化成酮7.Fleming氧化:硅烷经过酸化,过酸盐氧化,水解以后形成醇8.Hooker氧化:2-羟基-3烷基-1,4-醌被KMnO4氧化导致侧链烷基失去一个亚甲基,同时羟基和烷基位置互变9.Moffatt氧化(Pfitzner-Moffatt)氧化:用DCC和DMSO氧化醇,形成醛酮10.Oppenauer氧化:烷氧基催化的仲醇氧化成醛酮11.Riley氧化:活泼亚甲基(羰基α位等)被SeO2氧化成酮12.Rubottom氧化:烯醇硅烷经过m-CPBA和K2CO3处理后α-羟基化13.Sarett氧化:CrO3·Py络合物氧化醇成醛酮14.Swern氧化:用(COCl)2,DMSO为试剂合Et3N淬灭的方法将醇氧化成羰基化合物15.Tamao-Kumada氧化:烷基氟硅烷被KF,H2O2,KHCO3氧化成醇16.Wacker氧化:Pd催化剂下,烯烃氧化成酮还原:1..Barton-McCombie去氧反应:从相关的硫羰基体中间用n-Bu3SnH,AIBN 试剂经过自由基开裂发生醇的去氧作用2.Birch 还原:苯环由Na单质合液胺条件下形成环内二烯烃(带供电子基团的苯环:双键连接取代基;带吸电子基团的苯环,取代基在烯丙位。

