专题一 将军饮马中两定一动模型与最值问题 2020年中考数冲刺难点突破 将军饮马与最值问题(原卷版)
初中数学将军饮马五大模型七类题型及答案

将军饮马五大模型七类题型(模型梳理与题型分类讲解)第一部分【知识点归纳】【理论依据】路径最短、线段和最小、线段差最大、周长最小等一系列最值问题。
【方法原理】1.两点之间,线段最短;2.三角形两边之和大于第三边,两边之差小于第三边;3.中垂线上的点到线段两端点的距离相等;4.垂线段最短.【基本模型】【模型一:两定交点型】如图1,直线l和l的异侧两点A.B,在直线l上求作一点P,使P A+PB最小;图1【模型二:两定一动型】如图2,直线l和l的同侧两点A.B,在直线l上求作一点P,使P A+PB最小(同侧转化为异侧);图2【模型三:一定两动型】如图3,点P是∠MON内的一点,分别在OM,ON上作点A,B。
使△P AB 的周长最小。
图3【模型四:两定两动型】如图4,点P,Q为∠MON内的两点,分别在OM,ON上作点A,B。
使四边形P AQB的周长最小。
图4【模型五:一定两动(垂线段最短)型】如图5,点A是∠MON外的一点,在射线ON上作点P,使P A 与点P到射线OM的距离之和最小。
图5【模型六:一定两动,找(作)对称点转化型】如图6,点A是∠MON内的一点,在射线ON上作点P,使P A与点P到射线OM的距离之和最小。
图6【题型目录】【题型1】两定一动型.......................................................3;【题型2】一定两动(两点之间线段最短)型...................................6;【题型3】一定两动(垂线段最短)型.........................................9;【题型4】两定两动型.......................................................12;【题型5】一定两动(等线段)转化型.........................................14;【题型6】直通中考.........................................................18;【题型7】拓展延伸.........................................................21;第二部分【题型展示与方法点拨】【题型1】两定一动型;1.(23-24八年级上·河北廊坊·期中)如图,在△ABC中,∠BAC=90°,AB=12,AC=16,BC=20,将△ABC沿射线BM折叠,使点A与BC边上的点D重合.(1)线段CD的长是;(2)若点E是射线BM上一动点,则△CDE周长的最小值是.2.(22-23八年级上·广西南宁·期末)如图,点E在等边△ABC的边BC上,BE=4,射线CD⊥BC,垂足为点C,点P是射线CD上一动点,点F是线段AB上一动点,当EP+FP的值最小时,BF=5,则AB 的长为.3.(23-24八年级下·河南郑州·阶段练习)如图,在△ABC中,AB=AC.在AB、AC上分别截取AP、PQ的长为半径作弧,两弧在∠BAC内交于点AQ,使AP=AQ.再分别以点P,Q为圆心,以大于12R,作射线AR,交BC于点D.已知BC=5,AD=6.若点M、N分别是线段AD和线段AB上的动点,则BM+MN的最小值为.【题型2】一定两动(两点之间线段最短)型;4.(23-24七年级下·陕西西安·期末)如图,在锐角△ABC中,∠ABC=30°,AC=4,△ABC的面积为5,P为△ABC内部一点,分别作点P关于AB,BC,AC的对称点P1,P2,P3,连接P1P2,PP3,则2P1P2+ PP3的最小值为.5.(23-24八年级上·北京海淀·期中)如图,已知∠MON=30°,在∠MON的内部有一点P,A为OM上一动点,B为ON上一动点,OP=a,当△P AB的周长最小时,∠APB=度,△P AB的周长的最小值是.6.(22-23八年级上·新疆乌鲁木齐·期末)如图,已知∠AOB的大小为α,P是∠AOB内部的一个定点,且OP=5,点E、F分别是OA、OB上的动点,若△PEF周长的最小值等于5,则α=()A.30°B.45°C.60°D.90°【题型3】一定两动型(垂线段最短);7.