【经典】第7章 位移法 习题答案

合集下载

结构力学习题及答案武汉大学

结构力学习题及答案武汉大学

2-7〜2-15试对图示体系进行几何组成分析。

若是具有多余约束的几何不变体系, 则需结构力学习题第2章平面体系的几何组成分析2-1〜2-6试确定图示体系的计算自由度。

指明多余约束的数目。

题2-5图题2-7图题2-9图■/ ED FB Z77 7T1D 题2-14图题2-11图题2-15图题2-17图题2-20图2-1 W 12-1 W 92-3 W 32-4 W 22-5 W 12-6 W 42-7、2-8、2-12、2-16、2-17无多余约束的几何不变体系2-9、2-10、2-15具有一个多余约束的几何不变体系2-11具有六个多余约束的几何不变体系2-13、2-14几何可变体系为(a)2-18、2-19瞬变体系 2-20、2-21具有三个多余约束的几何不变体系第3章 静定梁和静定平面刚架的内力分析3-1试作图示静定梁的内力图。

ZOAA' FFF20Jt.¥AJ H H i h i H i HI11 i Hrr誌*毗7cIttkA' tftc AA y BY " D 叮啣-m柿(C) (d)习题3-1图3-2试作图示多跨静定梁的内力图。

I" bi __皿 ■(b)2in20kX 15fc\(C)XV屮........................................................J习题3-2图3-3〜3-9试作图示静定刚架的内力图。

40kV u>L T L Hr.习题3-4图习题3-6图习题3-7图AR GA-A'm--------------------5C习题3-8图习题3-9图3-10试判断图示静定结构的弯矩图是否正确。

EHHUniDn~订H i 卄T 1 nL J\ /I(b)(a)(c) (d)部分习题答案3-1 ( a)M B 80kN m (上侧受拉),F Q R 60kN,F Q B60kN(b)M A 20kN m (上侧受拉),M B40kN m (上侧受拉),F QA 32.5kN,F QA 20kN,F QB47.5kN,F Q B 20kN(c)M e口(下侧受拉),F Q C匸COS4 23-2 (a) M E0,M F40kN m (上侧受拉),M B120kN m (上侧受拉)(b) RM H 15kN m(上侧受拉),M E11.25kN m (下侧受拉)(c) M G29kN m (下侧受拉),M D8.5kN m(上侧受拉),M H 15kN m(下侧受拉)3-3 M CB 10kN m (左侧受拉),M DF 8kN m (上侧受拉),M DE 20kN m (右侧受拉)3- 4 M BA 120kN m (左侧受拉)3-5 M F40kN m (左侧受拉),M DC160kN m (上侧受拉),M EB80kNm(右侧受拉)3- 6 M BA60kN m(右侧受拉),M BD45kN m (上侧受拉),F QBD28.46kN3-7 M 下70kN m (左侧受拉),M DE150kN m (上侧受拉),M EB70kN m(右侧受拉)3-8 M CB 0.36kN m (上侧受拉),M BA 0.36kN m (右侧受拉)3-9 M AB10kN m (左侧受拉),M BC10kN m (上侧受拉)3-10 (a)错误(b)错误(c)错误(d)正确第4章静定平面桁架和组合结构的内力分析4-1试判别习题4-1图所示桁架中的零杆。

位移法习题解答

位移法习题解答

8-2、清华8-2c 试用位移法计算图示结构,并作内力图。

题8-2c (a )方法一:列位移法典型方程解:(1)D 处定向支座与AD 段不平行,视为固定端。

AB 段剪力、弯矩是静定的,弯矩图、剪力图直接可以画出来,DA 杆D 端支座与杆轴线不平行,视为固定端。

结构只有一个转角位移法基本未知量。

基本结构如图(b)。

(2)建立典型方程:11110P k z R ⋅+=(3)画基本结构的P M 、1M 的弯矩图:如图(c) 、(d) 所示。

(4)利用结点的力矩平的平衡求系数:1110;k i =1P R P l =-⋅(5)将系数,自由项代入典型方程得z 1。

110P lz i⋅=(6)利用叠加法求各杆端的最后弯矩,如图(f ):11P M M M z =+⋅30.3()1040.4()20.2()101030.3()10AC AD DA AEP lM i Pl i P l P lM i Pl M i Pl i iP l M i Pl i⋅=+⋅=⋅⋅=+⋅==+⋅=⋅=+⋅=左拉上拉下拉右拉 方法二:转角位移法(c)ACMAB(d)(b)(e)Q ABF Q解:(1)确定结构的基本未知量。