)3.Brown硼氢化:烯烃和硼烷加成产生的有机硼烷经过碱性H2O2氧化得到醇4.Cannizzaro歧化:碱在芳香醛,甲醛或者其他无α-氢的脂肪氢之间发生氧化还原反应给出醇和酸5.Clemmensen还原:用锌汞齐和氯化氢将醛酮还原为亚甲基化合物6.Corey-Bakshi-Shibata(CBS)还原:酮在手性恶唑硼烷催化下的立体选择性还原7.Gribble吲哚还原:用NaBH4直接还原会导致N-烷基化,NaBH3CN在冰醋酸当中还原吲哚双键可以解决8.Gribble二芳基酮还原:用NaBH4在三氟乙酸中还原二芳基酮和二芳基甲醇为二芳基甲烷,也可以应用于二杂芳环酮和醇的还原9.Luche还原:烯酮在NaBH4-CeCl3下发生1,2-还原形成烯丙位取代烯醇10.McFadyen-Stevens还原:酰基苯磺酰肼用碱处理成醛11.Meerwein-Ponndorf-Verley还原:用Al(OPr’)3/Pr’OH体系将酮还原为醇12.Midland还原:用B-3-α-蒎烯-9-BBN对酮进行不对称还原13.Noyori不对称氢化:羰基在Ru(II)BINAP络合物催化下发生不对称氢化还原14.Rosenmund还原:用BaSO4/毒化Pd催化剂将酰氯氢化成醛,如催化剂未被毒化,会氢化为醇15.Wolff-Kishner-黄鸣龙还原:用碱性肼将羰基还原为亚甲基成烯反应:1.Boord反应:β-卤代烷氧基与Zn作用生成烯烃2.Chugaev消除:黄原酸酯热消除成烯3.Cope消除:胺的氧化物热消除成烯烃4.Corey-Winter olefin烯烃合成:邻二醇经1,1-硫代羰基二咪唑和三甲氧基膦处理转化为相应的烯5.Doering-LaFlamme丙二烯合成:烯烃用溴仿以及烷氧化物处理以后生成同碳二溴环丙烷再反应生成丙二烯6.Horner-Wadsworth-Emmons反应:从醛合磷酸酯生成烯烃.副产物为水溶性磷酸盐,故以后处理较相应的Witting反应简单的多7.Julia-Lythgoe成烯反应:从砜合醛生成(E)-烯烃8.Peterson成烯反应:从α-硅基碳负离子合羰基化合物生成烯烃.也成为含硅的Witting反应9.Ramberg-Backlund烯烃合成:Α-卤代砜用碱处理生成烯烃10.Witting反应:羰基用膦叶立德变成烯烃11.Zaitsev消除:E2消除带来更多取代的烯烃人名反应2偶联反应:Cadiot-Chodkiewicz偶联:从炔基卤和炔基酮合成双炔衍生物Castro-Stephens偶联:芳基炔合成,同Cadiot-Chodkiewicz偶联Eglinton反应:终端炔烃在化学计量(常常过量)Cu(Oac)2促进下发生的氧化偶联反应Eschenmoser偶联:从硫酰胺和烷基卤生成烯胺Glaser偶联:Cu催化终端炔烃的氧化自偶联Gomberg-Bachmann偶联:碱促进下芳基重氮盐和一个芳烃之间经自由基偶联生成二芳基化合物Heck反应:Pb催化的有机卤代物或者三氟磺酸酯和烯烃之间的偶联反应杂芳基Heck反应:发生在杂芳基受体上的Pd(Ph3P)4,Ph3P,CuI,Cs2CO3催化下的分子内或者分子间Heck反应Hiyama交叉偶联反应:Pb催化有机硅和有机卤代物或者三氟磺酸酯等在诸如F -或者OH-之类的活化剂Pd(Ph3P)4,TBAF催化剂存在下发生的交叉偶联反应Kumada交叉偶联(Kharasch交叉偶联):Ni和Pd催化下,格氏试剂和一个有机卤代物或者三氟磺酸酯之间的交叉偶联Liebeskind-Srogl偶联:硫酸酯和有机硼酸之间经过Pd催化发生交叉偶联生成酮McMurry 偶联:羰基用低价Ti,如TiCl3/LiAlH4产生的Ti(0)处理得到双键,反应是一个单电子过程Negishi交叉偶联:Pd催化的有机Zn和有机卤代物,三氟磺酸酯等之间发生的交叉偶联反应Sonogashira反应:Pd/Cu催化的有机卤和端基炔烃之间的交叉偶联反应Stille偶联:Pd催化的有机Sn和有机卤,三氟磺酸酯之间的交叉偶联反应Stille-Kelly偶联:双Sn试剂进行Pd催化下二芳基卤代物的分子交叉偶联Suzuki偶联:Pd催化下的有机硼烷和有机卤,三氟磺酸酯在碱存在下发生的交叉偶联Ullmann反应:芳基碘代物在Cu存在下的自偶联反应Wurtz反应:烷基卤经Na或Mg金属处理后形成碳碳单键Ymada偶联试剂:用二乙基氰基磷酸酯(EtO)2PO-CN活化羧酸缩合反应:Aldol缩合:羰基和一个烯醇负离子或一个烯醇的缩合Blaise反应:腈和α-卤代酯和Zn反应得到β-酮酯Benzoin 缩合:芳香醛经CN-催化为安息香(二芳基乙醇酮)Buchner-Curtius-Schlotterbeck反应:羰基化合物和脂肪族重氮化物反应给出同系化的酮Claisen缩合:酯在碱催化下缩合为β-酮酯Corey-Fuchs反应:醛发生一碳同系化生成二溴烯烃,然后用BuLi处理生成终端炔烃Darzen缩水甘油酸酯缩合:碱催化下从α-卤代酯和羰基化合物生成α,β-环氧酯(缩水甘油醛)Dieckmann缩合:分子内的Claisen缩合Evans aldol反应:用Evans手性鳌合剂,即酰基恶唑酮进行不对称醇醛缩合Guareschi-Thorpe缩合(2-吡啶酮合成):氰基乙酸乙酯和乙酰乙酸在氨存在下生成2-吡啶酮Henry硝醇反应:醛和有硝基烷烃在碱作用下去质子化产生氮酸酯Kharasch加成反应:过渡金属催化的CXCl3对于烯烃的自由基加成Knoevenagel缩合:羰基化合物和活泼亚甲基化合物在胺的催化下缩合Mannnich缩合(羰基胺甲基化):胺,甲醛,和一个带有酸性亚甲基成分的化合物之间的三组分反应发生胺甲基化Michael加成:亲核碳原子对α,β-不饱和体系的共扼加成Mukaiyama醇醛缩合:Lewis酸催化下的醛和硅基烯醇醚之间的Aldol缩合Nozaki-Hiyama-KIshi反应:Cr-Ni双金属催化下的烯基卤对于醛的氧化还原加成Pechmann缩合(香豆素合成):Lewis酸促进的酸和β-酮酯缩合成为香豆素Perkin反应:芳香醛和乙酐反应合成肉桂酸Prins反应:烯烃酸性条件下对于甲醛的加成反应Reformatsky反应:有机Zn试剂(从α-卤代酯来)对羰基的亲核加成反应Reimer-Tiemann反应:从碱性介质当中从酚和氯仿合成邻甲酰基苯酚Schlosser对Witting反应的修正:不稳定的叶立德和醛发生的Witting反应生成Z-烯烃,而改进的Schlosser反应可以得到E-烯烃Stetter反应(Michael-Stetter反应):从醛和α,β-不饱和酮可以得到1,4-二羰基衍生物。