(2024八年级上·全国·专题练习)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,AD是∠BAC的平分线,若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是()A.2.4B.3C.4D.58.(23-24七年级下·广东深圳·期末)如图,在等腰三角形ABC中,AB=AC,AD⊥BC,点D为垂足,E、F分别是AD、AB上的动点.若AB=6,△ABC的面积为12,则BE+EF的最小值是()A.2B.4C.6D.89.(23-24八年级·江苏·假期作业)如图,在△ABC中,AB=AC=10,BC=12,AD=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是.【题型4】两定两动型;10.(22-23八年级上·湖北武汉·期末)如图,∠AOB=20°,M,N分别是边OA,OB上的定点,P,Q分别是边OB,OA上的动点,记∠OPM=α,∠OQN=β,当MP+PQ+QN最小时,则关于α,β的数量关系正确的是()A.β-α=30°B.β+α=210°C.β-2α=30°D.β+α=200°【题型5】一定两动(等线段)转化型;11.(23-24九年级下·广西南宁·开学考试)如图,△ABC是等边三角形,AB=4.过点A作AD⊥BC于点D,点P是直线AD上一点,以CP为边,在CP的下方作等边△CPQ,连接DQ,则DQ的最小值为.12.(23-24八年级下·湖北武汉·阶段练习)如图,在Rt△ABC中,∠BAC=90°,AC=6,BC=10,D、E分别是AB、BC上的动点,且CE=BD,连接AE、CD,则AE+CD的最小值为.13.(2024·安徽合肥·二模)如图,△ABC和△ADE都是等腰三角形,且∠BAC=∠DAE=120°,AB=8,O是AC的中点,若点D在直线BC上运动,连接OE,则在点D运动过程中,OE的最小值为()A.42B.433 C.32D.2第三部分【中考链接与拓展延伸】【题型6】直通中考14.(2023·辽宁锦州·中考真题)如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=4,按下列步骤作图:①在AC和AB上分别截取AD、AE,使AD=AE.②分别以点D和点E为圆心,以大于12DE的长为半径作弧,两弧在∠BAC内交于点M.③作射线AM交BC于点F.若点P是线段AF上的一个动点,连接CP,则CP+12AP的最小值是.15.(2020·新疆·中考真题)如图,在△ABC中,∠A=90°,∠B=60°,AB=4,若D是BC边上的动点,则2AD+DC的最小值为.【题型7】拓展延伸16.(2024·辽宁葫芦岛·二模)在△ABC中,∠ABC=60°,BC=4,AC=5,点D,E在AB,AC边上,且AD=CE,则CD+BE的最小值是.17.(23-24八年级上·湖北武汉·阶段练习)如图,等腰△ABC中,∠BAC=100°,BD平分∠ABC,点N为BD上一点,点M为BC上一点,且BN=MC,若当AM+AN的最小值为4时,AB的长度是.将军饮马五大模型七类题型(模型梳理与题型分类讲解)第一部分【知识点归纳】【理论依据】路径最短、线段和最小、线段差最大、周长最小等一系列最值问题。
中考数学专题利用”将军饮马“解决线段最值问题

针对训练 2. 在平面直角坐标系中,矩形OACB的顶点O为坐标原点,顶点A、B分别在x轴、y轴 的正半轴上,OA=3,OB=4,D为边OB的中点,且E、F为边OA上的两个动点,且 EF=2,当四边形CDEF的周长最小时,求点E、F的坐标.
在平面直角坐标系中矩形oacb的顶点o为坐标原点顶点ab分别在x轴y轴轴的正半轴上oa3ob4d为边ob的中点且ef为边oa上的两个动点且ef2当四边形cdef的周长最小时求点ef的坐标
微专题 利用“将军饮马”解决线段最值问题
模型一 “一线两点”型(一个动点+两个定点) (1)异侧线段和最小值问题 模型分析
5. 如图,抛物线的顶点D(-1,4),抛物线与x轴交于A、B两点(A在B的左侧),与y轴交 于点C(0,3).已知点E(0,-3),点F为抛物线对称轴上一动点,当△CEF的周长取得 最小值时,点F的坐标为___________.