有一个角位移z1,如图所示(b)。

(2)列杆端的转角位移方程:AB段剪力和弯矩静定,DA杆D端支座与杆轴线不平行,视为固定端。

C1111,,3,3,4,2 FAB AB A AE AD DAM Pl M Pl M i z M i z M i z M i z =-=-=⋅=⋅=⋅=⋅(3)根据刚结点的力矩平衡,列位移方程,求未知量z1:111100343010AB AC AD AEPl M M M M M Pl i z i z i z zi =→+++=→-+⋅+⋅+⋅=→=∑(4)将所求位移代回转角位移方程求各杆端力,并作结构的弯矩图,如图(c)所示。

C1111,,330.3,330.3,1010440.4,220.21010FAB ABA AEAD DAM Pl M PlPl PlM i z i Pl M i z i Pli iPl PlM i z i Pl M i z i Pli i=-=-=⋅=⨯==⋅=⨯==⋅=⨯==⋅=⨯=讨论;本题将D处的滑动支座改为与杆轴线平行。

结构力学-第7章-位移法习题答案

结构力学-第7章-位移法习题答案



1 2
ql

1 12
ql 2
/ l

7 12
ql
由位移法方程得出:
r11Z1

R1 p

0

Z1

7ql 4 348EI
作出最终 M 图
7-9 试不经计算迅速画出图示结构的弯矩图形。
(a)
B
θA A
(b)
C B
yB
B′
A
C
题 7-9 图 7-10 试计算图示有剪力静定杆的刚架,并绘出 M 图。

13EI l
, r12

r21

3EI l2
r22

18EI l2
R1 p

1 16
ql 2 , R2 p

ql
代入,解得
Z1


66 3600

ql3 EI
,
Z2

211 3600

ql 4 EI
(4)求最终弯矩图
(e)
50kN·m
80kN·m 10kN·m 20kN
A 2EI B EI C
EI
(b)
B
3EI
C
EI
EI
A
D
Δ l
l
解:(1)求 M1, M 2 , M 3, M p 图。
(2)由图可知:
r11
16i, r12

r21

6i, r23

r32


6i l
, r22
16i, r33

24i l
R1 p

0, R2 p

经典位移法习题课

经典位移法习题课

角位移数目: 6 个 线位移数目: 4 个
位移法计算10个未知量 力法计算2个未知量
角位移数目: 4 个 线位移数目: 6 个
B

l
A
Δ
斜杆 AB
al
角位移数目:
t°C
因为温度轴向变形产生的位移不能忽略不计,
所以该结构有 4 个独立的结点线位移。( ×)
MC2 16kN.m
44
↑↑↑↑↑↑
12 24
12
(f)
28
M
(kN.m)
16
用位移法计算图示结构,并绘弯矩图.
40
10kNA/m↓↓↓↓↓↓
10kN/m
↓↓↓↓↓↓↓↓↓↓↓
80
30kN
30kN
EI=C 25 5
25
20
M (kN.m)
10
4m 4m 4m 4m
4m 4m
30kN
B
80kN.m
温度轴向变形引起结点C、D发生水平和竖向位移。但温度 轴向变形产生故端力可事先求出来,该结构只有1个独立结点 线位移。
P
B
A
l/2
l1 l/2
q=3kN/m
a
↓↓↓↓↓↓
Δ
A
B
(a)
q=3kN/m ↓↓↓↓↓↓
(b)
题8-29图
题8-30图
题8-31图
1-29、图示单跨超静定梁的固端弯矩MBA=
√ A -3Pl/16
M本BC未=知4θ量B+)2。θC - 16 =-18
A
D
E1I
E1I
E
MCB=2θB+ 4θC +16 =18

