高三物理知识点总结(全)
高三物理的知识点归纳总结

高三物理的知识点归纳总结一、力学1. 牛顿运动定律- 第一定律:惯性定律- 第二定律:力的作用与加速度的关系- 第三定律:作用力与反作用力的相互作用2. 运动学- 位移、速度、加速度的定义与计算方法- 平均速度与瞬时速度的关系- 自由落体运动的特点和公式3. 力的合成与分解- 合力与分力的概念- 力的合成与分解的方法与公式4. 动能与功- 动能的定义与计算方法- 动能定理- 功的定义与计算方法- 功与能量的转化5. 万有引力- 引力的特点与计算方法- 开普勒三定律- 行星运动的规律二、热学1. 温度与热量- 温度的定义与计量单位- 热量的概念、计量单位与传递方式2. 热能与热传导- 热能转化与能量守恒- 热传导的方式与热传导率的影响因素3. 热膨胀与热力学定律- 固体、液体和气体的热膨胀特性- 热力学第一定律与第二定律4. 理想气体定律- 理想气体状态方程与摩尔定律- 德尔塔热力学定律5. 热力学循环- 卡诺循环与热机效率- 热泵与制冷循环三、光学1. 光的传播与反射- 光的直线传播与折射定律- 光的反射定律与镜面反射- 光的折射定律与透射现象2. 光的干涉与衍射- 干涉的条件与光程差- 双缝干涉与杨氏实验- 衍射的现象与衍射光栅3. 光的色散与光的光谱- 光的色散现象与原因- 白光的分光与光谱的特点4. 光的成像与光学仪器- 薄透镜的成像原理与公式- 光学仪器的构造与使用方法- 显微镜、望远镜、光谱仪的原理与应用四、电学1. 电荷与电场- 电荷的性质与电荷守恒定律- 电场的概念、性质与电场强度- 电荷在电场中运动的规律2. 电势与电势差- 电势的定义与计算方法- 电势差的概念与计算方法- 电势差与电场强度的关系3. 电流与电阻- 电流的定义与计算方法- 电阻的概念与计算方法- 欧姆定律与功率定律4. 电路与电源- 串联与并联电路的特点与计算方法 - 电源的种类与特点- 电路中的电功率与能量转化5. 磁场与电磁感应- 磁场的概念与表示方法- 安培环路定理与电流感应定律- 法拉第电磁感应定律与感应电动势以上是高三物理的知识点归纳总结,希望能对你的学习有所帮助。
高三物理考前必背知识点

高三物理考前必背知识点一、力学部分1. 牛顿第一定律:物体在外力作用下静止或匀速直线运动,除非被另一物体强加力。
2. 牛顿第二定律:物体所受合力等于质量与加速度的乘积。
3. 牛顿第三定律:两个物体之间作用力相等、方向相反,大小相同。
4. 弹力:物体被拉伸或压缩时所产生的恢复力。
5. 重力:地球对物体的吸引力,大小为物体质量与重力加速度的乘积。
二、运动学部分1. 速度:单位时间内通过的路程,可以是瞬时速度或平均速度。
2. 加速度:速度变化的快慢程度,可以是瞬时加速度或平均加速度。
3. 位移:物体由起始点到结束点的位置变化。
4. 直线运动中的运动方程:v = u + at,s = ut + 0.5at²,v² = u² +2as。
5. 自由落体运动:物体只受重力作用下落的运动,加速度为重力加速度。
三、静电学部分1. 电荷:负电荷和正电荷之间的相互作用。
2. 库仑定律:两个电荷之间的电力与电荷的大小和距离的平方成正比,与电荷之间的性质有关。
3. 电场:电荷在其周围产生的电力场。
4. 电势能:电荷在电场中所具有的由位置决定的势能。
5. 等势线:在电场中势能相等的点的连线。
6. 电容器:由两个导体板和介质组成,可以存储电荷和电势能。
四、光学部分1. 光的反射和折射:入射光线遇到界面时,根据介质的光密度可以发生反射或折射。
2. 莫尔斯定律:光的折射定律,入射角、折射角和两种介质的折射率之间的关系。
3. 色散:光在通过不同介质时,不同波长的光会有不同的折射程度,导致光的分离。
4. 球面镜和透镜:可以分为凸面镜、凹面镜、凸透镜和凹透镜,具有不同的成像特性。
五、电磁学部分1. 电流:电荷在单位时间内通过导体截面的数量。
2. 电阻:导体对电流流动的阻碍程度。
3. 欧姆定律:电流与电压和电阻之间的关系,I = U/R。
4. 磁感应强度:磁场对单位电荷或单位电流所施加的力。
5. 洛伦兹力:带电粒子在磁场中受到的力。
高三物理常见知识点总结

高三物理常见知识点总结一、力学部分:1. 牛顿三大运动定律:第一定律、第二定律、第三定律。
2. 动量定律:动量守恒定律、动量-力定理。
3. 质点运动:匀速直线运动、变速直线运动、曲线运动。
4. 牛顿万有引力定律及其应用:行星运动、卫星运动、天体质量测定。
5. 物体在水平面上的运动:坡面运动、竖直圆周运动。
6. 单摆运动:单摆的周期、频率、能量变化。
7. 力的合成与分解:分解力的大小和方向、合成力的大小和方向。
二、热学部分:1. 内能和热量:内能的变化、热量的传递。
2. 热力学第一定律:内能定律、功的定律、热量的定律。
3. 热传导:热传导的规律、导热系数的影响因素。
4. 热胀冷缩:热胀冷缩的原理、线膨胀系数的定义。