rosenmund 还原法

rosenmund 还原法

rosenmund 还原法Rosenmund还原法是一种重视流程法的解决办法,它可以有效地解决不同类型的化学反应。

它也可以用于精炼新的生物分子、精制已经合成出来的科学研究成果、调整生物合成体系中的特定细胞特性和调节生物体中的元素光谱特性。

一、Rosenmund还原法简介Rosenmund还原法(也称为Rosenmund气相还原法)是一种重视流程的高纯制备反应法,用于各种化学反应,尤其是硫醇还原和醇还原,也用于环氧化反应及其它反应。

它是以低温、低压的气体状态完成的,这使得整个反应稳定而更加高效。

另外,由于它是所述流程,使操作更加简单。

二、Rosenmund还原法的原理Rosenmund还原法的实质是流程中几个关键步骤:首先,将有机反应物放入催化剂中,反应温度通常低于50℃;其次,在催化反应过程中,用压缩空气将混合物搅拌至粉碎;最后,经过一段时间后,进行精炼步骤,去除不需要的反应产物,在恒定的温度、压力和反应时间条件下完成精炼。

三、Rosenmund还原法的操作步骤1. 准备工作:根据反应类型,准备好所需催化剂、反应温度等并进行混合;2. 加热:将反应体〔混合物〕加热至反应温度;3. 进行形式化学反应:在加热的条件下,通过催化剂的作用完成有机反应;4. 搅拌:用压缩空气将混合物搅拌,使其更好地分散在一起,最终形成一个稳定的反应体;5. 精炼步骤:此步骤通常需要恒定的温度、压力和反应时间条件进行精炼,以去除不需要的反应产物。

四、Rosenmund还原法的优点1. 反应效率高:Rosenmund还原法在低温和低压情况下完成,能有效提高反应效率,保证反应均衡;2. 操作简单:根据反应物本身的性质,Rosenmund还原法可以简单快捷地实现反应;3. 生成物洁净:Rosenmund还原法反应本身是在低温、低压及特殊流程条件下完成,因此生成物质质量很高,具有良好的稳定性,而且具有较高的纯净度;4. 制备灵活:Rosenmund还原法的制备过程可以灵活配置,被广泛应用于燃料电池,金属氧化物及聚苯胺等合成物的制备工作。

