开 环 聚 合
高分子化学-11(开环聚合)

聚合机理动力学
引发: R-Z + C
增长:
M* +
n
R-Z
M*
Z: 单体的功能基 C: 离子型或分子型引发剂
(RO-, OH-, H+, BF3, H2O)
M-(R-Z)*n-
开环聚合归连锁聚合还是逐步聚合有两方面:
a. 聚合动力学方程 b. 聚合物分子量随时间分布
环醚的开环聚合--- 聚醚的制备
rz离子型或分子型引发剂ro聚合物分子量随时间分布环醚的开环聚合聚醚的制备一般用阳离子引发剂引发clch33?二氯亚甲基丁氧环四氢呋喃二氧五环但三元环醚用阴离子阳离子配位聚合均可
Chapter 7 开环聚合反应 ( Ring opening polymerization )
一、概述-开环聚合的单体及特点
一般用阳离子引发剂引发
CH3
CH2Cl
CH2CH3
O
环氧乙烷
能开环:o
丁氧环
O
环氧乙烷
o
O
环氧氯丙烷
CH2Cl CH2Cl 3,3'-二(氯亚甲基)丁氧环
O
环氧丁烷
o
四氢呋喃
oo
二氧五环
o
不能开环:
o
o
四氢砒喃 二氧六环
环醚的活性次序为:环氧乙烷>丁氧环>四氢呋喃 但三元环醚用阴离子、阳离子、配位聚合均可。
(CH2)5
H2O
+ O
C
NH
HO2C(CH2)5NH2
(2) 氨基酸本身逐步缩聚
COOH H 2 N CO NH H 2O
(3) 氨基上氮向己内酰胺亲核进攻,增长相同。
..
第八章 开环聚合

A M
+ SiR2 (OSiR2)3
O
A (SiR2O)3SiR2O M
SiR2O M
+ SiR2 (OSiR2)3
O
(SiR2O)4SiR2O M
强质子酸或 Lewis 酸也可使硅氧烷开环聚合,
活性种是硅烷阳离子
Si(R2) A
,环状单体插入而
增长;也可形成氧鎓离子而后重排成硅阳离子。
因此对引发剂的选择和单体的精制要求较高。 例如以五氟化磷为催化剂,在30℃聚合6小时,分
子量为30万左右;而以五氯化锑作催化剂时,聚合速率
和分子量要低的得多。
8.3.3 羰基化合物的聚合和三氧六环的阳离子聚合 1、羰基化合物
羰基化合物中的羰基C=O极性较大,有异裂倾向, 适于离子聚合,产物为聚缩醛。
8.2 环烷烃开环聚合热力学
8.2.1 环的大小 碳的四面体结构,C—C—C 键角为109°28’ 环状单体热力学稳定性: 3,4《 5,7~11〈 12以上,6
构象张力 角张力
实际上较少用到九元以上的环状单体。环烷烃在 热力学上容易开环聚合的程度为3、4 > 8 > 7、5。
三、四元环烷烃由键角变化引起的环张力很大 (三元环60°,四元环90°),环不稳定而易开环聚合。 五元环键角接近正常键角(108 °),张力较小,环 较稳定。
酰化的内酰胺比较活泼,是聚合的活性中心,因
此可以采用酰氯、酸酐、异氰酸酯等酰化剂与单体反
应,使己内酰胺先形成N-酰化己内酰胺。这样可消除 诱导期,加速反应,缩短聚合周期。
O C (CH2)3 NH + RCOCl
O C (CH2)3 N O C R + HCl
8.3.5 环硅氧烷
开环聚合

第八章 开环聚合8.1 概述高分子化学中,以环状单体通过开环聚合来合成聚合物,同样具有重要的地位。
在这种聚合过程中,增长链通过不断地打开环状结构,形成高聚物:以环醚为例,环氧乙烷经开环聚合反应,得到一种聚醚,即聚氧化乙烯。