结构力学(5.1.2)--位移法习题及参考答案

结构力学(5.1.2)--位移法习题及参考答案

习 题6-1 试确定图示结构位移法基本未知量的个数。

6-2~6-6作图示刚架的M 图。

(a)(f)习题6-1图(d)习题6-2图习题6-5图习题6-3图(BC 杆件为刚性杆件)习题6-4图6-6 试用位移法计算图示结构,并作内力图。

6-7 试用位移法计算图示结构,并作内力图。

6-8 试用位移法计算图示结构,并作内力图。

EI 为常数。

6-9试用位移法计算图示结构,并作弯矩图。

EI 为常数。

6-10 试用位移法计算图示结构,并作弯矩图(提示:结构对称)。

习题6-9图习题6-7图6-11作图示刚架的体系内力图。

6-12 设支座 B 下沉0.5cm B D =,试作图示刚架的M 图。

6-13如图所示连续梁,设支座C 下沉淀1cm ,试作M 图。

6-14图示等截面正方形刚架,内部温度升高+t°C ,杆截面厚度h ,温度膨胀系数为 ,试作M 图。

10 kN/m( a )( b)40 kN习题6-10图BGH习题6-11图(a )(b )q6-15试作图示有弹性支座的梁的弯矩图,332EIk l=,EI =常数。

6-16 试用弯矩分配法计算图示连续梁,并作M 图。

6-176-18 用力矩分配法计算图示结构,并作M 图。

6-19 已知图示结构的力矩分配系数1238/13,2/13,3/13,A A A m m m ===作M 图。

6-20 求图示结构的力矩分配系数和固端弯矩。

已知q=20kN/m,各杆EI 相同。

习题6-17图习题6-13图习题6-14图6-21~6-22 用力矩分配法计算图示连续梁,作M 图,并计算支座反力。

EI=常数。

6-23~6-25用力矩分配法计算图示刚架,作M 图。

EI=常数。

参考答案6.1 (a) 2 (b) 1 (c) 2 (d) 3 (e) 6 (f) 26.2 15BD M =kN·m (右侧受拉)20kN/m 40kN习题6-22图习题6-21图15kN/m习题6-23图F P =10kN 习题6-24图习题6-25图6.321112AB M ql =(上侧受拉)6.4P 0.4AD M F l =(上侧受拉)6.5150AC M =kN·m (左侧受拉)6.651.3AB M =kN·m (左侧受拉)6.780AB M =kN·m (上侧受拉)6.816.9AB M =kN·m (左侧受拉)6.9 (a) 10.43CA M =kN·m (左侧受拉) (b) 56.84CE M =kN·m (下侧受拉)6.10 (a) 8.5AB M =kN·m (上侧受拉) (b) 34.3AC M =kN·m (左侧受拉)6.11 (a) 20.794DC M ql =(右侧受拉) (b) 6.14GD M q =(右侧受拉)6.1223.68AC M =kN·m (右侧受拉)6.1359.3310BA M =ᅲkN·m (上侧受拉)6.142/M EIt h a =(外侧受拉)6.152/32BA M ql =(下侧受拉)6.1617.5CB M =kN·m (下侧受拉)6.1778.75CD M =kN·m (上侧受拉)6.1827/12AB M ql =(上侧受拉)6.191117.95A M =kN·m (上侧受拉)6.200.34AD m =,13.33AD M =kN·m 6.2142.3BA M =kN·m (上侧受拉)6.2217.35BA M =kN·m (上侧受拉)6.2357.4BA M =kN·m (上侧受拉)6.2428.5BA M =kN·m (上侧受拉)6.2573.8BD M =kN·m (左侧受拉)。

