数与形导学案 (1)

合集下载

七数下册导学案多边形的内角和一

七数下册导学案多边形的内角和一

七数下册导学案多边形的内角和一设计教师:审核组长审核领导使用教师:【学习内容】:多边形的内角和【学习目标】:1、理解多边形及正多边形的定义.2.掌握多边形的内角和公式.【学习重点】:多边形内角和及其应用【学习难点】:多边形内角和的推导过程【学习过程】:一、导入新课并出示课题。

本节学习“多边形的内角和”二、出示学习目标。

(目标同上)三、出示学习指导自学习课本第83———86页的课文内容,思考并完成下列问题:1、什么叫做正多边形?2、根据图9.2.3和图9.2.4完成下面表格多边形的边数分割出三角形个数多边形的内角和三角形四边形五边形六边形……….……….……….n边形四、合作探究:针对下列探究内容,先在小组内一对一讨论,然后组内讨论,并整理好讨论结果准备展示,小组内解决不了的问题,记下来等待解决。

1、由几条的线段连接而成的n边形称为2、叫正多边形。

3、任意n边形的内角和是,五边形的内角和是,任意n边形的外角和是4、当多边形的边数增加一条时,内角和增加度,外角和增加度.五、师教:如果一个多边形的各边都相等,各内角也都相等,那么这个多边形叫做正多边形。

我们今后可以利用n边形的内角和公式(n---2).180进行有关计算。

课堂小结:通过本节学习,你有何收获?能讲一讲吗?六、当堂训练:1、四边形的四个内角可以都是()A.锐角B.直角C.钝角D.都不对2、四边形ABCD中,∠A:∠B:∠c:∠D=2:3:4:3,则∠B等于()A.60oB.75oC.90oD.120o3、若一个多边形从一个顶点出发可以引七条对角线,则多边形的边数是()A.7B.8C.9D.104、内角和与外角和相等的多边形的边数是()A.3B.4C.5D.65、在多边形的内角中,锐角的个数不能多于()A.1B.2C.3D.46、一个多边形的外角和等于它的内角和的一半,那么这个多边形的边数是()A.4B.5C.6D77、如果一个n边形的外角都等于15o,则这个多边形的内角和是8、已知一个多边形的内角和等于外角和的4倍,求这个多边形的边数.9、在各个内角都相等的多边形中,一个外角等于一个内角的25,求这个多边形的每一个内角的度数和它的边数.10、如图所示,在四边形ABCD中,∠DAB、∠CBA的平分线交于点E,试说明:∠AEB=12(∠C+∠D)11、如图,你能求出∠A、∠B、∠C、∠D、∠E、∠F的度数和是多少吗教后反思:1、成功之处2、不足之处3、学情反馈4、整改措施2板山坪镇中2022春七年级数学学科《9.2多边形的外角和》练习题每个外角都等于______度。