第5题图
(3)同侧线段差最大值问题
模型分析 问题:两定点A、B位于直线l同侧,在直线l上找一点P,使得|PA-PB|的值最大. 解题思路:当A、B、P三点不共线时,根据三角形任意两边之差小于第三边可得|PAPB|<AB,当A、B、P三点共线时,|PA-PB|=AB,则|PA-PB|的最大值为线段AB的 长.连接AB并延长,与直线l的交点即为点P.
针对训练 1. 如图,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,点G、H分别是边BC、 CD上的动点,则四边形EFGH周长的最小值为________.
第1题图
中考重难点易错专题 最值模型之将军饮马11个常考模型(模型精讲)

最值模型之将军饮马(11个常考模型)模型背景【模型来历】早在古罗马时代,传说亚历山大城有一位精通数学和物理的学者,名叫海伦.一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题.将军每天从军营A出发,先到河边饮马,然后再去河岸同侧的军营B开会,应该怎样走才能使路程最短?这个问题的答案并不难,据说海伦略加思索就解决了它.从此以后,这个被称为“将军饮马”的问题便流传至今.【考点】两点之间线段最短,垂线段最短;三角形两边三边关系;轴对称;平行四边形--平移;【解题思路】学会化归,移花接木,化折为直【核心思想】共线与垂线段最短。
模型精讲一.两动一定型(2种模型):两定点到直线上一动点的距离和最小。
1如图1-1在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB最小.【证明】图1-2。
PA+PB的最小值即为线段AB的长度理由:在l上任取异于点P的一点P´,连接AP´、BP´,在△ABP'中,AP´+BP´>AB,即AP´+BP´>AP+BP∴P为直线AB与直线l的交点时,PA+PB最小.反思:解决本题很简单,但却点明了将军饮马的解题思路。
1.1如图1-3,如图,定点A和定点B在定直线l的同侧要求:在直线l上找一点P,使得PA+PB值最小 。
作法:图1-41.作A关于直线CD对称点A'。
2.连A'B。
3.交点P就是要求点。
连线长A'B就是PA+PB最小值。
【证明】:图1-5在l上任取异于点P的一点P´,连接AP´、BP´,在△ABP'中,AP´+BP´>AB,即AP´+BP´>AP+BP∴P为直线AB与直线l的交点时,PA+PB最小.二.造桥选址,移花接木。
1已知:如图2-1,直线a∥b,A、B分别为a上方和b下方的定点,(直线AB不与a垂直)要求:在a、b之间求作垂线段PQ,使得AP+PQ+BQ最小。
2020中考数学复习微专题:最值问题(将军饮马)突破与提升策略

2020中考数学复习微专题:最值问题(将军饮马)突破与提升策略【问题引入】“白日登山望烽火,黄昏饮马傍交河”,这是唐代诗人李颀《古从军行》里的一句诗。
而由此却引申出一系列非常有趣的数学问题,通常称为“将军饮马”。
【问题描述】如图,将军在图中点A处,现在他要带马去河边喝水,之后返回军营,问:将军怎么走能使得路程最短?A B将军军营河【问题简化】如图,在直线上找一点P使得P A+PB最小?P【问题分析】这个问题的难点在于P A+PB是一段折线段,通过观察图形很难得出结果,关于最小值,我们知道“两点之间,线段最短”、“点到直线的连线中,垂线段最短”等,所以此处,需转化问题,将折线段变为直线段.【问题解决】作点A关于直线的对称点A’,连接P A’,则P A’=P A,所以P A+PB=P A’+PB当A’、P、B三点共线的时候,P A’+PB=A’B,此时为最小值(两点之间线段最短)【思路概述】作端点(点A或点B)关于折点(上图P点)所在直线的对称,化折线段为直线段.将军饮马模型系列【一定两动之点点】在OA、OB上分别取点M、N,使得△PMN周长最小.B B此处M、N均为折点,分别作点P关于OA(折点M所在直线)、OB(折点N所在直线)的对称点,化折线段PM+MN+NP为P’M+MN+NP’’,当P’、M、N、P’’共线时,△PMN周长最小.【例题】如图,点P是∠AOB内任意一点,∠AOB=30°,OP=8,点M和点N分别是射线OA和射线OB上的动点,则△PMN周长的最小值为___________.P O B AMN【分析】△PMN周长即PM+PN+MN的最小值,此处M、N均为折点,分别作点P关于OB、OA对称点P’、P’’,化PM+PN+MN为P’N+MN+P’’M.P''A当P’、N、M、P’’共线时,得△PMN周长的最小值,即线段P’P’’长,连接OP’、OP’’,可得△OP’P’’为等边三角形,所以P’P’’=OP’=OP=8.A【两定两动之点点】在OA、OB上分别取点M、N使得四边形PMNQ的周长最小。
2020中考数学总复习:将军饮马型最值问题-解题技巧总结精选全文

图T3-13
1
10
3
3
(3)∵y=- x2+ x,∴抛物线的对称轴为直线 x=5.
