氧化锆测量原理介绍
氧化锆氧量计测氧原理

一、分析烟气含氧量意义 2 与O2的关系
过剩空气系数与氧含量O2之间不仅具有单值函数 关系,且受燃料品种、燃烧方式和设备结构影响小。
α = 21 21 0.91O2
可见分析氧含量O2的意义就是为了控制过剩空气系 数为最佳值,保证锅炉燃烧的经济性。
热工控制与保护
氧化锆氧量计 测氧原理
一 、分析含氧量意义 二 、氧化锆测氧原理 三 、氧化锆注意事项
一、分析烟气含氧量意义
1 与环保经济性的关系
为了保证锅炉燃烧环保经济性,监视炉膛内燃料 燃烧状况,确保安全运行,需要及时控制燃料和空气 的比例,即保持烟气过剩空气系数为最佳值,一般 为1.02~1.20。
3 氧化锆探头与氧浓差电池
掺杂氧化锆管,内外附上多 孔的金属铂电极,使其处于高温 状态下,当电解质两侧气体中氧 气的浓度不同时,两铂电极间会 形成氧浓差电势,这个装置称作 氧浓差电池。
“氧浓差电势”是如何形成的?
二、氧化锆氧量分析仪原理 4 工作原理分析
在高温(650~850℃)下,氧气从分压大的 参比侧向分压小的烟气侧扩散。
这种扩散,不是氧分子透过氧化锆从参比侧 到烟气侧,而是氧分子离解成氧离子后,通过 氧化锆的过程。
在750℃左右的高温中,在铂电极的催化 作用下,在参比侧发生还原反应:O2 + 4e 2O2-
烟气侧 铂电极 参比侧
2O2- 4e+O2
二、氧化锆氧量分析仪原理
4 工作原理分析
这些氧离子进入电解质后,通过 晶体中的空穴向前运动到达左侧的铂 电极,在烟气侧发生氧化反应,氧离 子在铂电极上释放电子并结合成氧分 子析出,即: 2O2- - 4e O2
氧化锆氧量分析仪

氧化锆氧量计
一、测量原理 氧化锆使用周期长(一年到两年),几乎没有延时,测量时仅受温度 影响,容易克服,而且仪表 本身输出电信号,精度比较高。现在加热 炉几结合而成。 纯净的氧化锆是不能进行氧量测量的,真正用于测量氧量的是在氧化 锆中加入氧化钙(一氧化钙),这样就可以进行氧量测量。
p1
p2 > p 1
图 6— 1
氧浓差电池原理
氧化锆氧量计
氧浓差电池两侧分别为含氧浓度不同的两种气体。氧分子首先扩散到铂电
极表面吸附层内,高温下(650OC-850OC)在多孔铂电极的催化下,在电池 的P2发生还原反应,一个氧分子从铂电极得到4个电子变成两个氧离子 (O2-然后扩散到固体电解质界面上。 这时在电极1上(阳极——进行还原反应的电极)产生下列反应:
烟道炉墙 电炉丝加热装 置 氧 化 锆 管 内 烟 气 流 动 方 向 空 气 流 动 隔 离 板
烟 气 流 动 方 向
氧化锆测 量管 热电偶
新鲜空气流 动方向
新鲜空气导管
氧量计外壳
烟道炉墙
参比气入口
标 准 气 入 口
1—氧化锆管;2—内外铂电极;3—电极引出线;4—热电偶;5— 氧化铝管;6—加热炉丝;7—陶瓷过滤器
氧化锆氧量计
如果被分析气体和参比气体的总压 如果被分析气体和参比气体的总压力均为,则可写成
p2 / p RT E ln nF p1 / p 由上式可知,当氧 由于在混合气体中,某气体组分的分压力与总压力之比等 浓差电池工作温度T 由于在混合气体中,某气体组分的分压力与总压力之比等于该组分 一定,以及参比气 ,某气体组分的分压力与总压力之比等于该组分的体积浓度,即 的体积浓度,即 1 体的氧浓度一定时, p1 / p , 2 p 电池产生的氧浓差 1 p1 / p , 2 p 2 / p 电势与被测气体的 含氧浓度(即含氧 以(6— 2 )式可写为 则 量)成单值函数关
