氧化锆测量原理介绍
氧化锆氧量计测氧原理

一、分析烟气含氧量意义 2 与O2的关系
过剩空气系数与氧含量O2之间不仅具有单值函数 关系,且受燃料品种、燃烧方式和设备结构影响小。
α = 21 21 0.91O2
可见分析氧含量O2的意义就是为了控制过剩空气系 数为最佳值,保证锅炉燃烧的经济性。
热工控制与保护
氧化锆氧量计 测氧原理
一 、分析含氧量意义 二 、氧化锆测氧原理 三 、氧化锆注意事项
一、分析烟气含氧量意义
1 与环保经济性的关系
为了保证锅炉燃烧环保经济性,监视炉膛内燃料 燃烧状况,确保安全运行,需要及时控制燃料和空气 的比例,即保持烟气过剩空气系数为最佳值,一般 为1.02~1.20。
3 氧化锆探头与氧浓差电池
掺杂氧化锆管,内外附上多 孔的金属铂电极,使其处于高温 状态下,当电解质两侧气体中氧 气的浓度不同时,两铂电极间会 形成氧浓差电势,这个装置称作 氧浓差电池。
“氧浓差电势”是如何形成的?
二、氧化锆氧量分析仪原理 4 工作原理分析
在高温(650~850℃)下,氧气从分压大的 参比侧向分压小的烟气侧扩散。
这种扩散,不是氧分子透过氧化锆从参比侧 到烟气侧,而是氧分子离解成氧离子后,通过 氧化锆的过程。
在750℃左右的高温中,在铂电极的催化 作用下,在参比侧发生还原反应:O2 + 4e 2O2-
烟气侧 铂电极 参比侧
2O2- 4e+O2
二、氧化锆氧量分析仪原理
4 工作原理分析
这些氧离子进入电解质后,通过 晶体中的空穴向前运动到达左侧的铂 电极,在烟气侧发生氧化反应,氧离 子在铂电极上释放电子并结合成氧分 子析出,即: 2O2- - 4e O2
氧化锆氧量分析仪

氧化锆氧量计
一、测量原理 氧化锆使用周期长(一年到两年),几乎没有延时,测量时仅受温度 影响,容易克服,而且仪表 本身输出电信号,精度比较高。现在加热 炉几结合而成。 纯净的氧化锆是不能进行氧量测量的,真正用于测量氧量的是在氧化 锆中加入氧化钙(一氧化钙),这样就可以进行氧量测量。
p1
p2 > p 1
图 6— 1
氧浓差电池原理
氧化锆氧量计
氧浓差电池两侧分别为含氧浓度不同的两种气体。氧分子首先扩散到铂电
极表面吸附层内,高温下(650OC-850OC)在多孔铂电极的催化下,在电池 的P2发生还原反应,一个氧分子从铂电极得到4个电子变成两个氧离子 (O2-然后扩散到固体电解质界面上。 这时在电极1上(阳极——进行还原反应的电极)产生下列反应:
烟道炉墙 电炉丝加热装 置 氧 化 锆 管 内 烟 气 流 动 方 向 空 气 流 动 隔 离 板
烟 气 流 动 方 向
氧化锆测 量管 热电偶
新鲜空气流 动方向
新鲜空气导管
氧量计外壳
烟道炉墙
参比气入口
标 准 气 入 口
1—氧化锆管;2—内外铂电极;3—电极引出线;4—热电偶;5— 氧化铝管;6—加热炉丝;7—陶瓷过滤器
氧化锆氧量计
如果被分析气体和参比气体的总压 如果被分析气体和参比气体的总压力均为,则可写成
p2 / p RT E ln nF p1 / p 由上式可知,当氧 由于在混合气体中,某气体组分的分压力与总压力之比等 浓差电池工作温度T 由于在混合气体中,某气体组分的分压力与总压力之比等于该组分 一定,以及参比气 ,某气体组分的分压力与总压力之比等于该组分的体积浓度,即 的体积浓度,即 1 体的氧浓度一定时, p1 / p , 2 p 电池产生的氧浓差 1 p1 / p , 2 p 2 / p 电势与被测气体的 含氧浓度(即含氧 以(6— 2 )式可写为 则 量)成单值函数关