位移法习题答案

位移法习题答案

位移法习题答案位移法的基本步骤包括:1. 选择位移函数:根据结构的边界条件和对称性,选择合适的位移函数。

2. 建立位移矩阵:将位移函数表示为位移矩阵的形式。

3. 应用位移边界条件:根据结构的固定边界条件,确定位移矩阵中的未知数。

4. 计算内力:利用位移矩阵和结构的几何关系,计算出结构的内力。

5. 验证位移法结果:通过比较位移法的结果与其他方法(如力法)的结果,验证位移法的准确性。

例题:考虑一个简支梁,长度为L,受集中力P作用于中点。

使用位移法求解梁的弯矩和剪力分布。

解答:首先,我们假设梁的位移函数为:\[ w(x) = \frac{Px(L-x)}{2EI} \]其中,\( w(x) \) 是梁在x位置的位移,\( E \) 是材料的弹性模量,\( I \) 是截面惯性矩。

接下来,根据位移函数,我们可以计算梁的弯矩和剪力:\[ M(x) = -EI \frac{d^2w}{dx^2} \]\[ V(x) = -EI \frac{dw}{dx} \]应用位移边界条件,我们可以确定位移函数中的未知数。

对于简支梁,位移在支点处为零,即:\[ w(0) = w(L) = 0 \]将位移函数代入上述条件,我们可以验证假设的位移函数满足边界条件。

最后,代入位移函数到弯矩和剪力的表达式中,我们可以得到:\[ M(x) = -\frac{P}{2} \left( \frac{L^2}{4} - x^2 \right) \]\[ V(x) = -\frac{P}{2} \left( L - 2x \right) \]通过上述计算,我们得到了梁在任意位置的弯矩和剪力分布。

结论:位移法是一种有效的结构分析方法,它通过位移函数来求解结构的内力和位移。

通过本题的解答,我们可以看到位移法在求解简支梁问题中的应用。

请注意,上述内容是一个示例答案,具体的习题答案会根据具体的题目而有所不同。

在实际应用中,需要根据具体的结构和受力情况来选择合适的位移函数和计算方法。

结构力学习题集-矩阵位移法习题及答案

结构力学习题集-矩阵位移法习题及答案

第七章 矩阵位移法一、是非题1、单元刚度矩阵反映了该单元杆端位移与杆端力之间的关系。

2、单元刚度矩阵均具有对称性和奇异性。

3、局部坐标系与整体坐标系之间的坐标变换矩阵T 是正交矩阵。

4、结构刚度矩阵反映了结构结点位移与荷载之间的关系。

5、用 矩 阵 位 移 法 计 算 连 续 梁 时 无 需 对 单 元 刚 度 矩 阵 作 坐 标 变 换。

6、结 构 刚 度 矩 阵 是 对 称 矩 阵 ,即 有K i j = K j i ,这 可 由 位 移 互 等 定 理 得 到 证 明 。

7、结构刚度方程矩阵形式为:[]{}{}K P ∆=,它是整个结构所应满足的变形条件。

8、在直接刚度法的先处理法中,定位向量的物理意义是变形连续条件和位移边界条件。

9、等效结点荷载数值等于汇交于该结点所有固端力的代数和。

10、矩阵位移法中,等效结点荷载的“等效原则”是指与非结点荷载的结点位移相等。

11、矩阵位移法既能计算超静定结构,也能计算静定结构。

二、选择题1、已知图示刚架各杆EI = 常数,当只考虑弯曲变形,且各杆单元类型相同时,采用先处理法进行结点位移编号,其正确编号是:(0,1,2)(0,0,0)(0,0,0)(0,1,3)(0,0,0)(1,2,0)(0,0,0)(0,0,3)(1,0,2)(0,0,0)(0,0,0)(1,0,3)(0,0,0)(0,1,2)(0,0,0)(0,3,4)A.B.C.D.21341234123412342、平面杆件结构一般情况下的单元刚度矩阵[]k 66⨯,就其性质而言,是: A .非对称、奇异矩阵; B .对称、奇异矩阵; C .对称、非奇异矩阵; D .非对称、非奇异矩阵。