∵A,O 两点关于对称轴对称,∴PA=PO,
当 P,O,D 三点在一条直线上时,PA+PD=PO+PD=OD,此时△ PAD 的周长最小.
如图,OD 与对称轴的交点即为满足条件的点 P,
由(2)可知 D 点坐标为(10,5).
1
1
1
∵S△ PAB=3S 矩形 ABCD,∴2AB·h=3AB·AD,
2
∴h=3AD=2,∴动点 P 在与 AB 平行且与 AB 的距离是 2 的线段 l 上,如图,作点 A
关于直线 l 的对称点 A',连接 AA',BA',则 BA'即为所求的最短距离.在 Rt△ ABA'中,
AB=4,AA'=2+2=4,∴BA'= 2 + '2 = 42 + 42 =4 2,即 PA+PB 的最小值为
)
D.80°
[答案]D
[解析]分别作A关于直线BC和CD的对称点A',A″,连接A'A″,交BC于E,交CD于F,则
A'A″长即为△AEF周长的最小值.作DA延长线AH,易知∠DAB=130°,∠HAA'=50°.
又∠EA'A=∠EAA',∠FAD=∠A″,且∠EA'A+∠EAA'=∠AEF,∠FAD+∠A″=
图T3-4
.
[答案] 2 5
[解析]如图,在 CB 上截取 CM=CA,连接 DM.
= ,
在△ CDA 与△ CDM 中, ∠ = ∠,
将军饮马等8类常见最值问题(原卷版)

将军饮马等8类常见最值问题题型一 两定一动型(线段和差最值问题) 题型二 双动点最值问题(两次对称)题型三 动线段问题:造桥选址(构造平行四边形) 题型四 垂线段最短题型五 相对运动平移型将军饮马 题型六 通过瓜豆得出轨迹后将军饮马 题型七 化斜为直,斜大于直 题型八 构造二次函数模型求最值一、单动点问题【问题1】在直线l 上求一点P ,使PA +PB 最小问题解决:连接AB ,与l 交点即为P ,两点之间线段最短PA +PB 最小值为AB【问题2】在直线l 上求一点P ,使PA +PB 最小lA l问题解决:作B 关于l 的对称点B '⇒PB =PB ',则PA +PB =PA +PB ',当A ,P ,B '共线时取最小,原理:两点之间线段最短,即PA +PB 最小值为AB '【问题3】在直线l 上求一点P ,使|PA -PB |最大 问题解决:连接AB ,当A ,B ,P 共线时取最大原理:三角形两边之和大于第三边,在△AB 'P 中,|PA -PB '|≤AB '【问题4】在直线l 上求一点P ,使|PA -PB |最大问题解决:作B 关于直线l 的对称点B '⇒PB =PB ',|PA -PB |=|PA -PB '| 原理:三角形两边之和大于第三边,连接AB ',在△AB 'P 中|PA -PB '|≤AB 'llllll二、双动点问题(作两次对称)【问题5】在直线1l ,2l 上分别求点M ,N ,使△PMN 周长最小问题解决:分别作点P 关于两直线的对称点P ’和P '',PM =P 'M ,PN =P ''N ,原理:两点之间线段最短,P ',P '',与两直线交点即为M ,N ,则AM +MN +PN 的最小值为线段P 'P ''的长【问题6】P ,Q 为定点,在直线1l ,2l 上分别求点M ,N ,使四边形PQMN 周长最小 问题解决:分别作点P ,Q 关于直线1l ,2l 的对称点P ’和Q ',PM =P 'M ,QN =Q 'N原理:两点之间线段最短,连接P 'Q ',与两直线交点即为M ,N ,则PM +MN +QN 的最小值为线段P 'Q '的长,周长最小值为P 'Q '+PQl 1l 1l 1l 1【问题7】A ,B 分别为1l ,2l 上的定点,M ,N 分别为1l ,2l 上的动点,求AN MN BM ++最小值 问题解决:分别作A ,B 关于1l ,2l 的对称点'A ,'B ,则'AN A N =,'BM B M =,''A B 即所求 原理:两点之间距离最短,A ',N ,M ,B '共线时取最小,则AN +MN +BM =A 'N +MN +B 'M ≤A 'B '三、动线段问题(造桥选址)【问题8】直线m ∥n ,在m ,n 上分别求点M ,N ,使MN ⊥m ,且AM +MN +BN 的最小值 问题解决:将点B 向上平移MN 的长度单位得B ',连接B 'M ,当AB 'M 共线时有最小值 原理:通过构造平行四边形转换成普通将军饮马,AM +MN +BN =AM +MN +B 'M ≤AB '+MNl 2l 2n mn m【问题9】在直线l 上求两点M ,N (M 在左)且MN =a ,求AM MN BN ++的最小值问题解决:将B 点向左移动a 个单位长度,再作B '关于直线l 的对称点B '',当''AB M 共线有最小值原理:通过平移构造平行四边''''BB MN BN B M B M ⇒==,''''AM MN BN AM MN B M AB ≤++=++四、垂线段最短【问题10】在直线1l ,2l 上分别求点A ,B ,使PB +AB 最小问题解决:作P 关于2l 的对称点'P ,作1'P A l ⊥于A ,交2l 于B ,'P A 即所求 原理:点到直线,垂线段最短,''PB AB P B AB P A ≤+=+lll1l 1五、相对运动,平移型将军饮马【问题11】在直线l 上求两点M ,N (M 在左)且MN =a ,求AM +AN 的最小值问题解决:相对运动或构造平行四边形 策略一:相对运动思想过点A 作MN 的平行线,相对MN ,点A 在该平行线上运动,则可转化为普通饮马问题策略二:构造平行四边形等量代换,同问题9.六、瓜豆轨迹,手拉手藏轨【问题12】如图,点P 在直线BC 上运动,将点P 绕定点A 逆时针旋转90°,得到点Q ,求Q 点轨迹?问题解决:当AP 与AQ 夹角固定且AP :AQ 为定值的话,P 、Q 轨迹是同一种图形.当确定轨迹是线段的时候,可以任取两个时刻的Q 点的位置,连线即可,比如Q 点的起始位置和终点位置,连接即得Q 点轨迹线段.llA''Q 2Q 1ABC原理:由手拉手可知12ABC AQ Q △≌△,故21CB AQ Q A =∠∠,故Q 点轨迹为直线七、化斜为直,斜大于直【问题13】已知:AD 是Rt ABC △斜边上的高 (1)求ADBC的最大值;(2)若2AD =,求BC 的最大值问题解决:取BC 中点M ,(1)则12AD AM BC BC ≤=;(2)224BC AM AD =≤= 八、构造二次函数求最值这类问题一般无法通过纯几何方法来解决或几何方法比较复杂,需要通过面积法或者构造全等、相似建立等量关系,将待求的线段或图形的面积用含有自变量的式子来表示,一般是一个二次函数或者换元后是一个二次函数,然后通过配方得到最值.当然,配方的目的是为了避开基本不等式这个超纲的知识点,如果是选择题或填空题,你可以直接用基本不等式来秒杀,不需要配方.【问题14】正方形ABCD 的边长为6,点Q 在边CD 上,且3CD CQ =,P 是边BC 上一动点,连接PQ ,过点P 作EP PQ ⊥交AB 边于点E ,设BP 的长为x ,则线段BE 长度的最大值为 .问题解决:根据题意,作出图形,根据两个三角形相似的判定得到∽△△PCQ EBP ,进而根据相似比得到()219322BE x =−−+,利用二次函数求最值方法求解即可得到答案 【详解】易知∽△△PCQ EBP ∴,QC PCBP BE ∴=, 3CD CQ =,6CD =,∴2QC =,26x x BE−∴=, ∴()()()()221119663062222BE x x x x x x =−=−−=−−+≤≤,BB102−< ,∴()219322BE x =−−+在3x =时有最大值,最大值为92题型一 两定一动型(线段和差最值问题)2.