(完整word版)高中数学必修1第一章导学案

(完整word版)高中数学必修1第一章导学案

1.1.1 集合的含义与表示 第1课时 集合的含义学习目标 1.了解集合与元素的含义.2.理解集合中元素的特征,并能利用它们进行解题.3.理解集合与元素的关系.4.掌握数学中一些常见的集合及其记法.知识点一 集合的概念思考 有首歌中唱道“他大舅他二舅都是他舅”,在这句话中,谁是集合?谁是集合中的元素?答案 “某人的舅”是一个集合,“某人的大舅、二舅”都是这个集合中的元素. 梳理 元素与集合的概念(1)把研究对象统称为元素,通常用小写拉丁字母a ,b ,c ,…表示.(2)把一些元素组成的总体叫做集合(简称为集),通常用大写拉丁字母A ,B ,C ,…表示. 知识点二 元素与集合的关系思考 1是整数吗?12是整数吗?有没有这样一个数,它既是整数,又不是整数?答案 1是整数;12不是整数.没有.梳理 元素与集合的关系有且只有两种,分别为属于、不属于,数学符号分别为∈、∉. 知识点三 元素的三个特性思考1 某班所有的“帅哥”能否构成一个集合?某班身高高于175厘米的男生能否构成一个集合?集合元素确定性的含义是什么?答案 某班所有的“帅哥”不能构成集合,因“帅哥”无明确的标准.高于175厘米的男生能构成一个集合,因标准确定.元素确定性的含义:集合中的元素必须是确定的,也就是说,给定一个集合,那么任何一个元素在不在这个集合中就确定了.思考2构成单词“bee”的字母形成的集合,其中的元素有多少个?答案2个.集合中的元素互不相同,这叫元素的互异性.思考3“中国的直辖市”构成的集合中,元素包括哪些?甲同学说:“北京、上海、天津、重庆”;乙同学说:“上海、北京、重庆、天津”,他们的回答都正确吗?由此说明什么?怎么说明两个集合相等?答案两个同学都说出了中国直辖市的所有城市,因此两个同学的回答都是正确的.由此说明,集合中的元素是无先后顺序的,这就是元素的无序性.只要构成两个集合的元素一样,我们就称这两个集合是相等的.梳理元素的三个特性是指确定性、互异性、无序性.知识点四常用数集及表示符号类型一判断给定的对象能否构成集合例1考察下列每组对象能否构成一个集合.(1)不超过20的非负数;(2)方程x2-9=0在实数范围内的解;(3)某班的所有高个子同学;(4)3的近似值的全体.解(1)对任意一个实数能判断出是不是“不超过20的非负数”,所以能构成集合;(2)能构成集合;(3)“高个子”无明确的标准,对于某个人算不算高个子无法客观地判断,因此不能构成一个集合;(4)“3的近似值”不明确精确到什么程度,因此很难判断一个数如“2”是不是它的近似值,所以不能构成集合.反思与感悟判断给定的对象能不能构成集合,关键在于是否给出一个明确的标准,使得对于任何一个对象,都能按此标准确定它是不是给定集合的元素.跟踪训练1下列各组对象可以组成集合的是()A.数学必修1课本中所有的难题B.小于8的所有素数C.直角坐标平面内第一象限的一些点D.所有小的正数答案B解析 A 中“难题”的标准不确定,不能构成集合;B 能构成集合;C 中“一些点”无明确的标准,对于某个点是否在“一些点”中无法确定,因此“直角坐标平面内第一象限的一些点”不能构成集合;D 中没有明确的标准,所以不能构成集合. 类型二 元素与集合的关系 命题角度1 判定元素与集合的关系 例2 给出下列关系:①12∈R ;②2∉Q ;③|-3|∉N ;④|-3|∈Q ;⑤0∉N ,其中正确的个数为( ) A.1 B.2 C.3 D.4 答案 B解析 12是实数,①对;2不是有理数,②对;|-3|=3是自然数,③错;|-3|=3为无理数,④错;0是自然数,⑤错.故选B.反思与感悟 要判断元素与集合的关系,首先要弄清集合中有哪些元素(涉及常用数集,如N ,R ,Q ,概念要清晰);其次要看待判定的元素是否具有集合要求的条件. 跟踪训练2 用符号 “∈”或“∉”填空. -2________R ; -3________Q ; -1________N ; π________Z . 答案 ∈ ∈ ∉ ∉命题角度2 根据已知的元素与集合的关系推理例3 集合A 中的元素x 满足63-x ∈N ,x ∈N ,则集合A 中的元素为________.答案 0,1,2解析 ∵x ∈N ,63-x ∈N ,∴0≤x ≤2且x ∈N .当x =0时,63-x =63=2∈N ;当x =1时,63-x =63-1=3∈N ;当x =2时,63-x =63-2=6∈N .∴A 中元素有0,1,2.反思与感悟 判断元素和集合关系的两种方法 (1)直接法①使用前提:集合中的元素是直接给出的.②判断方法:首先明确集合是由哪些元素构成,然后再判断该元素在已知集合中是否出现. (2)推理法①使用前提:对于某些不便直接表示的集合.②判断方法:首先明确已知集合的元素具有什么特征,然后判断该元素是否满足集合中元素所具有的特征.跟踪训练3 已知集合A 中元素满足2x +a >0,a ∈R ,若1∉A,2∈A ,则( ) A.a >-4 B.a ≤-2 C.-4<a <-2 D.-4<a ≤-2答案 D解析 ∵1∉A ,∴2×1+a ≤0,a ≤-2.又∵2∈A ,∴2×2+a >0,a >-4,∴-4<a ≤-2. 类型三 元素的三个特性的应用例4 已知集合A 有三个元素:a -3,2a -1,a 2+1,集合B 也有三个元素:0,1,x . (1)若-3∈A ,求a 的值; (2)若x 2∈B ,求实数x 的值; (3)是否存在实数a ,x ,使A =B .解 (1)由-3∈A 且a 2+1≥1,可知a -3=-3或2a -1=-3,当a -3=-3时,a =0;当2a -1=-3时,a =-1.经检验,0与-1都符合要求. ∴a =0或-1.(2)当x =0,1,-1时,都有x 2∈B ,但考虑到集合元素的互异性,x ≠0,x ≠1,故x =-1. (3)显然a 2+1≠0.由集合元素的无序性,只可能a -3=0或2a -1=0. 若a -3=0,则a =3,A ={a -3,2a -1,a 2+1}={0,5,10}≠B . 若2a -1=0,则a =12,A ={a -3,2a -1,a 2+1}={0,-52,54}≠B .故不存在这样的实数a ,x ,使A =B .反思与感悟 元素的无序性主要体现在:①给出元素属于某集合,则它可能表示集合中的任一元素;②给出两集合相等,则其中的元素不一定按顺序对应相等.元素的互异性主要体现在求出参数后要代入检验,同一集合中的元素要互不相等.跟踪训练4 已知集合M 中含有三个元素:2,a ,b ,集合N 中含有三个元素:2a,2,b 2,且M =N ,求a ,b 的值.解 方法一 根据集合中元素的互异性,有⎩⎪⎨⎪⎧ a =2a ,b =b 2或⎩⎪⎨⎪⎧ a =b 2,b =2a ,解得⎩⎪⎨⎪⎧ a =0,b =1或⎩⎪⎨⎪⎧a =0,b =0或⎩⎨⎧a =14,b =12.再根据集合中元素的互异性,得⎩⎪⎨⎪⎧a =0,b =1或⎩⎨⎧a =14,b =12.方法二 ∵两个集合相等,则其中的对应元素相同.∴⎩⎪⎨⎪⎧a +b =2a +b 2,a ·b =2a ·b 2, 即⎩⎪⎨⎪⎧a +b (b -1)=0, ①ab ·(2b -1)=0, ② ∵集合中的元素互异,∴a ,b 不能同时为零.当b ≠0时,由②得a =0,或b =12.当a =0时,由①得b =1,或b =0(舍去).当b =12时,由①得a =14.当b =0时,a =0(舍去).∴⎩⎪⎨⎪⎧a =0,b =1或⎩⎨⎧a =14,b =12.1.下列给出的对象中,能组成集合的是( ) A.一切很大的数 B.好心人 C.漂亮的小女孩D.方程x 2-1=0的实数根 答案 D2.下面说法正确的是( ) A.所有在N 中的元素都在N *中 B.所有不在N *中的数都在Z 中 C.所有不在Q 中的实数都在R 中 D.方程4x =-8的解既在N 中又在Z 中 答案 C3.由“book 中的字母”构成的集合中元素个数为( ) A.1 B.2 C.3 D.4 答案 C4.下列结论不正确的是( ) A.0∈N B.2∉Q C.0∉Q D.-1∈Z 答案 C5.已知集合A 是由0,m ,m 2-3m +2三个元素组成的集合,且2∈A ,则实数m 为( ) A.2 B.3 C.0或3 D.0,2,3均可答案 B解析由2∈A可知:若m=2,则m2-3m+2=0,这与m2-3m+2≠0相矛盾;若m2-3m+2=2,则m=0或m=3,当m=0时,与m≠0相矛盾,当m=3时,此时集合A的元素为0,3,2,符合题意.1.考察对象能否构成一个集合,就是要看是否有一个确定的特征(或标准),依此特征(或标准)能确定任何一个个体是否属于这个总体,如果有,能构成集合,如果没有,就不能构成集合.2.元素a与集合A之间只有两种关系:a∈A,a∉A.3.集合中元素的三个特性(1)确定性:指的是作为一个集合中的元素,必须是确定的,即一个集合一旦确定,某一个元素属不属于这个集合是确定的.要么是该集合中的元素,要么不是,二者必居其一,这个特性通常被用来判断涉及的总体是否构成集合.(2)互异性:集合中的元素必须是互异的,就是说,对于一个给定的集合,它的任何两个元素都是不同的.(3)无序性:集合与其中元素的排列顺序无关,如由元素a,b,c与由元素b,a,c组成的集合是相等的集合.这个性质通常用来判断两个集合的关系.课时作业一、选择题1.已知集合A由x<1的数构成,则有()A.3∈AB.1∈AC.0∈AD.-1∉A答案C解析很明显3,1不满足不等式,而0,-1满足不等式.2.由实数x,-x,|x|,x2,-3x3所组成的集合,最多含()A.2个元素B.3个元素C.4个元素D.5个元素答案A解析由于|x|=±x,x2=|x|,-3x3=-x,并且x,-x,|x|之中总有两个相等,所以最多含2个元素.3.下列结论中,不正确的是()A.若a∈N,则-a∉NB.若a∈Z,则a2∈ZC.若a∈Q,则|a|∈QD.若a∈R,则3a∈R答案A解析 A 不对.反例:0∈N ,-0∈N .4.已知x ,y 为非零实数,代数式x |x |+y|y |的值所组成的集合是M ,则下列判断正确的是( )A.0∉MB.1∈MC.-2∉MD.2∈M答案 D解析 ①当x ,y 为正数时,代数式x |x |+y |y |的值为2;②当x ,y 为一正一负时,代数式x |x |+y|y |的值为0;③当x ,y 均为负数时,代数式x |x |+y|y |的值为-2,所以集合M 的元素共有3个:-2,0,2,故选D.5.已知集合S 中三个元素a ,b ,c 是△ABC 的三边长,那么△ABC 一定不是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形 答案 D解析 由元素的互异性知a ,b ,c 均不相等.6.已知A 中元素满足x =3k -1,k ∈Z ,则下列表示正确的是( ) A.-1∉A B.-11∈A C.3k 2-1∈A D.-34∉A 答案 C解析 令3k -1=-1,解得k =0∈Z ,∴-1∈A .令3k -1=-11,解得k =-103∉Z ,∴-11∉A ;∵k ∈Z ,∴k 2∈Z ,∴3k 2-1∈A .令3k -1=-34,解得k =-11∈Z ,∴-34∈A . 二、填空题7.在方程x 2-4x +4=0的解集中,有________个元素. 答案 1解析 易知方程x 2-4x +4=0的解为x 1=x 2=2,由集合元素的互异性知,方程的解集中只有1个元素.8.下列所给关系正确的个数是________.①π∈R ;②3D ∈/Q ;③0∈N *;④|-4|D ∈/N *. 答案 2解析 ∵π是实数,3是无理数,0不是正整数,|-4|=4是正整数,∴①②正确,③④不正确,正确的个数为2.9.如果有一集合含有三个元素:1,x ,x 2-x ,则实数x 的取值范围是________. 答案 x ≠0,1,2,1±52解析 由集合元素的互异性可得x ≠1,x 2-x ≠1,x 2-x ≠x ,解得x ≠0,1,2,1±52.10.已知a ,b ∈R ,集合A 中含有a ,ba ,1三个元素,集合B 中含有a 2,a +b,0三个元素,若A =B ,则a +b =____. 答案 -1解析 ∵A =B,0∈B ,∴0∈A .又a ≠0,∴ba =0,则b =0.∴B ={a ,a 2,0}.∵1∈B ,∴a 2=1,a =±1.由元素的互异性知,a =-1,∴a +b =-1. 三、解答题11.已知集合A 是由a -2,2a 2+5a,12三个元素组成的,且-3∈A ,求实数a 的值. 解 由-3∈A ,可得-3=a -2或-3=2a 2+5a , ∴a =-1或a =-32.