3、单元i j 在图示两种坐标系中的刚度矩阵相比:A .完全相同;B .第2、3、5、6行(列)等值异号;C .第2、5行(列)等值异号;D .第3、6行(列)等值异号。

xi4、矩阵位移法中,结构的原始刚度方程是表示下列两组量值之间的相互关系: A .杆端力与结点位移; B .杆端力与结点力; C .结点力与结点位移; D .结点位移与杆端力 。

《结构力学习题集》(下)-矩阵位移法习题及答案 (2)

《结构力学习题集》(下)-矩阵位移法习题及答案 (2)

第七章 矩阵位移法一、就是非题1、单元刚度矩阵反映了该单元杆端位移与杆端力之间得关系。

2、单元刚度矩阵均具有对称性与奇异性。

3、局部坐标系与整体坐标系之间得坐标变换矩阵T 就是正交矩阵。

4、结构刚度矩阵反映了结构结点位移与荷载之间得关系。

5、用 矩 阵 位 移 法 计 算 连 续 梁 时 无 需 对 单 元 刚 度 矩 阵 作 坐 标 变 换。

6、结 构 刚 度 矩 阵 就是 对 称 矩 阵 ,即 有K i j = K j i ,这 可 由 位 移 互 等 定 理 得 到 证 明 。

7、结构刚度方程矩阵形式为:,它就是整个结构所应满足得变形条件。

8、在直接刚度法得先处理法中,定位向量得物理意义就是变形连续条件与位移边界条件。

9、等效结点荷载数值等于汇交于该结点所有固端力得代数与。

10、矩阵位移法中,等效结点荷载得“等效原则”就是指与非结点荷载得结点位移相等。

11、矩阵位移法既能计算超静定结构,也能计算静定结构。

二、选择题1、已知图示刚架各杆EI = 常数,当只考虑弯曲变形,且各杆单元类型相同时,采用先处理法进行结点位移编号,其正确编号就是:(0,1,2)(0,0,0)(0,0,0)(0,1,3)(0,0,0)(1,2,0)(0,0,0)(0,0,3)(1,0,2)(0,0,0)(0,0,0)(1,0,3)(0,0,0)(0,1,2)(0,0,0)(0,3,4)A.B.C.D.21341234123412342、平面杆件结构一般情况下得单元刚度矩阵,就其性质而言,就是:A.非对称、奇异矩阵;B.对称、奇异矩阵;C.对称、非奇异矩阵;D.非对称、非奇异矩阵。

3、单元i j 在图示两种坐标系中得刚度矩阵相比:A.完全相同;B.第2、3、5、6行(列)等值异号;C.第2、5行(列)等值异号;D.第3、6行(列)等值异号。

4、矩阵位移法中,结构得原始刚度方程就是表示下列两组量值之间得相互关系:A.杆端力与结点位移;B.杆端力与结点力;C.结点力与结点位移;D.结点位移与杆端力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第7章位移法习题7-1 试确定图示结构的位移法基本未知量数目,并绘出基本结构。

(a) (b) (c)1个角位移3个角位移,1个线位移4个角位移,3个线位移(d) (e) (f)3个角位移,1个线位移2个线位移3个角位移,2个线位移(g) (h)(i)一个角位移,一个线位移一个角位移,一个线位移三个角位移,一个线位移7-2 试回答:位移法基本未知量选取的原则是什么?为何将这些基本未知位移称为关键位移?是否可以将静定部分的结点位移也选作位移法未知量?7-3 试说出位移法方程的物理意义,并说明位移法中是如何运用变形协调条件的。