氧化锆氧量分析仪工作原理

氧化锆氧量分析仪工作原理氧化锆氧量分析仪是一种常用于燃气分析的仪器,在燃煤、燃油、天然气等燃料的燃烧过程中,能够快速、准确地测量燃气中氧气的含量。
为了更好地理解氧化锆氧量分析仪的工作原理,需要从以下方面进行介绍。
仪器结构氧化锆氧量分析仪由控制系统、测量系统和信号输出系统三部分组成。
控制系统是仪器的核心部件,包括主控板、电源、输入输出接口等组成部分。
测量系统中主要包含传感器组、放大器、滤波器等。
信号输出系统则是实现了信号的放大和转换,将测量得到的数据通过标准信号输出,用于控制、存储和处理。
工作原理氧化锆氧量分析仪的工作原理基于的是氧气传感器的特性。
氧气传感器采用了固态氧离子传导技术,即将氧气分子在温度较高的条件下通过一种氧化物离子导体(通常为氧化铈或氧化锆等)传导到电极上,生成电势差。
当氧气浓度发生变化时,电势差也会发生变化,从而实现对氧气浓度的测量。
在具体的工作中,氧气传感器通过传感器组来埋入到燃气管道中,接受燃气中的氧气分子发生反应。
在这个过程中,由于氧气分子的存在,导致氧化物离子和电极上的氧化还原对发生反应,产生一定的电信号。
经过传感器做量化处理后,可以得到一个与氧气浓度成正比的电信号,根据这个电信号就可以获得燃气中氧气的含量。
值得注意的是,由于氧化锆氧量分析仪采用了固态氧离子传导技术,因此需要保证传感器工作温度满足要求。
具体来说,氧化锆氧量分析仪的工作温度通常为600-900°C,因此需要使用加热元件,使其处于这个温度范围内,才能正常工作。
优缺点分析氧化锆氧量分析仪具有以下优点:1.准确度高:氧化锆氧量分析仪能够快速、准确地测量燃气中氧气的含量,其测量误差通常在±1%左右。
2.反应速度快:氧化锆氧量分析仪具有很高的灵敏度和响应速度,能够及时反馈燃气中氧气含量的变化情况。
3.维护方便:氧化锆氧量分析仪的工作原理简单、结构清晰,拆卸、清洗和更换传感器等维护操作非常方便。
当然,它也存在一些缺点:1.价格昂贵:相比其他类型的氧气传感器,氧化锆氧量分析仪的价格较为高昂,使得它并不适用于所有的燃气分析应用场景。
氧化锆氧量分析仪的工作原理

纯净的氧化锆是白色固体,含有杂质时会显现灰色或淡黄色,添加显色剂还可显示各种其它颜色。
纯氧化锆的分子量为,理论密度是cm3,熔点为2715℃。
氧化锆有三种晶体形态:单斜、四方、立方晶相。
常温下氧化锆只以单斜相出现,加热到1100℃左右转变为四方相,加热到更高温度会转化为立方相。
由于在单斜相向四方相转变的时候会产生较大的体积变化,冷却的时候又会向相反的方向发生较大的体积变化,容易造成产品的开裂,限制了纯氧化锆在高温领域的应用。
但是添加稳定剂以后,四方相可以在常温下稳定,因此在加热以后不会发生体积的突变,大大拓展了氧化锆的应用范围。
由于氧化锆材料具有高硬度,高强度,高韧性,极高的耐磨性及耐化学腐蚀性等等优良的物化性能,氧化锆已经在陶瓷、耐火材料、机械、电子、光学、航空航天、生物、化学等等各种领域获得广泛的应用。
1989年能斯特(Nernst)发现稳定氧化锆在高温下呈现的离子导电现象。