当a =-1时,a -2=-3,2a 2+5a =-3,不满足集合中元素的互异性,故a =-1舍去. 当a =-32时,a -2=-72,2a 2+5a =-3,满足题意.∴实数a 的值为-32.12.已知集合A 含有两个元素a -3和2a -1,a ∈R . (1)若-3∈A ,试求实数a 的值; (2)若a ∈A ,试求实数a 的值.解 (1)因为-3∈A ,所以-3=a -3或-3=2a -1.若-3=a -3,则a =0. 此时集合A 含有两个元素-3,-1,符合题意.若-3=2a -1,则a =-1. 此时集合A 含有两个元素-4,-3,符合题意. 综上所述,满足题意的实数a 的值为0或-1.(2)因为a ∈A ,所以a =a -3或a =2a -1.当a =a -3时,有0=-3,不成立; 当a =2a -1时,有a =1,此时A 中有两个元素-2,1,符合题意. 综上所述,满足题意的实数a 的值为1.13.数集A 满足条件:若a ∈A ,则11-a ∈A (a ≠1).(1)若2∈A ,试求出A 中其他所有元素;(2)自己设计一个数属于A ,然后求出A 中其他所有元素;(3)从上面的解答过程中,你能悟出什么道理?并大胆证明你发现的“道理”. 解 (1)2∈A ,则11-2∈A ,即-1∈A ,则11+1∈A ,即12∈A ,则11-12∈A ,即2∈A ,所以A 中其他所有元素为-1,12.(2)如:若3∈A ,则A 中其他所有元素为-12,23.(3)分析以上结果可以得出:A 中只能有3个元素,它们分别是a ,11-a ,a -1a ,且三个数的乘积为-1.证明如下:若a ∈A ,a ≠1,则有11-a ∈A 且11-a≠1,所以又有11-11-a=a -1a ∈A 且a -1a≠1, 进而有11-a -1a =a ∈A .又因为a ≠11-a (因为若a =11-a ,则a 2-a +1=0,而方程a 2-a +1=0无解).故11-a≠a -1a ,所以A 中只能有3个元素,它们分别是a ,11-a,a -1a ,且三个数的乘积为-1.四、探究与拓展14.已知集合A ={a ,b ,c }中任意2个不同元素的和的集合为{1,2,3},则集合A 的任意2个不同元素的差的绝对值的集合是( ) A.{1,2,3} B.{1,2} C.{0,1} D.{0,1,2}答案 B解析 由题意知:⎩⎪⎨⎪⎧a +b =1,b +c =2,c +a =3,解得⎩⎪⎨⎪⎧a =1,b =0,c =2,∴集合A ={0,1,2},则集合A 的任意2个不同元素的差的绝对值分别是1,2.故集合A 的任意2个不同元素的差的绝对值的集合是{1,2}.故选B.15.已知集合A 中的元素x 均满足x =m 2-n 2(m ,n ∈Z ),求证: (1)3∈A ;(2)偶数4k -2(k ∈Z )不属于集合A .证明 (1)令m =2∈Z ,n =1∈Z ,得x =m 2-n 2=4-1=3,所以3∈A . (2)假设4k -2∈A ,则存在m ,n ∈Z ,使4k -2=m 2-n 2=(m +n )(m -n )成立. ①当m ,n 同奇或同偶时,m +n ,m -n 均为偶数, 所以(m +n )(m -n )为4的倍数与4k -2不是4的倍数矛盾. ②当m ,n 一奇一偶时,m +n ,m -n 均为奇数,所以(m +n )(m -n )为奇数,与4k -2是偶数矛盾.所以假设不成立.综上,4k -2∉A .第2课时集合的表示学习目标 1.掌握用列举法表示有限集.2.理解描述法格式及其适用情形.3.学会在集合不同的表示法中作出选择和转换.知识点一列举法思考要研究集合,要在集合的基础上研究其他问题,首先要表示集合.而当集合中元素较少时,如何直观地表示集合?答案把它们一一列举出来.梳理把集合中的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法.适用于元素较少的集合.知识点二描述法思考能用列举法表示所有大于1的实数吗?如果不能,又该怎样表示?答案不能.表示集合最本质的任务是要界定集合中有哪些元素,而完成此任务除了一一列举,还可用元素的共同特征(如都大于1)来表示集合,如大于1的实数可表示为{x∈R|x>1}.梳理描述法常用以表示无限集或元素个数较多的有限集.表示方法是在花括号内画一竖线,竖线前写元素的一般符号及取值(或变化)范围,竖线后写元素所具有的共同特征.类型一用列举法表示集合例1用列举法表示下列集合.(1)小于10的所有自然数组成的集合;(2)方程x2=x的所有实数根组成的集合.解(1)设小于10的所有自然数组成的集合为A,那么A={0,1,2,3,4,5,6,7,8,9}.(2)设方程x2=x的所有实数根组成的集合为B,那么B={0,1}.反思与感悟(1)集合中的元素具有无序性、互异性,所以用列举法表示集合时不必考虑元素的顺序,且元素不能重复,元素与元素之间要用“,”隔开;(2)列举法表示的集合的种类①元素个数少且有限时,全部列举,如{1,2,3,4};②元素个数多且有限时,可以列举部分,中间用省略号表示,如“从1到1 000的所有自然数”可以表示为{1,2,3,…,1 000};③元素个数无限但有规律时,也可以类似地用省略号列举,如:自然数集N可以表示为{0,1,2,3,…}.跟踪训练1用列举法表示下列集合.(1)由所有小于10的既是奇数又是素数的自然数组成的集合;(2)由1~20以内的所有素数组成的集合.解(1)满足条件的数有3,5,7,所以所求集合为{3,5,7}.(2)设由1~20以内的所有素数组成的集合为C,那么C={2,3,5,7,11,13,17,19}.类型二用描述法表示集合例2试用描述法表示下列集合.(1)方程x2-2=0的所有实数根组成的集合;(2)由大于10小于20的所有整数组成的集合.解(1)设方程x2-2=0的实数根为x,并且满足条件x2-2=0,因此,用描述法表示为A ={x∈R|x2-2=0}.(2)设大于10小于20的整数为x,它满足条件x∈Z,且10<x<20.因此,用描述法表示为B={x∈Z|10<x<20}.引申探究用描述法表示函数y=x2-2图象上所有的点组成的集合.解{(x,y)|y=x2-2}.反思与感悟用描述法表示集合时应注意的四点(1)写清楚该集合中元素的代号;(2)说明该集合中元素的性质;(3)所有描述的内容都可写在集合符号内;(4)在描述法的一般形式{x∈I|p(x)}中,“x”是集合中元素的代表形式,I是x的范围,“p(x)”是集合中元素x的共同特征,竖线不可省略.跟踪训练2用描述法表示下列集合.(1)方程x2+y2-4x+6y+13=0的解集;(2)二次函数y=x2-10图象上的所有点组成的集合.解(1)方程x2+y2-4x+6y+13=0可化为(x-2)2+(y+3)2=0,解得x=2,y=-3.所以方程的解集为{(x,y)|x=2,y=-3}.(2)“二次函数y=x2-10图象上的所有点”用描述法表示为{(x,y)|y=x2-10}.类型三集合表示的综合应用命题角度1选择适当的方法表示集合例3用适当的方法表示下列集合.(1)由x=2n,0≤n≤2且n∈N组成的集合;(2)抛物线y=x2-2x与x轴的公共点的集合;(3)直线y=x上去掉原点的点的集合.解(1)列举法:{0,2,4};或描述法{x|x=2n,0≤n≤2且n∈N}.(2)列举法:{(0,0),(2,0)}.(3)描述法:{(x,y)|y=x,x≠0}.反思与感悟用列举法与描述法表示集合时,一要明确集合中的元素;二要明确元素满足的条件;三要根据集合中元素的个数来选择适当的方法表示集合.跟踪训练3若集合A={x∈Z|-2≤x≤2},B={y|y=x2+2 000,x∈A},则用列举法表示集合B=________.答案{2 000,2 001,2 004}解析由A={x∈Z|-2≤x≤2}={-2,-1,0,1,2},所以x2∈{0,1,4},x2+2 000的值为2 000,2 001,2 004,所以B={2 000,2 001,2 004}.命题角度2新定义的集合例4对于任意两个正整数m,n,定义某种运算“※”如下:当m,n都为正偶数或正奇数时,m※n=m+n;当m,n中一个为正偶数,另一个为正奇数时,m※n=mn,则在此定义下,集合M={(a,b)|a※b=16}中的元素个数是()A.18B.17 D.16 D.15 答案B解析因为1+15=16,2+14=16,3+13=16,4+12=16,5+11=16,6+10=16,7+9=16,8+8=16,9+7=16,10+6=16,11+5=16,12+4=16,13+3=16,14+2=16,15+1=16,1×16=16,16×1=16,集合M中的元素是有序数对(a,b),所以集合M中的元素共有17个,故选B.反思与感悟命题者以考试说明中的某一知识点为依托,自行定义新概念、新公式、新运算和新法则,做题者应准确理解应用此定义,在新的情况下完成某种推理证明或指定要求.跟踪训练4定义集合运算:A※B={t|t=xy,x∈A,y∈B},设A={1,2},B={0,2},则集合A※B的所有元素之和为________. 答案6解析由题意得t=0,2,4,即A※B={0,2,4},又0+2+4=6,故集合A※B的所有元素之和为6.1.用列举法表示集合{x|x2-2x+1=0}为()A.{1,1}B.{1}C.{x=1}D.{x2-2x+1=0}答案B2.一次函数y=x-3与y=-2x的图象的交点组成的集合是()A.{1,-2}B.{x=1,y=-2}C.{(-2,1)}D.{(1,-2)}答案 D3.设A ={x ∈N |1≤x <6},则下列正确的是( ) A.6∈A B.0∈A C.3∉A D.3.5∉A 答案 D4.第一象限的点组成的集合可以表示为( ) A.{(x ,y )|xy >0} B.{(x ,y )|xy ≥0} C.{(x ,y )|x >0且y >0} D.{(x ,y )|x >0或y >0} 答案 C5.下列集合不等于由所有奇数构成的集合的是( ) A.{x |x =4k -1,k ∈Z } B.{x |x =2k -1,k ∈Z } C.{x |x =2k +1,k ∈Z } D.{x |x =2k +3,k ∈Z }答案 A1.在用列举法表示集合时应注意:(1)元素间用分隔号“,”;(2)元素不重复;(3)元素无顺序;(4)列举法可表示有限集,也可以表示无限集.若元素个数比较少用列举法比较简单;若集合中的元素较多或无限,但出现一定的规律性,在不发生误解的情况下,也可以用列举法表示. 2.在用描述法表示集合时应注意:(1)弄清元素所具有的形式(即代表元素是什么),是数、还是有序实数对(点)、还是集合或其他形式;(2)当题目中用了其他字母来描述元素所具有的属性时,要去伪存真(元素具有怎样的属性),而不能被表面的字母形式所迷惑.课时作业一、选择题1.方程组⎩⎪⎨⎪⎧x +y =3,x -y =-1的解集不可以表示为( )A.{(x ,y )|⎩⎪⎨⎪⎧x +y =3x -y =-1} B.{(x ,y )|⎩⎪⎨⎪⎧x =1y =2} C.{1,2} D.{(1,2)} 答案 C解析 方程组的集合中最多含有一个元素,且元素是一个有序实数对,故C 不符合. 2.集合A ={x ∈Z |-2<x <3}的元素个数为( )A.1B.2C.3D.4 答案 D解析 因为A ={x ∈Z |-2<x <3},所以x 的取值为-1,0,1,2. 3.集合{(x ,y )|y =2x -1}表示( ) A.方程y =2x -1 B.点(x ,y ) C.平面直角坐标系中的所有点组成的集合 D.函数y =2x -1图象上的所有点组成的集合 答案 D解析 集合{(x ,y )|y =2x -1}的代表元素是(x ,y ),x ,y 满足的关系式为y =2x -1,因此集合表示的是满足关系式y =2x -1的点组成的集合,故选D. 4.已知x ,y 为非零实数,则集合M ={m |m =x |x |+y |y |+xy|xy |}为( )A.{0,3}B.{1,3}C.{-1,3}D.{1,-3} 答案 C解析 当x >0,y >0时,m =3,当x <0,y <0时,m =-1-1+1=-1. 若x ,y 异号,不妨设x >0,y <0,则m =1+(-1)+(-1)=-1. 因此m =3或m =-1,则M ={-1,3}. 5.