这在工业上已得到应用。
能够进行开环聚合的单体很多,如环状烯烃,以及内酯、内酰胺、环醚、环硅氧烷等环内含有一个或多个杂原子的杂环化合物。
开环聚合既具有某些加成聚合的特征,也具有缩合聚合的特征。
由开环聚合得到的聚合物,重复单元与环状单体开裂时的结构相同,这与加成聚合相似;而聚合物主链中往往含有醚键、酯键、酰胺键等,与缩聚反应得到的聚合物常具有相同的结构,只是无小分子放出。
开环聚合与缩聚反应相比,还具有聚合条件温和、能够自动保持官能团等物质的量等特点,因此开环聚合所得聚合物的平均分子质量,通常要比缩聚物高得多。
有些单体如乳酸,采用缩聚反应无法得到高分子质量的聚合物;而采用乳交酯的开环聚合,就能够获得高分子质量的聚乳酸。
但是,与缩聚反应相比,开环聚合可供选择的单体较少,例如二元酸与二元醇能够通过缩聚获得聚酯;而开环聚合,只有相当于α,ω-羟基酸的环内酯可供选择。
聚酰胺的情况也是如此。
另外,有些环状单体合成困难,因此由开环聚合所得到的聚合物品种受到限制。
开环聚合就机理而言,有些属于逐步聚合,有些属于连锁聚合。
8.1.1 聚合范围及单体可聚性如前所述,环醚、环酯、环酰胺、环硅氧烷等能够进行开环聚合。
此外,环胺、环硫化物、环烯烃、以及N-羧基-α-氨基酸酐等同样也能进行开环聚合。
环状单体能否转变为聚合物,取决于聚合过程中自由能的变化情况,与环状单体和线形聚合物的相对稳定性有关。
Dainton 以环烷烃作为环状单体的母体,研究了环大小与聚合能力的关系。
表6-1列出了环烷烃在假想开环聚合时的自由能变化ΔG lc 0、焓变ΔH lc 0、及熵变ΔS lc 0。
R X [ R X ]n n [ CH 2 CH 2 O ]n n H 2C CH 2O聚合过程中,液态的环烷烃(l )转变为无定型的聚合物(c )。
第八章 开环聚合

OCH2OCH2 + CH2O
聚合结束后,这种平衡仍然存在,如果条件变化会打破上
述平衡,使聚甲醛不断解聚,失去使用价值。因此可以通过
下面两个方法改进。 1. 聚合结束前加入酸酐类物质,使端羟基乙酰化,防止其
从端基开始解聚。称为均聚甲醛。
HOCH2OCH2OCH2
OCH2OCH2OH (RCO)2O
O
环的大小对环稳定性和开环倾向的影响,在热力学上可 由键角大小、键的变形程度、环的张力能、聚合热、聚合自 由焓等作定性或半定量的判断。
按碳的四面体结构,C—C—C键角为109°28’,而环状 化合物的键角有不同程度的变形,因此产生张力。
三、四元环烷烃由键角变化引起的环张力很大(三元环 60°,四元环90 °),环不稳定而易开环聚合;五元环键角 接近正常键角(108 °) ,张力较小,环较稳定。五元以上 环可以不处于同一平面使键角变形趋于零而难开环。六元环 烷烃通常呈椅式结构,键角变形为0,不能开环聚合。八元 以上的环有跨环张力,即环上的氢或其他取代基处于拥挤状 态所造成的斥力,聚合能力较强。十一元以上环的跨环张力 消失,环较稳定,不易聚合。
THF PTHF
5.5.2.2 己内酰胺的阴离子开环聚合
己内酰胺是七元杂环,有一定的环张力,有开环聚合 的倾向。最终产物中线性聚合物与环状单体并存,相互构 成平衡,其中环状单体约占8~10%。