5. 理想气体的状态方程:诺依曼方程、查理定律、盖-吕萨克定律。
6. 理想气体的等温过程、绝热过程、等容过程、等压过程。
三、光学部分:1. 光的反射:平面镜反射、球面镜反射、光的折射。
2. 光的干涉:双缝干涉、杨氏实验。
3. 光的衍射:单缝衍射、双缝衍射。
4. 光的偏振:偏振光的产生、偏振光的特性。
5. 光的色散:光的折射和色散、光的反射和色散。
6. 光的光谱:连续光谱、线状光谱、吸收光谱。
四、电学部分:1. 电荷和电场:电荷的性质和电场的概念。
2. 电场强度:点电荷的电场强度、电偶极子的电场强度。
3. 电势能和电势:电势能的概念和计算、电势的概念和计算。
4. 电流和电阻:电流的概念和计算、电阻的概念和计算。
5. 欧姆定律:欧姆定律的表达式和应用。
6. 电路基本定律:基尔霍夫定律、电容器充放电定律。
五、其他物理知识点:1. 机械波:波的定义、波的分类、波的传播。
2. 物质的结构:原子、分子、元素周期表。
3. 声学:声音的特性、声音的传播、共振。
4. 核物理:核反应、核能利用、辐射与辐射防护。
以上是高三物理常见知识点的总结,涵盖了力学、热学、光学、电学以及其他物理相关内容。
希望对你的学习有所帮助。
高三物理重要知识点总结大全

高三物理重要知识点总结大全第一章:力学1. 力的概念和性质1.1 力的定义1.2 力的性质:大小、方向、作用点1.3 力的分类:接触力、重力、弹力、摩擦力等2. 牛顿运动定律2.1 第一定律:惯性定律2.2 第二定律:加速度与力的关系2.3 第三定律:作用反作用定律3. 物体运动的描述3.1 位移、速度、加速度的定义与关系3.2 平均速度、瞬时速度的计算3.3 加速度与速度变化之间的关系4. 物体的力学性质4.1 质量、重量与密度的定义 4.2 物体的密度与浮力的关系 4.3 物体的惯性与质量的关系5. 平抛运动和斜抛运动5.1 平抛运动的特点与公式推导 5.2 斜抛运动的特点与公式推导 5.3 平抛和斜抛运动的应用第二章:热学1. 温度和热量的概念1.1 温度的定义与测量1.2 热量的概念和传递方式1.3 物质的热平衡与热容量2. 理想气体定律2.1 理想气体状态方程的表达式与应用2.2 理想气体温度与压力的关系2.3 热力学第一定律与理想气体的内能变化3. 热传递3.1 热传递的三种方式:传导、对流、辐射 3.2 热传导的导热定律与应用3.3 热功定理与功率的计算4. 相变与焓变化4.1 相变的概念与分类4.2 相变热的计算4.3 焓变化与物质的热力学性质5. 热力学循环5.1 热机的基本原理与分类5.2 卡诺循环的特点与效率5.3 热力学循环在实际中的应用第三章:电磁学1. 电荷与电场1.1 电荷的性质与电量守恒定律1.2 电场的概念与性质1.3 电场强度与电场线的表示2. 电势与电势能2.1 电势的定义与计算2.2 电势能的概念与计算2.3 电势差与电场强度的关系3. 电容与电容器3.1 电容的定义与计算3.2 并联电容和串联电容的等效电容3.3 电容器在电路中的应用4. 电流与电阻4.1 电流的定义与计算4.2 电阻、电压和电流的关系 4.3 欧姆定律与电阻的影响因素5. 磁场与电磁感应5.1 磁场的产生和性质5.2 安培定律与磁场强度的计算 5.3 法拉第电磁感应定律与应用第四章:光学1. 光的传播与反射1.1 光的传播的直线性与速度 1.2 光的反射定律与镜面成像 1.3 镜子的种类和应用2. 光的折射与透镜2.1 光的折射定律与介质的折射率 2.2 透镜的种类与成像规律2.3 光的色散与光谱的产生3. 光的衍射与干涉3.1 光的衍射现象与衍射角的计算 3.2 光的干涉现象与干涉条纹的解释 3.3 杨氏双缝干涉与薄膜干涉4. 光的偏振与光的波动性4.1 光的偏振现象与偏振角的计算 4.2 德布罗意波与电子的波粒性4.3 光的波粒二象性与波粒对应5. 光学仪器与光的应用5.1 显微镜与望远镜的构造与原理5.2 光的衍射与干涉在实际中的应用5.3 激光与光导纤维的应用结语:以上便是高三物理中一些重要的知识点总结,力学、热学、电磁学和光学都是物理学的基础内容,掌握这些知识点对于理解和应用物理学具有重要意义。
新高考高三物理总结知识点

新高考高三物理总结知识点1. 力学
1. 力的定义与性质
2. 牛顿运动定律
3. 物体的平衡与力的合成
4. 力的分解与合成
5. 加速度和速度的关系
6. 动能和动能守恒定律
7. 势能和机械能守恒定律
8. 动量和动量守恒定律
9. 弹力和胡克定律
10. 运动学图像法
2. 热学
1. 热量和热平衡
2. 内能和热机效率
3. 热膨胀与热传导
4. 热力学第一定律
5. 热力学第二定律
6. 理想气体状态方程
7. 焓和焓变
8. 绝热过程和绝热指数
3. 光学
1. 光的直线传播
2. 光的反射和折射
3. 光的色散和光的光程差
4. 透镜和光的成像
5. 凸透镜成像公式和使用规律
6. 光的波动性和光的干涉
7. 光的衍射和光的偏振
4. 电学