下列选项中,集合M ,N 相等的是( )A.M ={3,2},N ={2,3}B.M ={(3,2)},N ={(2,3)}C.M ={3,2},N ={(3,2)}D.M ={(x ,y )|x =3且y =2},N ={(x ,y )|x =3或y =2} 答案 A解析 元素具有无序性,A 正确;点的横坐标、纵坐标是有序的,B 选项两集合中的元素不同;C 选项中集合M 中元素是两个数,N 中元素是一个点,不相等;D 选项中集合M 中元素是一个点(3,2),而N 中元素是两条直线x =3和y =2上所有的点,不相等. 6.集合{3,52,73,94,…}用描述法可表示为( )A.{x |x =2n +12n ,n ∈N *}B.{x |x =2n +3n ,n ∈N *}C.{x |x =2n -1n ,n ∈N *}D.{x |x =2n +1n ,n ∈N *}答案 D解析 由3,52,73,94,即31,52,73,94,从中发现规律,x =2n +1n ,n ∈N *,故可用描述法表示为{x |x =2n +1n,n ∈N *}. 二、填空题7.方程x 2-5x +6=0的解集可表示为______. 答案 {2,3} 解析 易知方程x 2-5x +6=0的解为x =2或3,则方程解集为{2,3}. 8.集合{x ∈N |x 2+x -2=0}用列举法可表示为________. 答案 {1} 解析 由x 2+x -2=0,得x =-2或x =1.又x ∈N ,∴x =1.9.已知集合A ={1,2,3},B ={(x ,y )|x ∈A ,y ∈A ,x +y ∈A },则B 中所含元素的个数为________. 答案 3解析 根据x ∈A ,y ∈A ,x +y ∈A ,知集合B ={(1,1),(1,2),(2,1)},有3个元素. 10.定义集合A -B ={x |x ∈A ,且x ∉B },若集合A ={x |2x +1>0},集合B ={x |x -23<0},则集合A -B =________. 答案 {x |x ≥2}解析 A ={x |x >-12},B ={x |x <2},A -B ={x |x >-12且x ≥2}={x |x ≥2}.三、解答题11.已知集合A ={x |y =x 2+3},B ={y |y =x 2+3},C ={(x ,y )|y =x 2+3},它们三个集合相等吗?试说明理由.解 因为三个集合中代表的元素性质互不相同, 所以它们是互不相同的集合.理由如下:集合A 中代表的元素是x ,满足条件y =x 2+3中的x ∈R ,所以A =R ;集合B 中代表的元素是y ,满足条件y =x 2+3中y 的取值范围是y ≥3,所以B ={y |y ≥3}. 集合C 中代表的元素是(x ,y ),这是个点集,这些点在抛物线y =x 2+3上,所以C ={P |P 是抛物线y =x 2+3上的点}. 12.用适当的方法表示下列集合: (1)大于2且小于5的有理数组成的集合; (2)24的所有正因数组成的集合;(3)平面直角坐标系内与坐标轴的距离相等的点组成的集合. 解 (1)用描述法表示为{x |2<x <5,且x ∈Q }. (2)用列举法表示为{1,2,3,4,6,8,12,24}.(3)在平面直角坐标系内,点(x ,y )到x 轴的距离为|y |,到y 轴的距离为|x |,所以该集合用描述法表示为{(x ,y )||y |=|x |}.13.设A 表示集合{2,3,a 2+2a -3),B 表示集合{|a +3|,2},若5∈A ,且5∉B ,求实数a 的值. 解 ∵5∈A ,且5∉B ,∴⎩⎪⎨⎪⎧ a 2+2a -3=5,|a +3|≠5,即⎩⎪⎨⎪⎧a =-4或a =2,a ≠2且a ≠-8,解得a =-4. 四、探究与拓展14.设正整数集N *,已知集合A ={x |x =3m ,m ∈N *},B ={x |x =3m -1,m ∈N *},C ={x |x=3m-2,m∈N*},若a∈A,b∈B,c∈C,则下列结论中可能成立的是()A.2 006=a+b+cB.2 006=abcC.2 006=a+bcD.2 006=a(b+c)答案C解析由于2 006=3×669-1,不能被3整除,而a+b+c=3m1+3m2-1+3m3-2=3(m1+m2+m3-1)不满足;abc=3m1(3m2-1)(3m3-2)不满足;a+bc=3m1+(3m2-1)(3m3-2)=3m-1适合;a(b+c)=3m1(3m2-1+3m3-2)不满足.故选C.15.若P={0,2,5},Q={1,2,6},定义集合P+Q={a+b|a∈P,b∈Q},用列举法表示集合P +Q.解∵当a=0时,b依次取1,2,6,得a+b的值分别为1,2,6;当a=2时,b依次取1,2,6,得a+b的值分别为3,4,8;当a=5时,b依次取1,2,6,得a+b的值分别为6,7,11.∴P+Q={1,2,3,4,6,7,8,11}.1.1.2集合间的基本关系学习目标 1.理解子集、真子集、空集的概念.2.能用符号和Venn图表达集合间的关系.3.掌握列举有限集的所有子集的方法.知识点一子集思考如果把“马”和“白马”视为两个集合,则这两个集合中的元素有什么关系?答案所有的白马都是马,马不一定是白马.梳理对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集,记作A⊆B(或B⊇A),读作“A含于B”(或“B包含A”).子集的有关性质:(1)任何一个集合是它本身的子集,即A⊆A.(2)对于集合A,B,C,如果A⊆B,且B⊆C,那么A⊆C.(3)若A⊆B,B⊆A,则A=B.知识点二真子集思考在知识点一中,我们知道集合A是它本身的子集,那么如何刻画至少比A少一个元素的A的子集?答案用真子集.梳理如果集合A⊆B,但存在元素x∈B,且x∉A,称集合A是集合B的真子集,记作:A B(或B A),读作:A真包含于B(或B真包含A).知识点三空集思考集合{x∈R|x2<0}中有几个元素?答案0个.梳理定义不含任何元素的集合叫做空集符号用符号表示为∅规定空集是任何集合的子集,是任何非空集合的真子集知识点四思考图中集合A,B,C的关系用符号可表示为__________.答案A⊆B⊆C梳理一般地,用平面上封闭曲线的内部代表集合,这种图称为Venn图.Venn图可以直观地表达集合间的关系.类型一求集合的子集例1(1)写出集合{a,b,c,d}的所有子集;(2)若一个集合有n(n∈N)个元素,则它有多少个子集?多少个真子集?验证你的结论.解(1)∅,{a},{b},{c},{d},{a,b},{a,c},{a,d},{b,c},{b,d},{c,d},{a,b,c},{a,b,d},{a,c,d},{b,c,d},{a,b,c,d}.(2)若一个集合有n(n∈N)个元素,则它有2n个子集,2n-1个真子集.如∅,有一个子集,0个真子集.反思与感悟为了罗列时不重不漏,要讲究列举顺序,这个顺序有点类似于从1到100数数:先是一位数,然后是两位数,在两位数中,先数首位是1的等等.跟踪训练1适合条件{1}⊆A{1,2,3,4,5}的集合A的个数是()A.15B.16C.31D.32答案A解析这样的集合A有{1},{1,2},{1,3},{1,4},{1,5},{1,2,3},{1,2,4},{1,2,5},{1,3,4},{1,3,5},{1,4,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,3,4,5}共15个.类型二判断集合间的关系命题角度1概念间的包含关系例2设集合M={菱形},N={平行四边形},P={四边形},Q={正方形},则这些集合之间的关系为()A.P ⊆N ⊆M ⊆QB.Q ⊆M ⊆N ⊆PC.P ⊆M ⊆N ⊆QD.Q ⊆N ⊆M ⊆P答案 B解析 正方形都是菱形,菱形都是平行四边形,平行四边形都是四边形,所以选B. 反思与感悟 一个概念通常就是一个集合,要判断概念间的关系首先得准确理解概念的定义.跟踪训练2 我们已经知道自然数集、整数集、有理数集、实数集可以分别用N 、Z 、Q 、R 表示,用符号表示N 、Z 、Q 、R 的关系为________. 答案 NZ Q R命题角度2 数集间的包含关系例3 设集合A ={0,1},集合B ={x |x <2或x >3},则A 与B 的关系为( ) A.A ∈B B.B ∈A C.A ⊆B D.B ⊆A 答案 C解析 ∵0<2,∴0∈B .又∵1<2,∴1∈B .∴A ⊆B . 反思与感悟 判断集合关系的方法 (1)观察法:一一列举观察.(2)元素特征法:首先确定集合的元素是什么,弄清集合元素的特征,再利用集合元素的特征判断关系.(3)数形结合法:利用数轴或Venn 图.跟踪训练3 已知集合A ={x |-1<x <4},B ={x |x <5},则( ) A.A ∈B B.A B C.B A D.B ⊆A 答案 B解析 由数轴易知A 中元素都属于B ,B 中至少有一个元素如-2∉A ,故有A B .类型三 由集合间的关系求参数(或参数范围)例4 已知集合A ={x |x 2-x =0},B ={x |ax =1},且A ⊇B ,求实数a 的值. 解 A ={x |x 2-x =0}={0,1}. (1)当a =0时,B =∅⊆A ,符合题意.(2)当a ≠0时,B ={x |ax =1}={1a },∵1a ≠0,要使A ⊇B ,只有1a =1,即a =1.综上,a =0或a =1.反思与感悟 集合A 的子集可分三类:∅、A 本身,A 的非空真子集,解题中易忽略∅. 跟踪训练4 已知集合A ={x |1<x <2},B ={x |2a -3<x <a -2},且A ⊇B ,求实数a 的取值范围.解 (1)当2a -3≥a -2,即a ≥1时,B =∅⊆A ,符合题意. (2)当a <1时,要使A ⊇B ,需满足⎩⎪⎨⎪⎧a <1,2a -3≥1,a -2≤2,这样的实数a 不存在.综上,实数a 的取值范围是{a |a ≥1}.1.下列集合中,结果是空集的是( ) A.{x ∈R |x 2-1=0} B.{x |x >6或x <1} C.{(x ,y )|x 2+y 2=0} D.{x |x >6且x <1}答案 D2.集合P ={x |x 2-1=0},T ={-1,0,1},则P 与T 的关系为( ) A.P T B.P ∈T C.P =T D.P ⊈T 答案 A3.下列关系错误的是( )A.∅⊆∅B.A ⊆AC.∅⊆AD.∅∈A 答案 D4.下列正确表示集合M ={-1,0,1}和N ={x |x 2+x =0}关系的Venn 图是( )答案 B5.若A ={x |x >a },B ={x |x >6},且A ⊆B ,则实数a 可以是( ) A.3 B.4 C.5 D.6 答案 D1.对子集、真子集有关概念的理解(1)集合A 中的任何一个元素都是集合B 中的元素,即由x ∈A ,能推出x ∈B ,这是判断A ⊆B 的常用方法.(2)不能简单地把“A ⊆B ”理解成“A 是B 中部分元素组成的集合”,因为若A =∅时,则A中不含任何元素;若A=B,则A中含有B中的所有元素.(3)在真子集的定义中,A B首先要满足A⊆B,其次至少有一个x∈B,但xD∈/A.2.集合子集的个数求集合的子集问题时,一般可以按照子集元素个数分类,再依次写出符合要求的子集.集合的子集、真子集个数的规律为:含n个元素的集合有2n个子集,有2n-1个真子集,有2n-2个非空真子集.写集合的子集时,空集和集合本身易漏掉.3.由集合间的关系求参数问题的注意点及常用方法(1)注意点:①不能忽视集合为∅的情形;②当集合中含有字母参数时,一般需要分类讨论.(2)常用方法:对于用不等式给出的集合,已知集合的包含关系求相关参数的范围(值)时,常采用数形结合的思想,借助数轴解答.课时作业一、选择题1.在下列关系中错误的个数是()①1∈{0,1,2};②{1}∈{0,1,2};③{0,1,2}⊆{0,1,2};④{0,1,2}={2,0,1};⑤{0,1}⊆{(0,1)};A.1B.2C.3D.4答案B解析①正确;因为集合{1}是集合{0,1,2}的真子集,而不能用属于来表示,所以②错误;③正确,因为任何集合都是它本身的子集;④正确,因为集合元素具有无序性;因为集合{0,1}表示数集,它有两个元素,而集合{(0,1)}表示点集,它只有一个元素,所以⑤错误,所以错误的个数是2.故选B.2.已知集合A={x|x=19(2k+1),k∈Z},B={x|x=49k±19,k∈Z},则集合A,B之间的关系为()A.A BB.B AC.A=BD.A≠B 答案C解析A={x|x=2k+19,k∈Z}={…,-59,-39,-19,19,39,59,…},B={x|x=4k±19,k∈Z}={…,-59,-39,-19,19,39,59,…},故A=B.3.已知集合U、S、T、F的关系如图所示,则下列关系正确的是()。