氧化锆分析仪工作原理

1、氧化锆工作原理及特性:氧化锆陶瓷是一种固体电介质,它具有离子导电性质,是测量装置中将烟气氧浓度转换成电信号的关键元件。
在一定温度下,氧化锆测量管内外两侧通以氧浓度的气体,例如内侧通空气,作为参比气体,外则通过被测烟气。
当内外两侧气体的氧浓度不同时,氧化锆测管内外两侧将产生氧浓度差电势,内侧多孔性铂参比电势为正极,外侧多孔性铂电极为负极。
两根引线将氧浓差电势送至二次仪表进行放大显示,也可转换为标准信号用作其他控制。
在高温600℃以上时,氧化锆管的高氧分压面(通空气的氧化锆管内壁)发生还原反应:O2+4e→2O2- 管内壁氧化锆给出电子而带正电,生成的O2-通过氧化锆空穴到达低氧分界面。
低氧分压在氧化锆管外侧.,它的表面发生氧化反应:2O2-→O2+4e氧化反应生成电子,使管外壁电极带负电,从而产生浓差电势E。
氧浓差电势E的大小,不仅与参比气体氧分压(一般用空气,值为20.6)和烟气中的氧分压有关,还和氧化锆的工作温度有关,更为重要的是氧化锆的导电特性和温度有直接关系。
对氧化锆的导电特性——工作温度关系,一般情况下:氧化锆的导电特性——工作温度关系测试结果氧化锆工作温度/0℃ 300 350 400 450 500 550 600 650 700 750氧化锆电极内阻/Ω 136k 23k 18k 13k 8k 2.8k 400 123 44 19由此可见,温度过低时,氧化锆探头巨大的内阻影响了它的导体特,二次分析仪已无法得到准确的氧浓差电势。
为此,通常把氧化锆的理想工作温度定在650~800℃之间。
2、氧化锆氧量计的主要部件:氧化锆氧量计是由防尘装置、氧化锆管元件 ( 固体电解质元件 ) 、热电偶、加热器、校准气体导管、接线盒以及外壳壳体等主要部件组成。
整个装置采用全封闭型结构,以增加整个装置的密封性能。
材料采用耐高温、耐腐蚀的不锈钢材料制作,以提高使用寿命。
防尘装置由防尘罩和过滤器组成,能防止烟气中的灰尘进入氧化锆锆管内部,使锆管元件免受污染,并能起到缓冲气样的作用。
氧化锆 检定规程

氧化锆检定规程
1.检定对象:氧化锆样品的检定,包括氧化锆粉末、氧化锆块、氧化锆陶瓷等。
2. 检定原理:采用比表面积法或X射线衍射法对氧化锆进行检定。
3. 检定方法:
(1) 比表面积法:利用氮气吸附法或乙醇脱附法测定氧化锆的比表面积,根据比表面积计算出氧化锆的平均粒径。
(2) X射线衍射法:利用X射线衍射技术测定氧化锆的结晶度和晶体尺寸,根据衍射峰面积计算出氧化锆的平均晶粒尺寸。
4. 检定结果:根据检定方法获得的数据,计算出氧化锆的平均粒径或平均晶粒尺寸,并报告检定结果。
5. 检定精度:根据检定结果的重复性和准确性评估检定精度,确保检定结果可靠。
6. 检定周期:根据氧化锆的使用情况和生产批次,定期对氧化锆进行检定,确保其质量稳定。
7. 检定记录:对每次检定进行记录,包括样品编号、检定方法、检定结果、检定日期等信息,确保检定过程可追溯。
以上是氧化锆检定规程的主要内容,旨在确保氧化锆产品质量稳定和可靠。
- 1 -。
氧化锆氧量分析仪工作原理

氧化锆氧量分析仪工作原理氧化锆氧量分析仪是一种常用于燃气分析的仪器,在燃煤、燃油、天然气等燃料的燃烧过程中,能够快速、准确地测量燃气中氧气的含量。
为了更好地理解氧化锆氧量分析仪的工作原理,需要从以下方面进行介绍。
仪器结构氧化锆氧量分析仪由控制系统、测量系统和信号输出系统三部分组成。
控制系统是仪器的核心部件,包括主控板、电源、输入输出接口等组成部分。
测量系统中主要包含传感器组、放大器、滤波器等。