从此氧化锆成为研究和开发应用最普遍的一种固体电解质,它已在高温技术,特别是高温测试技术上得到广泛应用。
由于氧探头与现有测氧仪表(如磁氧分析器、电化学式氧量计、气象色谱仪等)相比,具有结构简单,响应时间短~,测量范围宽(从ppm到百分含量),使用温度高(600℃~1200℃),运行可靠,安装方便,维护量小等优点,因此在冶金、化工、电力、陶瓷、汽车、环保等工业部门得到广泛的应用。
来自海洋兴业仪器。
氧化锆氧探头的测氧原理氧化锆的导电机理:电解质溶液靠离子导电,具有离子导电性质的固体物质称为固体电解质。
固体电解质是离子晶体结构,靠空穴使离子运动导电,与P型半导体空穴导电的机理相似。
纯氧化锆(ZrO2)不导电,掺杂一定比例的低价金属物作为稳定剂,如氧化钙(CaO2)、氧化镁(MgO)、氧化钇(Y2O3),就具有高温导电性,成为氧化锆固体电解质。
为什么加入稳定剂后,氧化锆就会具有很高的离子导电性呢这是因为,掺有少量CaO2 的ZrO2混合物,在结晶过程中,钙离子进入立方晶体中,置换了锆离子。
氧化锆传感器工作原理

氧化锆传感器工作原理
氧化锆传感器是一种基于氧化锆材料制备的气体传感器,用于检测空气中的氧气浓度。
其工作原理是利用氧化锆材料对氧气的敏感性,实现对氧气浓度的测量。
具体而言,氧化锆传感器内部包含一个氧化锆薄膜,该薄膜具有良好的氧离子电导性能。
当氧化锆传感器处于高温环境下(一般为500-900摄氏度),氧气分子能够与氧化锆表面发生化学反应,生成氧离子。
氧离子的生成会导致氧化锆薄膜上形成电势差,这个电势差被称为Nernst电势。
Nernst电势与氧气分压呈指数关系,即当氧气分压升高时,Nernst电势也随之增加。
通过测量Nernst电势的变化,就可以得到氧气分压的信息。
一般情况下,氧化锆传感器中会加入一个参比电极,以提供一个参照电势。
通过对比参照电势和Nernst电势,可以准确地测量氧气浓度。
需要注意的是,氧化锆传感器的工作温度对其灵敏度和稳定性有很大影响。
在使用过程中,需要对传感器进行恒温控制,以确保其工作温度的稳定性。
总之,氧化锆传感器通过测量氧化锆薄膜上的Nernst电势变化,实现了对氧气浓度的准确测量。
其具有响应速度快、灵敏度高、精度好等特点,被广泛应用于气体检测和控制领域。
氧化锆工作原理

氧化锆氧量分析仪工作原理及维护使用:一、前言 1989年能斯特(Nernst)发现稳定氧化锆在高温下呈现的离子导电现象。
从此氧化锆成为研究和开发应用最普遍的一种固体电解质,它已在高温技术,特别是高温测试技术上得到广泛应用。
由于氧探头与现有测氧仪表(如磁氧分析器、电化学式氧量计、气象色谱仪等)相比,具有结构简单,响应时间短(0.1s~0.2s),测量范围宽(从ppm到百分含量),使用温度高(600℃~1200℃),运行可靠,安装方便,维护量小等优点,因此在冶金、化工、电力、陶瓷、汽车、环保等工业部门得到广泛的应用。
二、氧探头的测氧原理 在氧化锆电解质(ZrO2管)的两侧面分别烧结上多孔铂(Pt)电极,在一定温度下,当电解质两侧氧浓度不同时,高浓度侧(空气)的氧分子被吸附在铂电极上与电子(4e)结合形成氧离子O2-,使该电极带正电,O2-离子通过电解质中的氧离子空位迁移到低氧浓度侧的Pt电极上放出电子,转化成氧分子,使该电极带负电。