高中数学 第一章总复习导学案 苏教版必修1(师生共用)

高中数学 第一章总复习导学案 苏教版必修1(师生共用)

高一数学第一章总复习导学案师生共用学习要求:1.掌握集合的有关基本概念,运用集合的概念解决问题;2.掌握集合的包含关系(子集、真子集);3.掌握集合的运算(交、并、补);4.再解决有关集合问题时,要注意各种思想方法(数形结合、补集思想、分类讨论)的运用.学习重难点:1.集合的运算2.各种思想方法的应用(数形结合,分类讨论)学法指导:1.对于集合的问题:要确定属于哪一类集合(数集,点集,或某类图形集),然后再确定处理此类问题的方法.2.关于集合中的运算,一般应把各参与运算的集合化到最简形式,然后再进行运算.3.含参数的集合问题,多根据集合中元素的互异性处理,有时需要用到分类讨论、数形结合的思想.4.集合问题多与函数、方程有关,要注意各类知识的融会贯通.课前准备:以上几节课我们学习了集合的含义及其表示方法,集合之间的关系,集合的运算,希望同学们要熟练掌握所学知识点.自主学习:1.下列各种对象的全体,可以构成集合的是_________(1)某班身高超过1.8米的女学生(2)某校比较聪明的男学生(3)教材中的难题(4)使232-+最小的x的值.x x2.集合中元素的特性_____,_____,_____.3.用适当的符号(∈,∉,=)填空π____Q , 0_____{}0,φ_____{}φ,{}21,x x k k z =+∈_____{}21,x x k k z =-∈.4.用描述法表示由直线1y x =+上的所有点构成的集合.5.集合A={},,a b c 的子集的个数为_______.6.若A B B =,则A ____B ;若A B B =,则A ____B ,若A B =A B ,则A__B.7.设全集{}22,3,23U a a =+-,{}21,2A a =-,{}5U C A =,求实数a 的值.师生互动:1.已知集合{},,2A a a b a b =++ ,{}2,,B a ac ac =,若A B =,求c 的值.2.已知集合{}4,7,8M ⊆,并且M 中至多有一个偶数,则这样的集合M 共有_个.引申:满足{}a ⊆M {},,,a b c d ⊆的集合M 共有____个.3.已知全集{}321,3,32S x x x =++,集合{}1,21A x =-,如果{}0S C A =,则这样的实数x 是否存在?若存在,求出x ;若不存在,请说明理由.4.已知集合{}2320A x x x =-+=,{}210,B x x ax a =-+-=且A B A =,则a 的值_____.5.已知集合{}21,M y y x x R ==+∈,{}1,N y y x x R ==+∈,则M N =___综合●创新●实践1.为完成一项实地测量任务,夏令营的同学们成立了一支测绘队,需要24人参加测量,20人参加计算,16人参加绘图,测绘队的成员中有8人既参加测量又参加计算,有6人既参加测量又绘图,有4人既参加计算又参加绘图,另有一些人三项工作都参加,请问这个测绘队至少有多少人?2.睢宁县宁海外国语学校开展“献爱心”活动,校团委号召全校学生将自己多余的课外学习用书捐给贫困地区学生,已知某班有50名学生,没人都至少捐了3本书,全班共捐了160本书,求证:该班学生中至多有10名学生所捐书的本数超过3本.课堂小结:本章主要讲述了集合的初步知识,包括集合的有关概念,集合的表示,集合之间的关系及集合的运算等.集合是整个数学的基础,它在以后的学习中有着极为广泛的应用.在高中数学中,集合的初步知识与其他内容有着密切的联系,它们是学习,掌握和使用数学语言的基础,是高中数学学习的起点.学后反思:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------。