信号输出系统则是实现了信号的放大和转换,将测量得到的数据通过标准信号输出,用于控制、存储和处理。
工作原理氧化锆氧量分析仪的工作原理基于的是氧气传感器的特性。
氧气传感器采用了固态氧离子传导技术,即将氧气分子在温度较高的条件下通过一种氧化物离子导体(通常为氧化铈或氧化锆等)传导到电极上,生成电势差。
当氧气浓度发生变化时,电势差也会发生变化,从而实现对氧气浓度的测量。
在具体的工作中,氧气传感器通过传感器组来埋入到燃气管道中,接受燃气中的氧气分子发生反应。
在这个过程中,由于氧气分子的存在,导致氧化物离子和电极上的氧化还原对发生反应,产生一定的电信号。
经过传感器做量化处理后,可以得到一个与氧气浓度成正比的电信号,根据这个电信号就可以获得燃气中氧气的含量。
值得注意的是,由于氧化锆氧量分析仪采用了固态氧离子传导技术,因此需要保证传感器工作温度满足要求。
具体来说,氧化锆氧量分析仪的工作温度通常为600-900°C,因此需要使用加热元件,使其处于这个温度范围内,才能正常工作。
优缺点分析氧化锆氧量分析仪具有以下优点:1.准确度高:氧化锆氧量分析仪能够快速、准确地测量燃气中氧气的含量,其测量误差通常在±1%左右。
2.反应速度快:氧化锆氧量分析仪具有很高的灵敏度和响应速度,能够及时反馈燃气中氧气含量的变化情况。
3.维护方便:氧化锆氧量分析仪的工作原理简单、结构清晰,拆卸、清洗和更换传感器等维护操作非常方便。
当然,它也存在一些缺点:1.价格昂贵:相比其他类型的氧气传感器,氧化锆氧量分析仪的价格较为高昂,使得它并不适用于所有的燃气分析应用场景。
氧化锆传感器工作原理

氧化锆传感器工作原理
氧化锆传感器是一种基于氧化锆材料制备的气体传感器,用于检测空气中的氧气浓度。
其工作原理是利用氧化锆材料对氧气的敏感性,实现对氧气浓度的测量。
具体而言,氧化锆传感器内部包含一个氧化锆薄膜,该薄膜具有良好的氧离子电导性能。
当氧化锆传感器处于高温环境下(一般为500-900摄氏度),氧气分子能够与氧化锆表面发生化学反应,生成氧离子。
氧离子的生成会导致氧化锆薄膜上形成电势差,这个电势差被称为Nernst电势。
Nernst电势与氧气分压呈指数关系,即当氧气分压升高时,Nernst电势也随之增加。
通过测量Nernst电势的变化,就可以得到氧气分压的信息。
一般情况下,氧化锆传感器中会加入一个参比电极,以提供一个参照电势。
通过对比参照电势和Nernst电势,可以准确地测量氧气浓度。
需要注意的是,氧化锆传感器的工作温度对其灵敏度和稳定性有很大影响。
在使用过程中,需要对传感器进行恒温控制,以确保其工作温度的稳定性。
总之,氧化锆传感器通过测量氧化锆薄膜上的Nernst电势变化,实现了对氧气浓度的准确测量。
其具有响应速度快、灵敏度高、精度好等特点,被广泛应用于气体检测和控制领域。
氧化锆工作原理

氧化锆氧量分析仪工作原理及维护使用:一、前言 1989年能斯特(Nernst)发现稳定氧化锆在高温下呈现的离子导电现象。
从此氧化锆成为研究和开发应用最普遍的一种固体电解质,它已在高温技术,特别是高温测试技术上得到广泛应用。
由于氧探头与现有测氧仪表(如磁氧分析器、电化学式氧量计、气象色谱仪等)相比,具有结构简单,响应时间短(0.1s~0.2s),测量范围宽(从ppm到百分含量),使用温度高(600℃~1200℃),运行可靠,安装方便,维护量小等优点,因此在冶金、化工、电力、陶瓷、汽车、环保等工业部门得到广泛的应用。