己内酰胺可以用酸、碱或水来引发开环聚合。阳离子聚 合引发时,转化率和分子量都不高,无实用价值。工业上 主要采用两种引发剂,一是水,用以合成尼龙—6纤维,属 于逐步聚合机理;二是碱金属或其衍生物,属于阴离子开 环聚合机理,引发后的预聚体可直接浇铸入模内制成铸件, 故称为铸型尼龙。
引发剂常采用氢氧化物(如NaOH、KOH等)、烷氧基 化合物(如甲醇钠)。并以含活泼氢化合物(如乙醇)为 起始剂,产物主要用于非离子表面活性剂、合成聚氨酯的 原料聚醚二醇等。
第八章开环聚合

氯化聚醚
• 丁氧环醚:丁氧环醚可以开环聚合,但是有应用价值的是3, 3‘-二(氯亚甲基)丁氧环。聚合产物俗称氯化聚醚,又称聚 氯醚。结晶性成膜材料,熔点177℃,机械强度比氟树脂好, 吸水性低,耐化学药品腐蚀,尺寸稳定性好,电性能优良, 可作为工程塑料。 • 由于分子中的次甲基上的碳无取代基,因而赋予大分子以良 好的柔顺性,另由于分子链上季碳原子上连有两个位阻较大 的氯甲基,又增加了链的刚性,因此,CPT的分子链为刚柔 兼备并以柔为主。另一方面,由于具有极性的氯甲基的对称 排列而不显极性,同时由于氯原子为憎水基,使它具有极低 的吸水率和良好的电绝缘性。
Cl
O
Cl Cl
Cl
Cl Cl
Cl
O
TCDD 二噁英
Cl
Cl
O
Cl Cl Cl
Cl
二噁英:指结构和化学性质相近的多氯二苯二恶英(PCDDs) 和多氯二苯并呋喃(PCDFs)。某些类二恶英多氯联苯(PCBs) 具有相似毒性,归在“二恶英”名下。大约有419种类似二 恶英的化合物被确定, 但其中只有近30种被认为具有相当的 毒性,以TCDD的毒性最大。
链引发
如果用醇钠引 发,必须脱除 副产醇,以氢 氧化钠引发, 脱除水
聚硅氧烷
• 八元环的硅氧烷开环聚合,热力学特征:1、 ∆H接近于零,∆S却是正值,熵增成为聚合 动力。 • 2、存在环-线平衡,聚合时线性单体和环状 单体共存;在较高的温度下,解聚成6至12 元环的环状低聚物。 • 反应可以采用阴离子引发,也可采用阳离 子引发,阳离子引发产品分子量低,常用 于硅油合成。
• 硅原子半径大于C,硅氧键及硅碳键比较长,硅 侧基相互作用小,容易绕硅氧键旋转,Tg-130℃。 在很宽的温度范围内保持柔顺性和高弹性,耐化 学品、耐氧化、疏水、电绝缘等优点。 • 高分子线性主要做硅橡胶,低分子线性和环状的 做硅油,有三官能度存在的,可以固化交联,做 涂料。 • 低分子的具有良好的表面活性,可以做表面活性 剂。聚氨酯工业用的泡沫稳定剂基本上都是硅油 类产品。 • 聚硅氧烷使用温度在180℃以下,加热至250℃, 降解成环状低聚物。
开 环 聚 合

H (BF3OH)
三聚甲醛
HOCH2OCH2OCH2
OCH2OCH2OH
17
存在聚甲醛—甲醛平衡现象,诱导期相当于产生平衡甲醛的时 间,因此可以通过添加适量甲醛来消除诱导期,减少聚合时间。
OCH2OCH2OCH2 OCH2OCH2
+
CH2O
降低聚甲醛解聚倾向的方法:
1. 聚合结束前加入酸酐类物质,使端羟基乙酰化,防止其 从端基开始解聚。称为均聚甲醛。
O C (CH2)5 NH - + + B M
碱金属衍生物
O C (CH2)5 (I) N- M + + BH
22
O C (CH2)5 (I) N - M+ +
O C (CH2)5 NH ý Â
O C (CH2)5 N H C (CH2)5 N M+
O
存在“诱导期”
( II )
二聚体胺负离子(Ⅱ)