新北师大版七年级数学下册第四章--三角形导学案

新北师大版七年级数学下册第四章--三角形导学案

第四章 三角形4。

1 认识三角形(1)学习目标:1、通过观察、想象、推理、交流等活动,发展空间观念、推理能力和有条理地表达能力;2、能证明出“三角形内角和等于180°",能发现“直角三角形的两个锐角互余”;3、按角将三角形分成三类.学习重难点:三角形内角和定理推理和应用。

学习设计: (一) 预习准备 (1)预习书(2)思考①三角形的角之间的关系②三角形的分类 (3)预习作业三角形中角的关系:(1)三角形的三个内角之和是 ;(2)直角三角形的两个锐角三角形的分类: 按角分为三类: 三角形; 三角形和 三角形。

(二) 学习过程例1 证明三角形的内角和为180°例2 在△ABC 中,(1)0082,42,C A B ∠=∠=∠则= (2)5,A B C C ∠+∠=∠∠那么=(3)在△ABC 中,C ∠的外角是120°,B ∠的度数是A ∠度数的一半,求△ABC 的三个内角的度数变式训练:在△ABC 中(1)0078,25,B A C ∠=∠=∠则=(2)若C ∠=55°,010B A ∠-∠=,那么A ∠= , B ∠=例3 已知△ABC 中,::1:2:3A B C ∠∠∠=,试判断此三角形是什么形状?变式训练:已知△ABC 中,090,2,A B B C ∠-∠=∠=∠试判断此三角形是什么形状?例4、如图,在△ABC 中,090ACB ∠=,CD ⊥AB于点D ,1,2?A B ∠∠∠∠与有何关系与呢如图,已知00060,30,20,A B C BOC ∠=∠=∠=∠求的度数。

21DC BAOCBA变式训练:如图在锐角三角形ABC 中,BE 、CD 分别垂直AC 、AB ,若040A ∠=,求BHC ∠的度数.拓展:1、如图所示,求A B C D E ∠+∠+∠+∠+∠的度数。

2、如图在△ABC 中,已知1,2,,A B ABC ACB ACB ∠=∠∠=∠∠=∠∠求的度数。

(完整)新北师大版数学八年级下第一章三角形的证明导学案

(完整)新北师大版数学八年级下第一章三角形的证明导学案

第一章三角形的证明第一节等腰三角形(一)模块一预习反应( P2— P6)一.知识点1、两角及此中一角的对边对应相等的两个三角形全等(AAS)。

(论证)2、全等三角形的对应边相等, 对应角相等。

3、等腰三角形性质定理:(等边平等角)。

(论证)4、推论(三线合一):。

(论证)5、等边三角形性质定理:。

(论证)论证要求(绘图、写出已知、求证、证明过程)模块二基础训练1.如图,已知∠ D =∠C,∠ A =∠B,且 AE = BF。

求证: AD = BC。

DCAE F B2.如图,在△ ABC中, AB = AC,AD⊥AC∠ BAC = 100°。

A12求∠ 1、∠ 3、∠ B 的度数。

B 3C D3.如图,在△ ABC中, D为 AC上一点,而且 AB = AD,DB = DC,若∠ C = 29 °,求∠ A。

ADB C模块三能力提高1.填空:(1)如图,在△ ABC中, AB = AC,点 D 在 AC上,且 BD = BC =AD。

请找出全部的等腰三角形。

A(2)等腰三角形的顶角为 50°,则它的底角为。

(3)等腰三角形的一个角为 40°,则另两个角为。

(4)等边三角形的三个角都相等,而且每个角都等于60°。

DB C2.如图,在△ ABC中,AB = AC,D是BC边上的中点,且DE⊥AB, DF⊥AC。

求证:∠ 1 = ∠2。

A1E F12BD C模块四:课下练习☆能力提高1.△ ABC中, AB= AC,∠ A= 50°, P 是△ ABC 内一点,且∠ PBC=∠ ACP,求∠ BPC的度数_________ .2.已知:如图,在△ ABC中,AB=AC,BD,CE是△ ABC的角均分线.求证:BD=CE.AE D12B C3.如图, A、B、F、D 在同向来线上, AB=DF, AE=BC,且 AE∥ BC.求证:⑴△ AEF≌△ BCD,⑵ EF∥CD.E CA B F D第一节等腰三角形(二)模块一预习反应( P5 例 1—P9)一.知识点1、等腰三角形两个底角的均分线相等;2、等腰三角形腰上的高相等;3、等腰三角形腰上的中线相等;24、推理论证:等腰三角形腰上的中线相等;(以上定理绘图、写出已知、求证、证明过程)5.等边三角形的三个内角都相等,而且每个内角都等于60 。

正切函数的图像与性质导学案(1)

正切函数的图像与性质导学案(1)

§1.4.3 正切函数的性质与图象〖学习目标〗1.能画出正切函数图象2.掌握正切函数的性质3. 体会类比迁移、整体代换、数形结合的思想方法 〖复习回顾〗()=+πx tan ;()=-x tan .x R ∈且,2x k k Z ππ≠+∈〖知识梳理〗(1) 利用正切函数定义,说出正切函数的定义域___________________________________________________(2) 正切函数是周期函数吗?___________________________________________________(3) 利用正切线,作出正切函数在一个周期的图象,选择哪一个区间比较合适?______________ 利用正切线作tan y x =,x ∈⎪⎭⎫⎝⎛-2,2ππ的图象。

根据正切函数的周期性,把上述图象向左、右扩展,得到正切函数R x x y ∈=tan ,且()z k k x ∈+≠ππ2的图象(下图),称“正切曲线”。

(4)观察前面正切函数的图象,完善正切函数的性质定义域: ;值域: ;周期性_________;说明:函数()()tan 0,0y A x A ωϕω=+≠≠的周期T πω=。

奇偶性:正切函数是 函数;单调性:在开区间( , )k Z ∈内,函数单调递增。

〖合作探究〗合作探究一:换元法的应用例1.求函数y=tan(x+4π)的定义域.变式. 求函数⎪⎭⎫ ⎝⎛-=42tan πx y 的单调区间.合作探究二:正切函数单调性的应用例2.比较下列各组中两个正切函数值的大小.合作探究三:数形结合解不等式. 例3.解不等式:3tan ≥x .变式.解关于x 的不等式:(1)0tan ≥x (2)3tan 1≤≤x【课堂小结】1.正切函数的定义、图象和性质;2.运用了类比、反证等思想方法,体会了数形结合的思想【课后作业】1. 下列说法正确的是( )A . 正切函数在整个定义域内是增函数B . 正切函数在整个定义域内是减函数C . 函数2tan 3x y =的图象关于y 轴对称D . 若x 是第一象限角,则y=tanx 是增函数2. 已知f(x)=asinx+btanx+1,且满足f(5)=7,则f(-5)=_______3. 求函数)33tan(π-=x y 的定义域、值域,并指出它的周期性、奇偶性单调性.4.求函数⎥⎦⎤⎢⎣⎡∈-+-=34,1tan 10tan 2ππ,x x x y 的值域.。