7-4 试回答:若考虑刚架杆件的轴向变形,位移法基本未知量的数目有无变化?如何变化?7-5 试用位移法计算图示结构,并绘出其内力图。

(a)解:(1)确定基本未知量和基本结构有一个角位移未知量,基本结构见图。

l llZ 1M 图(2)位移法典型方程11110p r Z R +=(3)确定系数并解方程iql Z ql iZ ql R i r p 24031831,821212111==-∴-==(4)画M 图M 图(b)解:(1)确定基本未知量1个角位移未知量,各弯矩图如下4m 4m4m1Z =1M 图32EIp M 图(2)位移法典型方程11110p r Z R +=(3)确定系数并解方程1115,352p r EI R ==- 153502EIZ -=114Z EI=(4)画M 图()KN mM ⋅图(c)解:(1)确定基本未知量一个线位移未知量,各种M 图如下6m 6m 9m1M 图243EI 243EI 1243EI p M 图F R(2)位移法典型方程11110p r Z R +=(3)确定系数并解方程1114,243p p r EI R F ==- 140243p EIZ F -=12434Z EI=(4)画M 图94M 图(d)解:(1)确定基本未知量一个线位移未知量,各种M 图如下a 2aa2aaF P11Z=1111r 252/25EA a 简化图1pR pp M(2)位移法典型方程11110p r Z R +=(3)确定系数并解方程11126/,55p p r EA a R F ==- 126055p EA Z F a -=13a Z EA=(4)画M 图图M(e)解:(1)确定基本未知量两个线位移未知量,各种M 图如下l图1=11211 EA r l r ⎛⇒=⎝⎭1M221EA r l ⎛=⎝⎭图12 0p p p R F R ⇒=-=p M pF(2)位移法典型方程1111221211222200p p r Z r Z R r Z r Z R ++=++= (3)确定系数并解方程11122122121,1,0p p p EA r r r l EA r l R F R ⎛=== ⎝⎭⎛=⎝⎭=-=代入,解得12p p lZ F EAlZ F EA=⋅=⋅(4)画M 图图M p7-6 试用位移法计算图示结构,并绘出M 图。

(a)解:(1)确定基本未知量两个角位移未知量,各种M 图如下23EI 23EI 112121 3r EI r EI⇒==图1M23EI 22116r EI ⇒=6m6m 6m1130 0p p R R ⇒==图p M(2)位移法典型方程1111221211222200p p r Z r Z R r Z r Z R ++=++= (3)确定系数并解方程111221221212,311630,0p p r EI r r EI r EI R R ======代入,解得1215.47, 2.81Z Z =-=(4)画最终弯矩图图M(b)解:(1)确定基本未知量两个位移未知量,各种M 图如下图1MCED 6m6m图2M图p M(2)位移法典型方程1111221211222200p p r Z r Z R r Z r Z R ++=++= (3)确定系数并解方程 111221221211,03430,30p p r i r r ir R KN R KN====-==-代入,解得123011,4011Z Z i i=-⋅=⋅ (4)画最终弯矩图图M 29.09(c)2m2m解:(1)确定基本未知量两个位移未知量,各种M 图如下图p M(2)位移法典型方程1111221211222200p p r Z r Z R r Z r Z R ++=++= (3)确定系数并解方程1112212212311,2640,30p p i r i r r i r R R KN===-===-代入,解得126.31646.316,Z Z EI EI==(4)求最终弯矩图7- 32图M(d)解:(1)确定基本未知量两个位移未知量,各种M 图如下1ll7- 33pM(2)位移法典型方程1111221211222200p p r Z r Z R r Z r Z R ++=++= (3)确定系数并解方程1112212222212133,181,16p p EI EI r r r l l EI r l R ql R ql======-代入,解得341266211,36003600ql ql Z Z EI EI=-⋅=⋅(4)求最终弯矩图图M(e)解:(1)确定基本未知量两个角位移未知量,各种M 图如下8m4m 4m 4m 4m7- 322EI 1M 图p M 图(2)位移法典型方程1111221211222200p p r Z r Z R r Z r Z R ++=++= (3)确定系数并解方程111221221251,447845,0p p r EI r r EI r EIR KN m R =====⋅= 代入,解得1238.18,10.91Z Z =-=(4)求最终弯矩图M 图7-7 试分析以下结构内力的特点,并说明原因。

若考虑杆件的轴向变形,结构内力有何变化? (a) (b) (c)(d) (e)(f)F PF PqEI 1=∞EI对称轴F PF P7- 337-8 试计算图示具有牵连位移关系的结构,并绘出M 图。