1. 电流和电阻
2. 欧姆定律和焦耳定律
3. 串并联电路的特性
4. 电功和功率
5. 电容器和电容性质
6. 电容器的充放电过程
7. 电场和电场的性质
8. 电场中电势能和电势差
9. 磁场和磁力的作用
10. 右手定则和洛伦兹力定律
5. 声学
1. 声波的传播和噪声
2. 声音的特性和强度
3. 音受到的干扰和共振
4. 声音的衍射和反射
5. 声音的吸收和多普勒效应
6. 核物理
1. 原子结构和核模型
2. 放射性衰变和半衰期
3. 核反应和核能释放
4. 核裂变和核聚变
5. 电离辐射和辐射防护
以上是新高考高三物理的知识点总结。
希望这份总结能够帮助你复习并提高物理成绩!。
高三物理知识点总结(全)

人教版高中物理知识总结一、质点的运动(1) ------ 直线运动1 )匀变速直线运动1. 平均速度V平=s/t (定义式)2.有用推论Vt2-Vo2 = 2as3. 中间时刻速度Vt/2 = V平=(Vt+Vo)/24.末速度Vt = Vo+at5. 中间位置速度Vs/2 = [(Vo2+Vt2)/2]1/26.位移s= V 平t = Vot+at2/2 = Vt/2t7. 加速度a = (Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0 ;反向则a<0 }8. 实验用推论A s= aT2 {©为连续相邻相等时间(T)内位移之差}9. 主要物理量及单位:初速度(Vo):m/s ;加速度⑻:m/s2 ;末速度(Vt):m/s ;时间⑴秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。
注:(1) 平均速度是矢量;(2) 物体速度大,加速度不一定大;(3) a=(Vt-Vo)/t只是量度式,不是决定式;⑷其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。
2)自由落体运动1. 初速度Vo = 02.末速度Vt = gt3. 下落高度h = gt2/2 (从Vo位置向下计算)4.推论Vt2 = 2gh注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;(2) a = g = 9.8m/s2 F0m/s2 (重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。
(3)竖直上抛运动1. 位移s= Vot-gt2/22.末速度Vt = Vo-gt (g=9.8m/s2"I0m/s2 )3. 有用推论Vt2-Vo2 = -2gs4.上升最大高度Hm = Vo2/2g(抛出点算起)5. 往返时间t= 2Vo/g (从抛出落回原位置的时间)注:(1) 全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;(2) 分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;(3) 上升与下落过程具有对称性,如在同点速度等值反向等。
物理高三全部知识点

物理高三全部知识点一、力学1. 物理量与单位a. 基本物理量:长度、质量、时间b. 导出物理量:速度、加速度、力、功等c. 国际单位制及其常用单位2. 运动的基本概念a. 直线运动与曲线运动b. 位移、速度与加速度c. 均匀运动与变速运动d. 自由落体运动3. 牛顿运动定律a. 牛顿第一定律:惯性原理b. 牛顿第二定律:力、质量、加速度的关系c. 牛顿第三定律:作用力与反作用力4. 力的合成与分解a. 力的合成:平行力合成、夹角力合成b. 力的分解:平行力分解、斜面上的力的分解5. 弹力与弹簧的简谐振动a. 弹力的性质与计算b. 带有弹簧的简谐振动的特点与计算6. 圆周运动与万有引力a. 圆周运动的基本概念b. 离心力与向心加速度之间的关系c. 万有引力的定律与计算7. 动量与动量守恒a. 动量的定义与计算b. 动量守恒定律与应用c. 弹性碰撞与完全非弹性碰撞8. 机械能与能量守恒a. 动能与重力势能b. 机械能守恒定律与应用c. 功与功率的概念与计算二、热学1. 温度与热量a. 温标及其转换b. 冷热交换与热平衡c. 热传导、热对流与热辐射2. 理想气体状态方程与分子动理论a. 理想气体状态方程及其应用b. 气体分子的运动特点与统计规律3. 热力学第一定律a. 内能与热功等b. 等容过程、等压过程与绝热过程c. 绝热指数与绝热过程的机械功4. 热力学第二定律a. 热力学第二定律的描述与熵的概念b. 卡诺循环与热机效率c. 热力学第二定律的推论:永不可能达到的状态5. 热传导与热功率a. 热传导的基本规律与热传导系数b. 热功率的计算与应用6. 气体分子速率与平均动能a. 麦克斯韦-玻尔兹曼分布律b. 气体分子速率与平均动能的计算7. 热容与比热容a. 热容的定义与计算b. 恒压下的比热容与恒容下的比热容三、光学1. 