菱形的性质与判定(1)导学案

义务教育教科书(北师)九年级数学上册第一章特殊平行四边形1.1《菱形的性质与判定(1)》导学案学习目标1.理解菱形概念及平行四边形之间的联系2.探索并证明菱形的性质定理.(重点)3.应用菱形的性质定理解决相关计算或证明问题.(难点)【课前准备】阅读教材P2~3页,完成下面问题:1.什么叫菱形?它是平行四边形吗?2.菱形是特殊的平行四边形,它具有一般平行四边形的所有性质。

你能列举一些这样的性质吗?3.你认为菱形还有哪些特殊的性质?【课堂活动】核心问题一:菱形的定义及平行四边形之间的联系问题:观察课件中衣服、衣帽架和窗户等实物图片,你能从中发现你熟悉的图形吗?你认为它们有什么样的共同特征呢?菱形的定义:核心问题二:探索并证明菱形的性质定理问题1:菱形是特殊的平行四边形,它具有一般平行四边形的所有性质。

你能列举一些这样的性质吗?问题2:你认为菱形还具有哪些特殊的性质?与同伴交流。

OA问题3: 请同学们用菱形纸片折一折,回答下列问题:(1)菱形是轴对称图形吗?如果是,它有几条对称轴?对称轴之间有什么位置关系?(2)菱形中有哪些相等的线段?问题4:证明菱形“四条边相等”、“对角线互相垂直”等性质已知:如图1-1,在菱形ABCD 中,AB=AD,对角线AC 与BD 相交于点O. 求证:(1)AB=BC=CD=AD ;(2)AC ⊥BD.核心问题三:菱形性质定理的应用如图1-2,在菱形ABCD 中,对角线AC 与BD 相交于点O, ∠BAD=60°,BD=6,求菱形的边长AB 和对角线AC 的长ODACB图1-1ODACB图1-2【课堂小结】1.菱形的定义:2.菱形的性质:【目标检测】Array如图,在菱形ABCD中,对角线AC与BD 相交于点O.已知AB=5cm,AO=4cm ,求BD的长.。

人教版高中数学选修1-1导学案第一章§1.2充分条件与必要条件

§1-2充分条件与必要条件【学习目标】1•理解充分条件、必要条件、充要条件的泄义∙2.会求某些简单问题成立的充分条件、必要条件、充要条件.3•能够利用命题之间的关系判左充要关系或进行充要条件的证明. 知识梳理梳理教材夯实圧础知识点一充分条件与必要条件知识点二充要条件如果既有P=q,又有q*就记作P仝q∙此时,我们说,"是§的充分必要条件,简称充要条件.特别提醒:命题按条件和结论的充分性、必要性可分为四类(1)充分必要条件(充要条件),即Paq且曲:(2)充分不必要条件,即Paq且q≠>p;(3)必要不充分条件,即p≠>q且(4)既不充分也不必要条件,即]τ≠>q且c{Ψ>p.■思考辨析判断正误-- -----------------------------------------------------------1.若“是q的充分条件,则P是唯一的.(× )2.“若P ,则g”是真命题,而“若「则“”是假命题,则"是"的充分不必要条件.(√)3. 4不是"的必要条件时Jgq”成立.(J )4.若卩是q的充分不必要条件,则締P是締q的必要不充分条件.(√)题型探究探究重点索养提升------------------------ % -------一、充分、必要' 充要条件的判断例1指出下列各题中,"是g的什么条件(在''充分不必要条件”"必要不充分条件”“充要条件”''既不充分也不必要条件”中选出一个作答).(1)在AABC中,p: A>B, q: BC>AC;(2)对非空集合A, B, p:x≡AUB, q:Λ∈B;(3)在Z∖ABC 中,p:Sin Λ>sin B, q:tanΛ>tan Bi(4)已知x, y∈R, p:仗一I)?+©—2)2=0, q: (X — l)(y—2)=0.解(1)在Z∖ABC中,显然有A>B^BC>AC I所以P是g的充要条件.⑵显然x∈AU B≠>X≡B ,但X∈B=>A∈A UB ,所以"是g的必要不充分条件•⑶取A二120。

2019-2020年高中数学北师大版选修1-1《导数的概念与几何意义》word导学案

2019-2020年高中数学北师大版选修1-1《导数的概念与几何意义》word导学案1.理解导数的概念,能利用导数的定义求函数的导数.2.理解函数在某点处的导数的几何意义是该函数图像在该点的切线的斜率,并利用其几何意义解决有关的问题.3.掌握应用导数几何意义求解曲线切线方程的方法.4.在学习过程中感受逼近的思想方法,了解“以直代曲”的数学思想方法.如图,当点P n(x n,f(x n))(n=1,2,3,4)沿着曲线f(x)趋近点P(x0,f(x0))时,割线PP n的变化趋势是什么?问题1:根据创设的情境,割线PP n的变化趋势是.问题2:导数的概念与求法:我们将函数f(x)在x=x0处的瞬时变化率称为f(x)在x=x0处的导数,即有f'(x0)==,所以求导数的步骤为:(1)求函数的增量:Δy=f(x0+Δx)-f(x0);(2)算比值:=;(3)求极限:y'=.问题3:函数y=f(x)在x=x0处的导数,就是曲线y=f(x)在x=x0处的切线的斜率k=f'(x0)=.相应的切线方程是:.问题4:曲线上每一点处的切线斜率反映了什么?直线与曲线有且只有一个公共点时,直线是曲线的切线吗?它反映的是函数的情况,体现的是数形结合,以曲代直的思想.不一定是,有些直线与曲线相交,但只有一个公共点.相反,有些切线与曲线的交点.1.下列说法正确的是().A.曲线的切线和曲线有且只有一个交点B.过曲线上的一点作曲线的切线,这点一定是切点C.若f'(x0)不存在,则曲线y=f(x)在点(x0,f(x0))处无切线D.若y=f(x)在点(x0,f (x0))处有切线,则f'(x0)不一定存在2.如果曲线y=f (x)在点(x0,f(x0))处的切线方程为x+2y-3=0,那么().A.f'(x0)>0B.f'(x0)<0C.f'(x0)=0D.f'(x0)不存在3.设P0为曲线f(x)=x3+x-2上的点,且曲线在P0处的切线平行于直线y=4x-1,则P0点的坐标为.4.函数y=3x+2上有一点(x0,y0),求该点处的导数f'(x0).导数概念的理解已知f'(x0)=2,求.求切线方程已知曲线y=上两点P(2,-1),Q(-1,).(1)求曲线在点P,Q处的切线的斜率;(2)求曲线在P,Q处的切线方程.导数几何意义的综合应用抛物线y=x2在点P处的切线与直线4x-y+2=0平行,求P点的坐标及切线方程.已知f(x)=x3-8x,则= ; = ;= .过曲线y=f(x)=x3上两点P(1,1)和Q(1+Δx,1+Δy)作曲线的割线,求出当Δx=0.1时割线的斜率,并求曲线在点P处的切线的斜率.已知曲线C:y=x3.(1)求曲线C上横坐标为1的点处的切线方程;(2)上述切线与曲线C是否还有其他公共点?1.已知函数y=f(x)的图像如图,则f'(x A)与f'(x B)的大小关系是( ).A.f'(x A)>f'(x B)B.f'(x A)<f'(x B)C.f'(x A)=f'(x B)D.不能确定2.已知y=,则y'的值是( ).A.B.C.2D.3.已知y=ax2+b在点(1,3)处的切线斜率为2,则= .4.求y=x2在点A(1,1)处的切线方程.已知函数y=f(x)的图像在点(1,f(1))处的切线方程是x-2y+1=0,则f(1)+2f'(1)的值是().A. B.1 C.D.2考题变式(我来改编):第2课时导数的概念与几何意义知识体系梳理问题1:点P n趋近于点P时,割线PP n趋近于确定的位置PT,PT为曲线的切线问题3:= y-f(x0)=f'(x0)(x-x0)问题4:瞬时变化不止一个基础学习交流1.D当切线平行于y轴时,切线斜率不存在,则f'(x0)不存在.2.B由x+2y-3=0知斜率k=-,∴f'(x0)=-<0.3.(1,0)或(-1,-4)f'(x)===3x2+1,由于曲线f(x)=x3+x-2在P0处的切线平行于直线y=4x-1,所以f(x)在P0处的导数值等于4,设P0(x0,y0),有f'(x0)=3+1=4,解得x0=±1,这时P0点的坐标为(1,0)或(-1,-4).4.解:f'(x0)===3.重点难点探究探究一:【解析】由已知得:=2,当h→0,2h→0,-4h→0,==2.[问题]上面的解答遵循导数的定义吗?[结论]没有,在导数的定义形式中,增量Δx的形式多种多样,但是无论增量Δx选择哪种形式,Δy必须保持相应的形式.即:f'(x0)===(其中a为非零常数).于是,正确解答为:=-4=-4=-4f'(x0)=-8.【小结】对极限的理解和计算,也是对导数概念的准确理解.通过此题可以看出学生是否掌握了导数的概念.探究二:【解析】将P(2,-1)代入y=,得t=1,∴y=.∴===.(1)曲线在点P处的切线斜率为y'|x=2==1,曲线在点Q处的切线斜率为y'|x=-1=.(2)曲线在点P处的切线方程为y-(-1)=x-2,即x-y-3=0,曲线在点Q处的切线方程为y-=[x-(-1)],即x-4y+3=0.【小结】1.因为“在某点处”和“过某点的”切线方程求法不同,所以解答这类问题需判断点是否在曲线上.2.求曲线y=f(x)在点(x0, f(x0))处的切线方程.(1)函数y=f(x)在点x0处的导数f'(x0)即为切线的斜率.(2)根据直线的点斜式方程,得切线方程为y-f(x0)=f'(x0)(x-x0).(3)若曲线y=f(x)在点P(x0,f(x0))处的导数f'(x0)不存在,则切线与x轴垂直;若f'(x0)>0,则切线与x轴正向夹角为锐角;若f'(x0)<0,则切线与x轴正向夹角为钝角;若f'(x0)=0,则切线与y轴垂直.探究三:【解析】设P点坐标为(x0,y0),y'====(2x+Δx)=2x.∴y'=2x0,又由切线与直线4x-y+2=0平行,∴2x0=4,∴x0=2.∵P(2,y0)在抛物线y=x2上,∴y0=4,∴点P的坐标为(2,4),∴切线方程为y-4=4(x-2),即4x-y-4=0.【小结】1.解决本题应用了方程的思想,这其实是已知切点求切线方程的逆应用过程.2.根据斜率求切点坐标的方法步骤为:(1)先设切点坐标(x0,y0);(2)求导函数f'(x);(3)求切线的斜率f'(x0);(4)由斜率间的关系列出关于x0的方程,解方程求x0;(5)点(x0,y0)在曲线f(x)上,将(x0,y0)代入求y0,得切点坐标.思维拓展应用应用一:44-2f'(x)====(3x2+3x·Δx+Δx2-8)=3x2-8,∴f'(2)=4.=f'(2)=4.==f'(2)=4.=-=-f'(2)=-2.应用二:∵Δy=f(1+Δx)-f(1)=(1+Δx)3-1=3Δx+3(Δx)2+(Δx)3,==(Δx)2+3Δx+3.当Δx=0.1时,割线PQ的斜率为k1==(0.1)2+3×0.1+3=3.31.曲线在点P处的切线的斜率为k2==3.应用三:(1)将x=1代入y=x3得y=1,∴切点P(1,1),y'====3x2.∴y'|x=1=3,∴点P处的切线方程为y=3x-2.(2)由得(x-1)(x2+x-2)=0,∴x=1或-2.∴公共点为(1,1)或(-2,-8),∴还有其他公共点(-2,-8).基础智能检测1.B f'(x A)与f'(x B)分别表示函数图像在点A, B处的切线斜率,故f'(x A)<f'(x B).2.BΔy=-,=,===’∴y'=.3.2由题意=(aΔx+2a)=2a=2,∴a=1,又3=a×12+b,∴b=2,∴=2.4.解:f'(1)=====(Δx+2)=2,即切线的斜率k=2,所以y=x2在点A(1,1)处的切线方程为y-1=2(x-1),即2x-y-1=0.全新视角拓展D∵点(1,f(1))在切线x-2y+1=0上,∴f(1)=1,又f'(1)=,∴f(1)+2f'(1)=1+2×=2.。