1、 环醚(cyclic ether)
简单的环醚中,常见有3、4、5元环可以开环聚合。
3元环醚由于其环张力大,阳离子、阴离子、配位聚 合都可以。4、5元环醚只能进行阳离子聚合。
R O O O O
环氧化物的开环聚合
3元环醚即环氧化物(epoxide)
阳离子聚合:副反应多,工业上不常用; 配位聚合:环氧化物的配位阴离子聚合可得到分子
量很高的聚合物。
环氧丙烷用适当的引发剂还可制得光学活性聚合物。
11
环氧化合物的阴离子开环聚合
引发剂:氢氧化物、烷氧基化合物等; 作用:制得重要的聚醚类非离子表面活性剂。
特点:无终止反应,具有活性聚合特征,加入
终止剂(如酚类)使链终止。
开环聚合

R
CH2CH2O
n
O Na + ROH
-
+
R
CH2CH2O
n
+ RO-Na+ OH
交换反应生成的醇盐可继续引发聚合反应。 交换反应生成的醇盐可继续引发聚合反应。从形 式上看,交换反应与链转移反应相似, 式上看,交换反应与链转移反应相似,但与链转移 反应不同, 反应不同,交换反应生成的端羟基聚合物并不是 的聚合物,而只是休眠种, “死”的聚合物,而只是休眠种,可和增长链之间 发生类似的交换反应再引发聚合反应: 发生类似的交换反应再引发聚合反应:
③ 聚合反应条件
反应类型 开环聚合 因素 活化能 高 低 加成反应
反应分子数 单分子
双分子
升高聚合反应温度有利于提高开环反应速率; 升高聚合反应温度有利于提高开环反应速率;降 低聚合体系中的单体浓度有利于开环聚合反应的 进行。 进行。
第四节 阳离子开环聚合
1、四氢呋喃的阳离子开环聚合 、
在所有的温度下, 在所有的温度下,四氢呋喃的聚合都是平衡反 聚合通过氧正离子进行。以质子酸为引发剂, 应。聚合通过氧正离子进行。以质子酸为引发剂, 聚合过程如下: 聚合过程如下:
4、开环聚合反应机理 、
开环聚合反应机理较为复杂。大多数环状单体开 开环聚合反应机理较为复杂。 环聚合机理与离子聚合机理类似,根据单体种类、 环聚合机理与离子聚合机理类似,根据单体种类、 引发剂种类及增长活性中心电荷的不同, 引发剂种类及增长活性中心电荷的不同,可分为阴 离子开环聚合、阳离子开环聚合及配位聚合。 离子开环聚合、阳离子开环聚合及配位聚合。除分 析聚合反应的动力学特性外, 析聚合反应的动力学特性外,还通过实验测定出的 产物聚合度与反应时间的变化关系来确定开环聚合 反应机理。 反应机理。
第8章 开环聚合

(ring opening polymerization)
开环聚合是指具有环状结构的单体经引发聚合,将环打 开形成高分子化合物的一类聚合反应。
一、开环聚合的特征 开环聚合既不同于连锁聚合,也不同于逐步聚合,其 特征为: ⒈ 聚合过程中只发生环的破裂,基团或者杂原子由 分子内连接变为分子间连接,并没有新的化学键和新 的基团产生。 ⒉ 与连锁聚合相比较 连锁聚合的推动力是化学键键型的改变,虽然大 多数环状单体是按离子型聚合机理进行的,但开环聚 合的推动力是单体的环张力,这一点与连锁聚合不同。 开环聚合所得的聚合物其结构单元的化学组成与 单体的化学组成完全相同合反应相比较 开环聚合虽然也是制备杂链聚合物的一种方法, 但聚合过程中并无小分子缩出。 开环聚合的推动力是单体的环张力,聚合条件比 较温和,而逐步聚合的推动力是官能团性质的改变, 聚合条件比较苛刻.所以,用缩聚难以合成的聚合物, 用开环聚合较易合成。