二、氧探头的测氧原理 在氧化锆电解质(ZrO2管)的两侧面分别烧结上多孔铂(Pt)电极,在一定温度下,当电解质两侧氧浓度不同时,高浓度侧(空气)的氧分子被吸附在铂电极上与电子(4e)结合形成氧离子O2-,使该电极带正电,O2-离子通过电解质中的氧离子空位迁移到低氧浓度侧的Pt电极上放出电子,转化成氧分子,使该电极带负电。
两个电极的反应式分别为:参比侧:O2+4e——2O2-测量侧:2O2--4e——O2这样在两个电极间便产生了一定的电动势,氧化锆电解质、Pt电极及两侧不同氧浓度的气体组成氧探头即所谓氧化锆浓差电池。
两级之间的电动势E由能斯特公式求得:可E= (1)式中,EmV―浓差电池输出,n 4―电子转移数,在此为R理想气体常数,8.314 W·S/mol —T (K)F96500 C;PP1——待测气体氧浓度百分数0——参比气体氧浓度百分数—法拉第常数,—绝对温度该分式是氧探头测氧的基础,当氧化锆管处的温度被加热到600℃~1400℃时,高浓度侧气体用已知氧浓度的气体作为参比气,如用空气,则P,将此值及公式中的常数项合并,又实际氧化锆电池存在温差电势、接触电势、参比电势、极化电势,从而产生本地电势CmV)实际计算公式为:(0 =20.6%EmV)=0.0496Tln(0.2095/P1)±CmV)((C本地电势(新镐头通常为±1mV) =可见,如能测出氧探头的输出电动势E和被测气体的绝对温度T,即可算出被测气体的氧分压(浓度)P1 ,这就是氧化锆氧探头的基本检测原理。
2700氧化锆分析仪原理、操作及维修

2700氧化锆分析仪原理、操作及维修一、氧化锆分析仪工作原理:氧化锆管样品气参比气放大器由氧化锆管制成的传感器,被加热恒温700℃,锆管两端分别通入参比气体(空气)和样品气,在两端经过电极产生不同的电势差,该值与两侧的氧浓度值的对数成正比,两边浓度相同时,对数比值为零。
所产生的电势服从能斯特方程:V=K T ln (20.95/C)V: 测量池输出(mv);T: 测量池的温度(K);C: 样品气中氧的浓度(%);K: 常数(0.021543mv/K)如果恒温700℃则K=273+700=973K则V=0.021543mv/K×973K×ln(20.95/C)=20.96mv.ln(20.95/C)具体分析原理曲线见图1二、2700分析仪的结构:探头装置控制装置探头装置:引射风取样系统,恒温(240℃)及控温系统,,CELL加热(700℃)元件及测温系统,CELL输出(锆管输出),以及探头装置的供电系统。
控制装置:电源系统,700℃(锆管)控温系统,240℃及700℃测温系统,引射风的控制,CELL输出信号处理,模拟输出(4-20mA)系统,报警输出,以及显示器及键盘操作系统。
探头控制与控制装置的连接见图2及图3、图4。
三、2700分析仪操作:1.工作条件:温度:探头240℃CELL (锆管) 700℃只有这二个温度都达到,引射风的电磁阀才能被打开,被测气才能被引射风吸到CELL处检测。
当二个温度没有达到时,模拟输出4-20mA,没有输出。
2.量程和输出电流的设置:按MENU 键选CONFIGURE按ENTERENTER PASS WORD0 0 0 0输入2700按ENTER选SET UP 按ENTER选ASSIGN 按ENTER选MA OUTPUT 按ENTER选OXYGEN按ENTERSET RANGE1/5 /10/ 25选量程按ENTER选FREEZE按ENTER40- 20Ma0-20mA选4-20mA按ENTERJAMLO/H1/NONE选NONE按ENTER按MEASURE返到测量显示状态3.