几何光学a. 光的传播方式与光线模型b. 反射与折射的基本规律c. 透镜与光学成像2. 光的波动性a. 光的波粒二象性b. 光的干涉与衍射c. 光的偏振与色散3. 光的光电效应与波粒二象性a. 光电效应的基本现象与特点b. 波粒二象性与德布罗意波长4. 光的相干性与干涉a. 相干性与干涉的基本概念b. 干涉的条件与干涉现象5. 光的色散与光的谱学a. 光的色散现象与原因b. 光的光谱与光谱分析四、电学1. 电荷与电场a. 基本电荷与电荷守恒b. 电场强度与电场线2. 静电场a. 质点带电与电场力b. 均匀静电场、电势差与电势能c. 极板间的电容、电容器与电容量3. 电流与电路a. 电流的概念与电流强度b. 电阻、电阻率与欧姆定律c. 串联与并联电路4. 电源与电动势a. 电源的基本原理与电动势定义b. 内电阻、外电阻与电源动力特性5. 磁场与磁感应强度a. 磁场的概念与磁感线b. 磁感应强度与磁场力6. 安培环路定理a. 安培环路定理的描述与应用b. 毕奥-萨伐尔定律与法拉第电磁感应定律7. 电磁感应a. 磁通量与磁感应强度的关系b. 线圈中的电动势与互感现象8. 交流电与变压器a. 交流电与正弦交流电动势b. 变压器的构造与工作原理五、原子物理与量子物理1. 入射光与物质相互作用过程a. 光的散射与吸收b. 短波紫外光的电离2. 波粒二象性与电子的波动性a. 波粒二象性与电子的波动性b. 德布罗意假设与电子衍射实验3. 波尔模型与原子结构a. 波尔模型及其假设b. 吸收光谱与发射光谱4. 核物理a. 质子、中子与原子核的结构b. 放射现象与半衰期c. 核反应与核能源以上仅为物理高三全部知识点的概要介绍,具体内容需要在学习过程中进一步深入理解与掌握。
高考物理必背知识点总结(高三)

高考物理必背知识点总结(高三)高考物理必背知识点总结一、力物体的平衡1.力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因. 力是矢量。
2.重力(1)重力是由于地球对物体的吸引而产生的.[注意]重力是由于地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力. 但在地球表面附近,可以认为重力近似等于万有引力(2)重力的大小:地球表面G=mg,离地面高h处。
(3)重力的方向:竖直向下(不一定指向地心)。
(4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上.3.弹力(1)产生原因:由于发生弹性形变的物体有恢复形变的趋势而产生的. (2)产生条件:①直接接触;②有弹性形变.(3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体.在点面接触的情况下,垂直于面;在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面.①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等.②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆.(4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解.弹簧弹力可由胡克定律来求解.胡克定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量成正比,即F=kx.k为弹簧的劲度系数,它只与弹簧本身因素有关,单位是N/m.4.摩擦力(1)产生的条件:①相互接触的物体间存在压力;②接触面不光滑;③接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可.(2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向可以相同也可以相反.(3)判断静摩擦力方向的方法:①假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来没有相对运动趋势,也没有静摩擦力;若两物体发生相对运动,则说明它们原来有相对运动趋势,并且原来相对运动趋势的方向跟假设接触面光滑时相对运动的方向相同.然后根据静摩擦力的方向跟物体相对运动趋势的方向相反确定静摩擦力方向.②平衡法:根据二力平衡条件可以判断静摩擦力的方向.(4)大小:先判明是何种摩擦力,然后再根据各自的规律去分析求解.①滑动摩擦力大小:利用公式f=μF N 进行计算,其中FN 是物体的正压力,不一定等于物体的重力,甚至可能和重力无关.或者根据物体的运动状态,利用平衡条件或牛顿定律来求解.②静摩擦力大小:静摩擦力大小可在0与max 之间变化,一般应根据物体的运动状态由平衡条件或牛顿定律来求解.5.