二. 环状单体的聚合活性
——能否开环及聚合能力的大小
环状单体的聚合活性取决于主要是热力学因素,即环状 单体和线型结构聚合物的相对稳定性。
环状单体热力学稳定性次序: 3,4《5,7~11〈12以上,6 对于杂环化合物,如环醚、环酯、环酰胺等,由于 杂原子提供了引发剂亲核或亲电进攻的位置,所以在 动力学上它们比环烷烃更有利于开环聚合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4
二、环烷烃开环聚合活性
Hale Waihona Puke 从热力学角度分析,取决于过程的自由能变化ΔG,它 与焓变ΔH及熵变ΔS值有关
ΔG =ΔH -TΔS
而ΔH 的大小则与环张力相关
5
环张力与环的大小(元数)、构成环的元素(碳环或
杂环)、环上取代基有关。 一般键的变形程度愈大,环的张力能和聚合热也愈大, 聚合自由焓负的更厉害,则环的稳定性愈低,愈易开环。
H (BF3OH)
三聚甲醛
HOCH2OCH2OCH2
OCH2OCH2OH
17
存在聚甲醛—甲醛平衡现象,诱导期相当于产生平衡甲醛的时 间,因此可以通过添加适量甲醛来消除诱导期,减少聚合时间。
OCH2OCH2OCH2 OCH2OCH2
+
CH2O
降低聚甲醛解聚倾向的方法:
1. 聚合结束前加入酸酐类物质,使端羟基乙酰化,防止其 从端基开始解聚。称为均聚甲醛。
3元环醚由于其环张力大,阳离子、阴离子、配位聚 合都可以。4、5元环醚只能进行阳离子聚合。
R O O O O
三聚甲醛
10
O O
环氧化物 环丙醚 四氢呋喃
环氧化物的开环聚合
3元环醚即环氧化物(epoxide)
阳离子聚合:副反应多,工业上不常用; 配位聚合:环氧化物的配位阴离子聚合可得到分子
量很高的聚合物。
(2)氨基酸本身逐步缩聚形成线型长链分子
COOH + H2N COHN + H2O
20
(3) 末端氨基氮原子向己内酰胺单体的羰基进攻, 导致内酰胺的开环聚合,生成长链分子
O C HOOC(CH2)5NH2 + (CH2)5
O C NH2 + (CH2)5 NH NHOC(CH2)5NH2
NH
HOOC(CH2)5NHOC(CH2)5NH2
CH2 HO A CH2
THF
HOCH2CH2 O A
THF
PTHF
THF是五元环,环张力较小,聚合活性较低。
15
2、 羰基化合物和缩醛 的阳离子开环聚合
R' R
C O
δ
δ
R' C O R
R' C R O
甲醛:既可阴离子聚合又可阳离子聚合。但其精制 困难,往往先制成预聚物三聚甲醛,再开环聚合。 乙醛以上的高级醛类都不能聚合,
环酰胺(内酰胺)可以用碱、酸、水引发开环聚合。
• 由水引发聚合为尼龙—6,属逐步聚合。
• 由阳离子聚合,转化率和分子量不高,无工业价值。
• 由Na、NaOH等引发,属阴离子聚合,引发后可直 接浇入模内聚合,有铸型尼龙之称。
19
4、逐步开环聚合 (1) 己内酰胺水解开环成氨基酸
O C (CH2)5 NH + H2O HOOC(CH2)5NH2
环氧丙烷用适当的引发剂还可制得光学活性聚合物。
11
环氧化合物的阴离子开环聚合
引发剂:氢氧化物、烷氧基化合物等; 作用:制得重要的聚醚类非离子表面活性剂。
特点:无终止反应,具有活性聚合特征,加入
终止剂(如酚类)使链终止。