两个电极的反应式分别为:参比侧:O2+4e——2O2-测量侧:2O2--4e——O2这样在两个电极间便产生了一定的电动势,氧化锆电解质、Pt电极及两侧不同氧浓度的气体组成氧探头即所谓氧化锆浓差电池。
两级之间的电动势E由能斯特公式求得:可E= (1)式中,EmV―浓差电池输出,n 4―电子转移数,在此为R理想气体常数,8.314 W·S/mol —T (K)F96500 C;PP1——待测气体氧浓度百分数0——参比气体氧浓度百分数—法拉第常数,—绝对温度该分式是氧探头测氧的基础,当氧化锆管处的温度被加热到600℃~1400℃时,高浓度侧气体用已知氧浓度的气体作为参比气,如用空气,则P,将此值及公式中的常数项合并,又实际氧化锆电池存在温差电势、接触电势、参比电势、极化电势,从而产生本地电势CmV)实际计算公式为:(0 =20.6%EmV)=0.0496Tln(0.2095/P1)±CmV)((C本地电势(新镐头通常为±1mV) =可见,如能测出氧探头的输出电动势E和被测气体的绝对温度T,即可算出被测气体的氧分压(浓度)P1 ,这就是氧化锆氧探头的基本检测原理。
氧化锆氧量计工作原理

氧化锆氧量计工作原理
氧化锆氧量计是利用氧化锆作为固体电解质材料的一种气体浓度测量仪器。
其主要原理是基于氧化锆材料在一定温度下对氧气具有高离子电导率的特性。
在氧化锆氧量计中,通常将氧化锆材料制成薄膜或颗粒形式,并构成一个氧感应电极与一个参考电极。
氧感应电极与参考电极之间通过外接电路连接,形成一个测量电路。
当使用氧化锆氧量计进行测量时,首先需要提供一个稳定的温度环境。
然后将待测气体与氧化锆材料接触,使氧气能够与氧化锆相互作用。
在氧化锆与氧气相互作用的过程中,氧气分子会在氧化锆表面与氧离子进行反应生成氧化物,同时释放出电子。
随着氧化锆材料表面的氧离子与气体中的氧气进行反应,氧化锆材料表面的电荷状态发生变化,从而影响了氧化锆材料的导电性质。
具体而言,氧离子在氧化锆表面的浓度与氧化锆材料的电导率呈正相关。
因此,通过测量氧化锆材料的电导率变化,就可以间接推断出氧气的浓度。
在测量过程中,测量电路会通过测量电导率的变化来计算氧气的浓度值,并将测得的氧气浓度通过显示器等方式输出。
同时,测量电路还可以根据浓度变化在需要的情况下调整其他参数,实现自动或半自动测量。
总之,氧化锆氧量计通过测量氧化锆材料的电导率变化来间接
推断氧气的浓度值,具有较高的测量精度和稳定性,广泛应用于工业生产、环境监测等领域。
氧化锆传感器工作原理

氧化锆传感器工作原理
氧化锆传感器是一种基于氧化锆材料的传感器,主要用于检测氧气浓度。
其工作原理基于氧化锆材料对氧气的氧离子传输特性。
氧化锆传感器内部通常包含一个气体敏感元件,该元件由氧化锆材料制成。
氧化锆材料在高温下能够与氧气发生反应,从而形成氧离子。
当氧气接触到氧化锆表面时,氧离子会通过氧离子传输机制在氧化锆晶体内传递。
传感器的工作原理可以分为以下几个步骤:
1. 初始状态:在空气中,氧化锆表面的氧离子与大气中的氧气保持动态平衡,传感器输出信号为基线值。
2. 氧气浓度变化:当氧气浓度发生变化时,氧分子与氧化锆表面的氧离子发生反应,使得氧离子浓度发生变化。
3. 电势差生成:氧化锆传感器通常具备两个侧面,一个置于氧气环境中,另一个则为空气中。
由于氧化锆对氧气的氧离子传输能力不同,氧化锆传感器在两侧之间形成了电势差。