物体的受力分析(1)确定所研究的物体,分析周围物体对它产生的作用,不要分析该物体施于其他物体上的力,也不要把作用在其他物体上的力错误地认为通过“力的传递”作用在研究对象上.(2)按“性质力”的顺序分析.即按重力、弹力、摩擦力、其他力顺序分析,不要把“效果力”与“性质力”混淆重复分析.(3)如果有一个力的方向难以确定,可用假设法分析.先假设此力不存在,想像所研究的物体会发生怎样的运动,然后审查这个力应在什么方向,对象才能满足给定的运动状态.6.力的合成与分解(1)合力与分力:如果一个力作用在物体上,它产生的效果跟几个力共同作用产生的效果相同,这个力就叫做那几个力的合力,而那几个力就叫做这个力的分力.(2)力合成与分解的根本方法:平行四边形定则.(3)力的合成:求几个已知力的合力,叫做力的合成.共点的两个力(F 1 和F 2 )合力大小F的取值范围为:|F 1 -F 2 |≤F≤F 1 +F 2 .(4)力的分解:求一个已知力的分力,叫做力的分解(力的分解与力的合成互为逆运算).在实际问题中,通常将已知力按力产生的实际作用效果分解;为方便某些问题的研究,在很多问题中都采用正交分解法.7.共点力的平衡(1)共点力:作用在物体的同一点,或作用线相交于一点的几个力.(2)平衡状态:物体保持匀速直线运动或静止叫平衡状态,是加速度等于零的状态.(3)共点力作用下的物体的平衡条件:物体所受的合外力为零,即∑F=0,若采用正交分解法求解平衡问题,则平衡条件应为:∑Fx =0,∑Fy =0.(4)解决平衡问题的常用方法:隔离法、整体法、图解法、三角形相似法、正交分解法等等.二、直线运动1.机械运动:一个物体相对于另一个物体的位置的改变叫做机械运动,简称运动,它包括平动,转动和振动等运动形式.为了研究物体的运动需要选定参照物(即假定为不动的物体),对同一个物体的运动,所选择的参照物不同,对它的运动的描述就会不同,通常以地球为参照物来研究物体的运动.2.质点:用来代替物体的只有质量没有形状和大小的点,它是一个理想化的物理模型.仅凭物体的大小不能做视为质点的依据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版高中物理知识总结一、质点的运动(1)------直线运动1)匀变速直线运动1.平均速度V平=s/t(定义式)2.有用推论Vt2-Vo2=2as3.中间时刻速度Vt/2=V平=(Vt+Vo)/24.末速度Vt=Vo+at5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/26.位移s=V平t=Vot+at2/2=Vt/2t7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差}9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。
注:(1)平均速度是矢量;(2)物体速度大,加速度不一定大;(3)a=(Vt-Vo)/t只是量度式,不是决定式;(4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t 图/速度与速率、瞬时速度〔见第一册P24〕。
2)自由落体运动1.初速度Vo=02.末速度Vt=gt3.下落高度h=gt2/2(从Vo位置向下计算)4.推论Vt2=2gh注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。
(3)竖直上抛运动1.位移s=Vot-gt2/22.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2)3.有用推论Vt2-Vo2=-2gs4.上升最大高度Hm=Vo2/2g(抛出点算起)5.往返时间t=2Vo/g (从抛出落回原位置的时间)注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;(3)上升与下落过程具有对称性,如在同点速度等值反向等。
二、质点的运动(2)----曲线运动、万有引力1)平抛运动1.水平方向速度:Vx=Vo2.竖直方向速度:Vy=gt3.水平方向位移:x=Vot4.竖直方向位移:y=gt2/25.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V07.合位移:s=(x2+y2)1/2,位移方向与水平夹角α:tgα=y/x=gt/2Vo8.水平方向加速度:ax=0;竖直方向加速度:ay=g注:(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;(2)运动时间由下落高度h(y)决定与水平抛出速度无关;(3)θ与β的关系为tgβ=2tgα;(4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。