rosenmund reduction

rosenmund reduction

罗森蒙德还原反应(rosenmund reduction)总反应及反应机理:)作用下用氢气进行还原,得到相应的醛。

酰氯在部分失活的钯催化剂(Pd/BaSO4反应由德国化学家 Karl Wilhelm Rosenmund (1884-1965) 首先报道。

该反应是通氢气于悬浮有催化剂的酰氯溶液中来进行。

是从羧酸合成醛的方法之一,一般应用于制备一元脂肪醛和一元芳香醛。

反应的副产物有醇、烷烃、酸酐和酯。

用三叔丁氧基氢化铝锂也可以将酰氯还原为醛。

此外,芳香酰氯也可在钯络合物催化下用聚甲基氢硅氧烷(PMHS)还原为芳醛。

亦可用三丁基氢化锡来进行或在氢供体存在下用光照射来还原。

一般需要使催化剂中毒以防止进一步的还原作用,最常用的中毒剂是硫-喹啉(由硫在喹啉中回流来制备)和硫脲。

除了硫酸钡,其他活性调节剂,如2,6-二甲基吡啶(Pd/C)也可使用。

参考文献:1^ Rosenmund, K. W.. Über eine neue Methode zur Darstellung von Aldehyden. 1. Mitteilung. Chemische Berichte. 1918, 51: 585–593.doi:10.1002/cber.19180510170.2^Rosenmund, K. W., Zetzsche, F. Über die Beeinflussung der Wirksamkeit von Katalysatoren, 1. bis 5.. Chemische Berichte. 1921, 54: 425–437; 638–647; 1092–1098; 2033–2037; 2038–2042.3^ Mosettig, E.; Mozingo, R. Org. React.1948, 4, 362.(综述)4^ Herbert C. Brown, Richard F. McFarlin. The Reaction of Lithium Aluminum Hybride with Alcohols. Lithium Tri-t-butoxyaluminohydride asa New Selective Reducing Agent. J. Am. Chem. Soc. 1958, 80 (20): 5372–5376. doi:10.1021/ja01553a013.5^ Kyoungsoo Lee and Robert E. Maleczka, Jr. Pd(0)-Catalyzed PMHS Reductions of Aromatic Acid Chlorides to Aldehydes. Org. Lett. 2006, 8 (9): 1887–1888.doi:10.1021/ol060463v.6在催化剂作用下,氢气将酰氯还原为醛的反应,反应中使用的催化剂称为罗森蒙德催化剂(Rosenmund catalyst),是附着在硫酸钡(BaSO₄)上的钯粉并加入中毒剂(2,6-二甲基吡啶、喹啉-硫等)制成。

有机化学人名反应51-100

有机化学人名反应51-100

51. Kucherov 反应乙炔在Hg2+盐和稀硫酸存在下直接水合生成乙醛,单取代乙炔可生成甲基酮。

52. Lebedeff 合成法在高温下(400~500℃)乙醇与特种催化剂硅酸盐、Al2O3、ZnO 混合物作用,脱氢脱水得1,3-丁二烯。

丁二烯的产率大约为20%,其他副产物如戊烷、己烷、己烯、己二烯、丁醇、醛、酮都有,所以此反应制备意义不大。

53. Leuckart 反应在甲酸(甲酰胺、甲酸铵)作还原剂的情况下,加热胺和羰基化合物,就发生胺的烷基化反应。

通过这种反应可使伯胺、仲胺及氨发生烷基化反应,但以叔胺为最妥。

因为伯胺、仲胺总是有多烷基化副产物形成。

特别是很活泼的甲醛,同时总是生成完全甲基化的胺。

高沸点芳香醛和酮产物为40~90%,低分子量脂肪醛和酮不能得到满意大结果。

反应中由少量MgSO4 或MgCl2 催化,起还原作用的甲酸经常是过量,每摩尔羰基化合物需2~4mol 甲酸。

54. Lieben 碘仿试验P28955. Lossen 降解氧肟酸或其酰基衍生物,在惰性溶剂或最好在亚硫酰氯、乙酸酐、P2O5 存在下加热分解而得到异氰酸酯。

56. Mannich 反应这是具有α-活泼氢化合物的胺甲基化反应。

一般是甲醛与胺及具有α-活泼氢化合物同时反应,胺甲基取代一个α-活泼氢:反应一般在水、醇或醋酸溶液中进行。

甲醛可以是甲醛溶液、三聚或多聚甲醛,胺一般是仲胺盐酸盐,如二甲胺、六氢吡啶等等盐酸盐,反应中生成单一产物。

伯胺或氨副产物多不常使用。

此反应合成范围广,不但醛和酮的活泼氢可以进行反应,其他化合物如羧酸、酯、酚或其他杂环化合物(如噻吩、吡咯、吲哚等)的活泼氢也都可以,特别值得注意的是在合成体系及氨基酸方面的应用。

57. Meerwein-Ponndorf-Veriey 还原醛、酮与醇镁或醇铝反应,醛酮被还原成醇,而醇盐则被氧化成相应的羰基化合物。

反应中,醇盐与加入的醇处于平衡状态,当催化量的醇盐存在时,用醇作还原剂也可发生反应,醇铝溶于有机溶剂,在蒸馏时不被分解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档