4. 电势差测量:通过测量两侧电势差的大小,可以间接测量氧气浓度的变化。
传感器一般配备电极和电路系统来测量和输出电势差,将其转换为可读取的数值信号。
综上所述,氧化锆传感器工作原理是基于氧化锆材料对氧气的
氧离子传输特性,通过测量氧化锆传感器两侧的电势差来间接测量氧气浓度的变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
氧化锆变送器相关说明
1、氧化锆变送器测量原理
氧化锆传感器工作原理:honeywell公司的高精度氧化锆动态氧传感器(实物如图1所示),该传感器采用两个氧化锆盘,在其中间安置一个密封小室。
加热到700°C的温度后,其中一个盘起到可逆氧气泵的作用,被用来依次充满和抽空小室,另一个盘用于测量氧分压差比率及产生相对应的传感电压。
氧气泵使小室范围内达到规定最小和最大压力所花的时间与环境中的氧分压成正比关系,从而测量该时间即可得到环境中的氧分压。
图1 氧化锆动态氧传感器实物图
氧化锆变送器测量电路工作原理:电路原理框图如图2所示,由前置放大、电压比较、电子泵、MCU、电压输出及电源模块组成。
传感器输出的电压信号经前置级放大后输入电压比较模块,通过它控制电子泵的翻转及检测氧化锆传感器内密闭小气室达到规定最小和最大压力所花的时间,该时间信号经MCU采集和处理后,通过DAC转换为与氧浓度成正比的0~4.096V直流电压信号。
图2 电路原理框图
变送器由氧化锆传感器、测量电路及开
关电源组成,如图3所示(由于氧化锆传感
器安装在气体测量室中,这里没有表示),
绿色盒中安装测量电路,灰色部分为开关电
源(提供电路工作需要的24VDC,及氧化
锆工作需要的5VDC加热电压)。
3、变送器在系统中的使用方法
供电:220V AC/50Hz(至开关电源)
变送器输出的电压信号采集:在现有
CEMS系统中,接口板专门为该电压信号的输入图3 变送器实物图
留有接口(J3600的9脚+及21脚-),将变送器的电压信号正确接入接口板,系统就可测量氧气浓度。
标定:由氧化锆的工作原理决定,为保证测量氧气浓度的正确性,需要对变送器进行标定,方法是在气体室已经加热到正常工作的120°C且氧化锆变送器通电时间超过10分钟后通空气,然后进行标定。
调零:无需进行调零操作。
4、变送器的连线
氧化锆传感器与测量电路的连线:请参照变送器上的连线图(如
图4所示),这里不做详细说明,特别指出:由于系统中氧化锆传
感器与测量电路间有一定距离,该距离的连线(红、蓝、黑三种颜
色的线)需采用屏蔽双绞线,并且屏蔽层两端良好接地。
氧化锆与开关电源间的连线:两根黄色线,至5VDC,需采用线
径至少为0.75mm2的导线(如果没有合适导线可以采用多根导线合
并的方法得到)。
测量电路与开关电源间的连线:请参照图4所示将测量电路的
电源输入端(7+、8-)及PE(5)正确接入开关电源的24VDC输出图4 变送器连线图和PE,导线线径至少为0.75mm2。
开关电源与系统220V AC主电间连接:请参照开关电源上的标示正确与主电源的L、N、PE连接,一般采用专用三芯电源线。
测量电路与OMA表间的连线:请参照图4所示的外部接线图将4接至接口板J3600的9脚,6接至接口板J3600的21脚。
该段导线需尽量短,建议采用屏蔽双绞线,屏蔽层两端良好接地。