新北师大版小学一级数学上册全册导学案

2017新北师大版小学一年级数学上册全册导学案数学导学案(2017—2018学年度第一学期)年级: 一(1)班复备者: ***一、学生情况分析本班共有学生60人,其中男31人,女生29人,学生上课发言积极的学生不多,说话能力不是很强,也不够完整,这学期着重培养学生说话的能力,养成良好的学习习惯。

二、教材分析和教学目标(一)数与代数1、第一单元《生活中的数》。

基于儿童数数的经验,结合具体的情景认识10以内的数的意义,会认、会读、会写0——10的数,会用它们表示物体的个数或事物的顺序,初步体会基数与序数的含义,初步感受“数”与生活的密切联系,初步体验学习数学的乐趣,初步形成良好的学习习惯。

2、第二单元《比较》。

通过比较具体数量多少的数学活动,获得对“>、<、=”等符号的意义的理解,并会用这些符号表示10以内的数的大小;经历比高矮、比轻重、比长短等实践操作或数学思考活动,体验“比”的方法的多样性与合理性;并在描述或倾听各自思考过程的交流中,体会学会有条理的表示自己思想和学会倾听的重要性。

3、第三单元《加减法〈一〉》。

经历从实际问题抽象10以内的加减算式,并加以解释和应用的过程,体会加减法的含义,初步感受加减法与生活的密切联系;能正确口算10以内的加减法,掌握10以内数的分解与合成的技能;通过整理加、减法算式,并探索其间规律性的活动,培养与发展数感。

4、第七单元《加减法〈二〉》。

经历表示11——20的数的具体操作及其概括过程,初步体会用十进制记数的位值原理,会数、读、写20日内数,掌握它们的顺序,会比较它们的大小,结合解决问题的活动,进行简单的、有条理的思考;经历与同伴交流各自算法的过程,体会算法的多样性,学会20以内的进位和退位,逐步的熟练口算20以内的加减法,并能解决简单的问题,感受加减法与日常生活的密切联系,感受数学思考过程的合理性。

5、第八单元《认识钟表》。

结合日常作息时间,学会认读钟面上表示整时、半时的时刻,了解记时的书写方法,并会用“快几时了”或“刚过几时”等词语描述时间,经历简单而熟悉的操作活动,体验时间的长短,培养珍惜时间的态度和合理安排时间的良好习惯。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

牛首中心小学六年级数学导学案
班级: 姓名: 日期: 主备人: 张 清 理 备课组长: 蹲点领导(签字):
课题: 整理和复习 课型: 复习提升课 课时: 1课时
学习目标:1、我能发现图形中隐藏着的数的规律,应用所发现的规律。
2、我能利用图形来解决有关数的问题。
3、我的实践意识、探索意识能得到进一步加强。
重难点:灵活利用图形来解决有关数的问题。
激情激趣 导入目标 独立思考 个体探究 分享交流 合作探究 展示提升
启发探究
随堂笔记

导学引航 目的、方法、时间 独学指导 内容、学法、时间 互动策略 内容、形式、时间 展示方案 内容、方式、时间 重点摘记成果记录
规律总结

1、激趣: 计算比赛。 2、解读学习目标。 1、研读例题。 阅读第107页例1,我能完成以下习题: ①1=( )² ②1+3=( )² ③1+3+5=( )² 2、观察一下,我的发现: 3、上面的图和对应的算式有什么关系? 4、你能利用规律写一写吗? ①1+3+5+7=( )² ②1+3+5+7+9+11+13=( )² ③( )+( )+( )+( )+( )+( )+( )+( )+( )=9² 对学 ①对子检查独学完成情况。 ②互相用学具摆一摆验证你的发现。 群学 ①合作研讨独学重难点内容。 ②重点交流本组同学可以向全班推荐的规律。 预展: 针对展示方案,分组进行思考展示方式及预展。 展示主题一: 内容:独学第1题 建议: 1、可以不用画图。 2、写清题号和算式。 展示主题二: 内容:独学第2题 建议: 1、“我的发现”语言要准确、具体。 2、讲解的同学能结合图形和算式说明。 展示主题三: 内容:独学第3题 建议: 1、结合图形和算式说明它们之间的关系。 2、语言准确、简洁。 展示主题四: 内容:独学第4题 建议: 1、结合图形和算式说清楚理由。 2、语言准确、简洁。 我的发现:

1、关于数和形之
间的关系:

2、数与形结合的
方便之处:

3、生活中有哪些
地方用到了数形
结合?

当堂测评 分层达标
落实基础★
请你根据例1的结论算一算
1+3+5+7+5+3+1=( )
1+3+5+7+9+11+13+11+9+7+5+3+1=( )
发展能力★★
下面每个图形中各有多少个白色小正方形和多少个黑色小正方形?

第6个图形有( )个白色小正方形,( )个蓝色小正方形照这样画下去, 第10个图形有( )个白色小正方形,( )
个蓝色小正方形。你能解释其中的道理吗?
提升素养★★★
1+3+5+7+9+11+„„+99=( )

相关文档
最新文档