2)匀速圆周运动1.线速度V=s/t=2πr/T2.角速度ω=Φ/t=2π/T=2πf3.向心加速度a=V2/r=ω2r=(2π/T)2r4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合5.周期与频率:T=1/f6.角速度与线速度的关系:V=ωr7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)8.主要物理量及单位:弧长(s):米(m);角度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。
注:(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;(2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。
3)万有引力1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}2.万有引力定律:F=Gm1m2/r2 (G=6.67×10-11N?m2/kg2,方向在它们的连线上)3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)}4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r 地:地球的半径}注:(1)天体运动所需的向心力由万有引力提供,F向=F万;(2)应用万有引力定律可估算天体的质量密度等;(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。
三、力(常见的力、力的合成与分解)1)常见的力1.重力G=mg (方向竖直向下,g=9.8m/s2≈10m/s2,作用点在重心,适用于地球表面附近)2.胡克定律F=kx {方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)}3.滑动摩擦力F=μFN {与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)}4.静摩擦力0≤f静≤fm (与物体相对运动趋势方向相反,fm为最大静摩擦力)5.万有引力F=Gm1m2/r2 (G=6.67×10-11N?m2/kg2,方向在它们的连线上)6.静电力F=kQ1Q2/r2 (k=9.0×109N?m2/C2,方向在它们的连线上)7.电场力F=Eq (E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)8.安培力F=BILsinθ(θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0)9.洛仑兹力f=qVBsinθ(θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0)注:(1)劲度系数k由弹簧自身决定;(2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定;(3)fm略大于μFN,一般视为fm≈μFN;(4)其它相关内容:静摩擦力(大小、方向)〔见第一册P8〕;(5)物理量符号及单位B:磁感强度(T),L:有效长度(m),I:电流强度(A),V:带电粒子速度(m/s),q:带电粒子(带电体)电量(C);(6)安培力与洛仑兹力方向均用左手定则判定。
2)力的合成与分解1.同一直线上力的合成同向:F=F1+F2,反向:F=F1-F2 (F1>F2)2.互成角度力的合成:F=(F12+F22+2F1F2cosα)1/2(余弦定理)F1⊥F2时:F=(F12+F22)1/23.合力大小范围:|F1-F2|≤F≤|F1+F2|4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)注:(1)力(矢量)的合成与分解遵循平行四边形定则;(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;(3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;(4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。
四、动力学(运动和力)1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}4.共点力的平衡F合=0,推广{正交分解法、三力汇交原理}5.超重:FN>G,失重:FN<G {加速度方向向下,均失重,加速度方向向上,均超重}6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子〔见第一册P67〕注:平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。