环氧乙烷(Ethylene oxide)聚合后加入环氧丙
烷会生成嵌段共聚物,是聚醚类表面活性剂的 重要品种。
R
Z +C
M * C:引发后生成的活性种,可以是
离子、中性分子
离子型引发剂:包括阴离子和阳离子; 分子型引发剂:水。 开环聚合动力学按其机理可用类似于连锁或逐步 聚合的方程表达。聚合过程常有聚合—解聚平衡。9
三. 工业上重要的开环聚合
1、 环醚(cyclic ether)
简单的环醚中,常见有3、4、5元环可以开环聚合。
由于烷基的位阻效应,聚合热降低。同时甲基的
诱导效应,使羰基氧上的电子云密度增加,降低 了活性种的稳定性,对聚合不利。 丙酮不能聚合 两个甲基导致的位阻效应和诱导效应。
16
三聚甲醛的阳离子开环聚合
O H2C O CH2 CH2 O O H2C O CH2 CH2 O HOCH2OCH2OCH2 A CH2 HOCH2OCH2OCH2 O A H2O CH2 O O CH2 OCH2OCH2OCH2 A CH2 O O CH2 CH2 O A H
环上取代基对聚合都不利。
取代环比较难开环。 四氢呋喃可以开环聚合,2-甲基四氢呋喃不能。
7
1. 少量环烷烃可以开环聚合 2. 杂环烷烃比环烷烃更易开环聚合 3. 对于所有的环,取代基的存在不利聚合
8
开环聚合机理和动力学
可以用离子聚合引发剂或分子引发开环聚合。
Z:环状单体中的杂原子或进攻点,
HOCH2OCH2OCH2 OCH2OCH2OH
(RCO)2O
O RC O [ CH2O ] n CH2 O
O CR
2. 与少量二氧五环共聚,在主链中引入 —OCH2CH2— 链 节,使聚甲醛降解直此即停止。称为共聚甲醛。
CH2O CH2CH2O CH2O CH2OH
18
3、环酰胺(cyclic amide) 的开环聚合 内酰胺4-12环都能聚合
目 录
8.1 8.2 8.3 概述 杂环开环聚合热力学和动力学特征 工业上重要的开环聚合
1
8.1 概述
开环聚合 ——环状单体在引发剂作用下开环,形成线型聚合物。 反应通式:
[R Z] n
Z:杂原子(O、P、 N、S等)或官能团。
nR
Z
2
一、开环聚合的特征 ⒈ 聚合过程中只发生环的破裂, 没有新的化学键
和基团产生。
⒉ 与连锁聚合相比较
不同点:开环聚合的推动力是单体的环张力。
相同点:聚合物与单体的元素组成相同。
⒊ 与逐步聚合反应相比较
不同点:聚合过程中并无小分子缩出。 相同点:制备杂链聚合物。
3
开环聚合的单体:
环烷烃、环醚、环酯、环酰胺、环硅氧烷、环硫化物等。
已工业化的有环氧乙烷、环氧丙烷、环氧氯丙烷、四氢
环烷烃在热力学上的易开环程度为:
3,4 > 8 > 7,5。
除六元环外,环烷烃在热力学上都有开环可能。但实
际 环烷烃只有少数可以开环聚合,且产物分子量很低,无 经济价值。(动力学因素) 工业上很少用环烷烃作开环聚合的原料。
6
杂环中的杂原子提供了引发剂亲核或亲电进攻的 位置,在动力学上比环烷烃等容易开环。
12
以醇钠为引发剂为例,环氧化物开环聚合的机理如下: 链引发:
M +A- + CH2CH2 O
链增长:
RO CH2 CH2 O M + CH2 O
A CH2CH2O-M+
CH2
RO [CH2 CH2 O] nCH2 CH2 O M
13
14
(2)四氢呋喃的阳离子开环聚合
引发促进剂
O H A + CH2 CH2