(a)解:(1)画出p M M M ,,21图481EI 3EI 由图可得: 1112211124,813r EI r r EI ===1由图可知: 22149r EI= 图20KNp M20kN8m8m 6m3mACD EBFG EI 1=∞EI 1=∞ 3EI3EI3EIEI7- 3212200p p R KN R ⇒=-= (2)列方程及解方程组12121124200813414039EIZ EIZ EIZ EIZ ⎧+-=⎪⎪⎨⎪+=⎪⎩ 解得:121183.38,71.47Z Z EI EI==-(3)最终弯矩图图M(b)解:C 点绕D 点转动,由Cy=1知,45,43==⊥CD x C C 知EIEI EI r r EI EI EI r EIEI EI r r EI r r EI r 16027403323,1098410412833231289,4,3223221331211211-=--===+=-=-=====KN R R m KN R p p p 25.6,0,10321-==⋅= 求33r0=∑DM知4m 6m8m4m 10kN10kN B C ADEI=常数7- 33EI EI EI EI EI EI r 055.081481289128912834031602733=⨯⨯+-++=⎪⎩⎪⎨⎧==-=⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧=-+--=-+=+-+EIZ EI Z EI Z EIZ Z EIZ EIZ Z EI Z EI EIZ Z EI EIZ /6.285/5.58/9.17025.6055.0160271283016027109401012834321321321321(c) 解:(1)作出各M 图26EI a 1M 图()1133113918018EI EIMr a a a a EI r a =⇒⨯=+⨯∴=∑F P EI 1=∞EIEI D CB Aa 2a 2a a7- 32图p M110022p p aM P R a PR =⇒⋅+⋅==-∑(2)列出位移法方程11110p r Z R +=解得:31Z =(3)最终M 图M 图(d)解:基本结构选取如图所示。

作出1M 及p M 图如下。

l 2l 2 ll7- 332p M 图3222211292/2910810l EI l l EI l EI l l EI l EI r =⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛+=ql l ql ql R p 127/1212121-=⎪⎭⎫⎝⎛+-=由位移法方程得出: EIql Z R Z r p 34870411111=⇒=+作出最终M 图285348ql M 图7-9 试不经计算迅速画出图示结构的弯矩图形。

(a)(b)题7-9图7-10 试计算图示有剪力静定杆的刚架,并绘出M图。

y Baaa a7- 32解:(1)画出p M M M ,,21图1M 图2M 图p M 图由图可知,得到各系数:222122211211813,858,,7qa R qa R i r i r r i r p p -=-==-=== 求解得:5512,4405321==Z Z (2)求解最终弯矩图7-11 试利用对称性计算图示刚架,并绘出M 图。

(a)解:(1)利用对称性得:6m7- 33p M 图(2)由图可知:m KN R EI r p ⋅-==300,34111 0300341=-∴EIZ可得:EIEI Z 225433001=⨯= (3)求最终弯矩图M 图(b)解:(1)利用对称性,可得:5EI1M 图图p M(2)由图可知,各系数分别为: 02020212020215441111=-⋅-==+=EIZ m KN R EI EI EI r p 4m 3m4m解得:EIZ 214001=(3)求最终弯矩图如下M 图(c)解:(1)在D 下面加一支座,向上作用1个单位位移,由于BD 杆会在压力作用下缩短,所以先分析上半部分,如下图。

1M 图p M 图D 点向上作用1个单位,设B 向上移动x 个单位,则()x l EI x l EI -=112333,得54=x 个单位。

(2)同理可求出Mp 图。

Pl R l EI l EI x l EI r p 54,5132512121332311==+=可得:3331Pl Z -=(3)求最终弯矩图l llC DE图11Pl M(d)(e)解:(1)利用对称性,取左半结构4m 4m4m4m′′3m3m3m 3m′1M 图2M 图1图p M(2)由图可知: KNR R EIr EI r r EI r p p 25,02720,94,382122122111======解得:EIZ EI Z 375,42521-==(3)求得最终弯矩图M 图(f)解:由于Ⅱ不产生弯矩,故不予考虑。

相关文档
最新文档