五、振动和波(机械振动与机械振动的传播)1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}2.单摆周期T=2π(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r}3.受迫振动频率特点:f=f驱动力4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕5.机械波、横波、纵波〔见第二册P2〕6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕}注:(1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;(2)加强区是波峰与波峰或波谷与波谷相遇处,减弱区则是波峰与波谷相遇处;(3)波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式;(4)干涉与衍射是波特有的;(5)振动图象与波动图象;(6)其它相关内容:超声波及其应用〔见第二册P22〕/振动中的能量转化〔见第一册P173〕。
六、冲量与动量(物体的受力与动量的变化)1.动量:p=mv {p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同}3.冲量:I=Ft {I:冲量(N?s),F:恒力(N),t:力的作用时间(s),方向由F决定}4.动量定理:I=Δp或Ft=mvt–mvo {Δp:动量变化Δp=mvt–mvo,是矢量式}5.动量守恒定律:p前总=p后总或p=p’′也可以是m1v1+m2v2=m1v1′+m2v2′6.弹性碰撞:Δp=0;ΔEk=0 {即系统的动量和动能均守恒}7.非弹性碰撞Δp=0;0<ΔEK<ΔEKm {ΔEK:损失的动能,EKm:损失的最大动能}8.完全非弹性碰撞Δp=0;ΔEK=ΔEKm {碰后连在一起成一整体}9.物体m1以v1初速度与静止的物体m2发生弹性正碰:v1′=(m1-m2)v1/(m1+m2) v2′=2m1v1/(m1+m2)10.由9得的推论-----等质量弹性正碰时二者交换速度(动能守恒、动量守恒)11.子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失E损=mvo2/2-(M+m)vt2/2=fs相对{vt:共同速度,f:阻力,s相对子弹相对长木块的位移}七、功和能(功是能量转化的量度)1.功:W=Fscosα(定义式){W:功(J),F:恒力(N),s:位移(m),α:F、s间的夹角}2.重力做功:Wab=mghab {m:物体的质量,g=9.8m/s2≈10m/s2,hab:a与b高度差(hab=ha-hb)}3.电场力做功:Wab=qUab {q:电量(C),Uab:a与b之间电势差(V)即Uab=φa-φb}4.电功:W=UIt(普适式){U:电压(V),I:电流(A),t:通电时间(s)}5.功率:P=W/t(定义式) {P:功率[瓦(W)],W:t时间内所做的功(J),t:做功所用时间(s)}6.汽车牵引力的功率:P=Fv;P平=Fv平{P:瞬时功率,P平:平均功率}7.汽车以恒定功率启动、以恒定加速度启动、汽车最大行驶速度(vmax=P额/f)8.电功率:P=UI(普适式) {U:电路电压(V),I:电路电流(A)}9.焦耳定律:Q=I2Rt {Q:电热(J),I:电流强度(A),R:电阻值(Ω),t:通电时间(s)}10.纯电阻电路中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt11.动能:Ek=mv2/2 {Ek:动能(J),m:物体质量(kg),v:物体瞬时速度(m/s)}12.重力势能:EP=mgh {EP :重力势能(J),g:重力加速度,h:竖直高度(m)(从零势能面起)}13.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)(从零势能面起)}14.动能定理(对物体做正功,物体的动能增加):W合=mvt2/2-mvo2/2或W合=ΔEK{W合:外力对物体做的总功,ΔEK:动能变化ΔEK=(mvt2/2-mvo2/2)}15.机械能守恒定律:ΔE=0或EK1+EP1=EK2+EP2也可以是mv12/2+mgh1=mv22/2+mgh216.重力做功与重力势能的变化(重力做功等于物体重力势能增量的负值)WG=-ΔEP八、分子动理论、能量守恒定律1.阿伏加德罗常数NA=6.02×1023/mol;分子直径数量级10-10米2.油膜法测分子直径d=V/s {V:单分子油膜的体积(m3),S:油膜表面积(m)2}3.分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。