透明圆柱形容器(容器厚度忽略不计)的高为12cm ,底面周长为10cm ,在容器内壁离底部3cm的点B 处有一饭粒,此时一只蚂蚁正好在容器外壁且离容器上沿3cm 的点A 处.求蚂蚁吃到饭点C 的坐标为(1,0),且∠AOB =30°点P 为斜边OB 上的一个动点,则P A +PC 的最小值为( )4.如图,点A ,B 在直线MN 的同侧,A 到MN 的距离8AC =,B 到MN 的距离5BD =,已知4CD =,5.如图,在矩形ABCD 中,AB =3,BC =5.动点P 满足S △PBC =S 矩形ABCD .则点P 到B ,C 两点距离之和PB+PC 的最小值为 。
初中数学模型【讲义】将军饮马

“将军饮马”模型一、模型背景“将军饮马”模型:动点在直线上运动,所引出的线段和、差的最值问题往往通过轴对称进行等量代换,转化成两点之间的距离或点到直线的距离,或利用三角形两边之和大于第三边,两边之差小于第三边求得最值核心知识点:两点之间线段最短、垂线段最短二、模型内容(一)线段和最值1. 两定一动型(异侧)点A、B为平面内两个定点,点P为直线l上一动点,求P A+PB的最小值理论依据:2. 两定一动型(同侧)点A、B为平面内两个定点,点P为直线l上一动点,求P A+PB的最小值理论依据:3. 一定两动型点A为平面内定点,点P、Q分别是直线l1、l2上的动点,求AP+PQ+AQ的最小值理论依据:4. 一定两动型(变式)点A为平面内定点,点P、Q分别是直线l1、l2上的动点,求PQ+AQ的最小值理论依据:5. 两定两动型点A、B为平面内两个定点,点P、Q分别是直线l1、l2上的动点,求四边形APQB周长的最小值理论依据:(二)线段差最值6. 两定一动型(同侧)−的最大值点A、B为平面内两个定点,点P为直线l上一动点,求PA PB理论依据:7. 两定一动型(异侧)−的最大值点A、B为平面内两个定点,点P为直线l上一动点,求PA PB理论依据:三、模型应用1.如图,在ABC ∆中,3AB =,4AC =,EF 垂直平分BC ,点P 为直线EF 上的任一点,则AP BP +的最小值是______.2.如图,正方形ABCD 的面积为64,ABE ∆是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD PE +的和最小,则这个最小值为______.3.如图所示,已知121(,)(2,)2A yB y 为反比例函数1y x =图象上的两点,动点(,0)P x 在x 轴正半轴上运动,当||AP BP −的值最大时,连接OA ,AOP ∆的面积是_______.4.如图,C 为马,D 为帐篷,牧马人牵马,先到草地边牧马,再到河边饮马,然后回到帐篷,请你帮他确定这一天的最短路线.5.(1)如图1,在等边ABCBC=.点P、D、E分别为边BC、AB、AC上(均不与端点重∆中,6合)的动点.①当点P为BC的中点时,在图1中,作出PDE∆的周长的最∆的周长最小,并直接写出PDE∆,使PDE小值;②如图2,当2∆的周长的最小值.PB=时,求PDE(2)如图3,在等腰ABC=,4BC=,点P、Q、R分别为边BC、AB、∠=︒,AB ACBAC∆中.30∆周长的最小值并简要说明理由.AC上(均不与端点重合)的动点,求PQR。
2020年安徽中考常见最值问题——将军饮马1(共16张)

解:设△PAB中AB边上的高是PE
1
1
S△PAB
3
S矩形ABCD
53 3
5
1
5
S△PAB 2 AB PE 2 PE
PE= 2
动点P在与AB平行且与AB的距离是2的对称点B',连接AB',则AB'就是所求的最短距离。
在Rt△ABE中,∵AB=5,BB'=2+2=4,
C.5 2 ;