校表:(校零点)按MENU键选CONFIGURE按ENTERENTER PASS WORD0 0 0 0输入2000按ENTER选CAL / VIEW选CALLBRATER按ENTER选MANUAL CALLBRATER 按ENTER选OXYGEN按ENTER选LOW CALLBRATE 按ENTER输入零点气的氧气值,按ENTER选误差容限,按ENTER在校表口通入标气(600ml/min)ACCEPT 按ENTER按MEASURE返到测量显示画面校量程的步骤同上述校零点过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
氧化锆变送器相关说明
1、氧化锆变送器测量原理
氧化锆传感器工作原理:honeywell公司的高精度氧化锆动态氧传感器(实物如图1所示),该传感器采用两个氧化锆盘,在其中间安置一个密封小室。
加热到700°C的温度后,其中一个盘起到可逆氧气泵的作用,被用来依次充满和抽空小室,另一个盘用于测量氧分压差比率及产生相对应的传感电压。
氧气泵使小室范围内达到规定最小和最大压力所花的时间与环境中的氧分压成正比关系,从而测量该时间即可得到环境中的氧分压。
图1氧化锆动态氧传感器实物图
氧化锆变送器测量电路工作原理:电路原理框图如图2所示,由前置放大、电压比较、电子泵、MCU、电压输出及电源模块组成。
传感器输出的电压信号经前置级放大后输入电压比较模块,通过它控制电子泵的翻转及检测氧化锆传感器内密闭小气室达到规定最小和最大压力所花的时间,该时间信号经MCU采集和处理后,通过DAC 转换为与氧浓度成正比的0~4.096V直流电压信号。
图2电路原理框图
2、变送器构成
变送器由氧化锆传感器、测量电路及开关电源组成,如图3所示(由于氧化锆传感器安装在气体测量室中,这里没有表示),绿色盒中安装测量电路,灰色部分为开关电源(提供电路工作需要的24VDC,及氧化锆工作需要的5VDC加热电压)。
3、变送器在系统中的使用方法
供电:220VAC/50Hz(至开关电源)
变送器输出的电压信号采集:在现有CEMS系统中,接口板专门为该电压信号的输入图3变送器实物图
留有接口(J3600的9脚+及21脚-),将变送器的电压信号正确接入接口板,系统就可测量氧气浓度。
标定:由氧化锆的工作原理决定,为保证测量氧气浓度的正确性,需要对变送器进行标定,方法是在气体室已经加热到正常工作的120°C且氧化锆变送器通电时间超过10分钟后通空气,然后进行标定。
调零:无需进行调零操作。
4、变送器的连线
氧化锆传感器与测量电路的连线:请参照变送器上的连线图(如图4所示),这里不做详细说明,特别指出:由于系统中氧化锆传感器与测量电路间有一定距离,该距离的连线(红、蓝、黑三种颜色的线)需采用屏蔽双绞线,并且屏蔽层两端良好接地。
氧化锆与开关电源间的连线:两根黄色线,至5VDC,需采用线径至少为0.75mm2的导线(如果没有合适导线可以采用多根导线合并的方法得到)。
测量电路与开关电源间的连线:请参照图4所示将测量电路的电源输入端(7+、8-)及PE(5)正确接入开关电源的24VDC输出图4变送器连线图
和PE,导线线径至少为0.75mm2。
开关电源与系统220VAC主电间连接:请参照开关电源上的标示正确与主电源的L、N、PE连接,一般采用专用三芯电源线。
测量电路与OMA表间的连线:请参照图4所示的外部接线图将4接至接口板J3600的9脚,6接至接口板J3600的21脚。
该段导线需尽量短,建议采用屏蔽双绞线,屏蔽层两端良好接地。