D. 41 .
————竹竹子子系系本本科科生生
0
PRAT 01 将军饮马1
• 总结:
特征:
(1)两个定点一个动点,即“两定一动” (2)定点在动点轨迹l(即对称轴)的同侧 ( 3 ) 求 动 点 到 两 个 定 点 距 离 和 的 最 小 值 ( 如 : PA + P B )
l P
解法:
Q
点
坐标
即
为
x y
-1 x
3
解得:xy
=
-1 2
∴Q(−1,2)。
————竹竹子子系系本本科科生生
0
PRAT 01 将军饮马1
• 总结:
特征:
(1)两个定点一个动点,即“两定一动” (2)定点在动点轨迹l(即对称轴)的同侧 ( 3 ) 求 动 点 到 两 个 定 点 距 离 和 的 最 小 值 ( 如 : PA + P B )
AB' AB2 BB'2 52 42 41
即PA PB的最小值为 41
————竹竹子子系系本本科科生生
0
引例:
如图,在矩形
ABCD
中,AB=5,AD=3,动点
P
满足 S△PAB
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年中考数冲刺难点突破 将军饮马与最值问题
专题一 将军饮马中两定一动模型与最值问题
【专题说明】
这类问题的解法主要是通过轴对称,将动点所在直线同侧的两定点中的一个映射到直线的另一侧,转化为两点之间线段最短问题。
1、如图,在
中,,是的两条中线,是上一个动点,则下列线段的长度等于最小值的是( )
A .
B .
C .
D .
2、如图,在正方形ABCD 中,E 是AB 上一点,BE =2,AB =8,P 是AC 上一动点,则PB +PE 的最小值_____.
3、如图,在平面直角坐标系中,矩形OABC 的边BC 交x 轴于点D ,AD x ⊥轴,反比例函数(0)k y x x
=>的图象经过点A ,点D 的坐标为(3,0),AB BD =.
(1)求反比例函数的解析式;
(2)点P 为y 轴上一动点,当PA PB +的值最小时,求出点P 的坐标.
4、如图,在平面直角坐标系中,抛物线y=ax 2+2x+c 与x 轴交于A (﹣1,0)B (3,0)两点,与y 轴交于点C ,点D 是该抛物线的顶点.
(1)求抛物线的解析式和直线AC 的解析式;
(2)请在y 轴上找一点M ,使△BDM 的周长最小,求出点M 的坐标;
(3)试探究:在拋物线上是否存在点P ,使以点A ,P ,C 为顶点,AC 为直角边的三角形是直角三角形?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由.
5、如图1(注:与图2完全相同),在直角坐标系中,抛物线经过点三点0(1
)A ,,(50)B ,,4(0)C ,.
(1)求抛物线的解析式和对称轴;
(2)P 是抛物线对称轴上的一点,求满足PA PC 的值为最小的点P 坐标(请在图1中探索);
(3)在第四象限的抛物线上是否存在点E ,使四边形OEBF 是以OB 为对角线且面积为12的平行四边形?
若存在,请求出点E坐标,若不存在请说明理由.(请在图2中探索)。