移动无线信道多径衰落的仿真
无线信道多径衰落的仿真

移动无线信道多径衰落的仿真摘要在移动通信迅猛发展的今天,人与人的交流越来越多的依赖于无线通信。
而无线信道的好坏直接制约着无线通信质量的提高,因此对无线信道的研究有利于提高通信传输速率。
本次课程设计用simulink对移动无线信道多径衰落特性进行了仿真,并且和理想传输环境下的情况进行比较得出了结论。
关键词:移动通信;无线信道;频率选择性衰落;多径传播移动通信是指双方或至少其中一方在运动状态中进行信息传递的通信方式,是实现通信理想目标的重要手段。
移动通信满足了人们在任何时间任何空间上通信的需求,同时,由于集成电路、计算机和软件工程的迅速发展为移动通信的发展提供了技术支持,移动通信的发展速度远远超过了人们的预料。
移动通信追求在任何时间任何地方以任何方式与任何人进行通信,也就是移动通信的理想境界——个人通信。
要实现这个理想,高效率、高质量是前提。
所以,除了研究发射机接收机可以达到目的外,对于无线信道的研究更为重要。
无线信道的好坏直接影响无线通信的质量和效率,对无线信道建立数学模型是一种科学的研究方法,通过建模可以了解影响信号传输质量的因素以及解决的方法。
无线信道中,小尺度衰落占有重要地位,所以,研究小尺度衰落的特性和建模方法对于无线信道的研究具有重大意义。
第1章移动通信概述 (1)1.1移动通信的发展史 (1)1.2移动通信的特点 (2)第2章无线信道的概念和特性 (3)2.1 无线信道的定义 (3)2.2 无线信道的类型 (4)2.3 无线移动信道的概念 (5)2.4 移动信道的特点 (5)第3章调制解调 (7)第4章系统仿真及结果分析 (8)4.1 QPSK 调制解调系统的仿真 (8)4.2 利用Matlab研究QPSK信号 (10)总结 (14)参考文献 (15)附录一: (16)附录二: (18)第1章移动通信概述1.1移动通信的发展史移动通信的发展大致经历了以下几个发展阶段:1.20世纪20~30年代:警车无线电调度电话(AM调幅),使用频率为2 MHz。
衰落信道的无线通信系统的分析与仿真

摘要为了更好的了解和掌握衰落信道中无线通信系统的性能,提出了基于MATLAB的无线衰落信道仿真模型,采用64QAM调制方式,信道编码用了(7,4)线性分组码,利用MATLAB中SIMULINK通信系统仿真模型库进行(7,4)线性分组码建模仿真,并调用通信系统功能函数进行绘制频谱及误码率与信噪比关系曲线图。
在完成衰落信道的性能分析之后,并与高斯信道下的性能进行对比。
关键字:SIMULINK 64QAM 无线衰落高斯信道仿真目录前言 (3)1 64QAM设计原理及衰落信道 (4)1.1 64QAM通信系统基本模型 (4)1.2 无线衰落信道 (4)1.3 64QAM调制技术 (5)1.4 64QAM调制的主要技术指标 (6)2 线性分组码基本原理 (7)2.1 线性分组码 (7)2.2 编码原理 (7)2.3 纠错原理 (9)3 SIMULINK 概述 (11)3.1 Simulink的模块操作 (11)3.1.1 主要模块的简介 (12)3.2 Simulink的功能 (12)4 衰落信道的性能分析与仿真 (14)4.1 SIMULINK中模块仿真 (14)4.1.1 信号源及模块参数 (15)4.1.2 线性分组码(7,4) (15)4.1.3 主要模块参数设置 (16)4.2 64QAM通信系统仿真 (17)4.3 性能分析 (19)总结 (20)参考文献 (21)致谢 (22)前言在卫星移动通信系统、陆地移动通信系统中其电波传播方式主要以视距传播为主。
由于多径和接收端运动等因素的影响,使得无线信道对接收信号在时间、频率和角度上造成了色散,这种色散表现在接收信号幅度上就是所谓的信号衰落,因此,多径效应对通信质量有着至关重要的影响。
正交幅度调制QAM是数字通信系统中一种常用的调制技术。
尤其是多进制QAM,比如64QAM有着非常高的频谱利用率。
它的调制效率高,对传输途径的信噪比要求高,具有带宽利用率高,抗噪声强等特点,适合有线电视电缆传输;我国有线电视网中广泛应用的DVB-C 调制即QAM 调制方式。
移动通信仿真实验

移动通信仿真实验移动通信仿真实验报告一、实验目的通过仿真,加深对移动通信中电波传播的路径损耗和阴影衰落的理解;通过仿真,掌握蜂窝网中频率复用、同频干扰等基本概念,加深对载波干扰比的理解;二、实验原理1.无线信道的衰落无线信道的衰落通常分为大尺度衰落和小尺度衰落。
大尺度衰落是由移动通信信道路径上的固定障碍物(建筑物、山丘、树林等)的阴影引起的,衰减特性一般服从d?n律,其中n称为路径损耗指数,平均信号衰落和关于平均衰落的变化具有对数正态分布的特征。
大尺度衰落主要影响到无线区的覆盖区域。
小尺度衰落由移动台运动和地点的变化而产生,主要特征是多径。
多径产生时间扩散,引起符号间码间干扰;运动产生多普勒频移,引起信号随机调频。
多径衰落严重影响信号传输质量,并且不可避免,只能采用抗衰落技术减少其影响。
1)阴影衰落在无线信道里,造成慢衰落的最主要原因是建筑物或其它物体对电波的遮挡。
在测量过程中,不同位置遇到的建筑物遮挡情况不同,因此接收功率也不同,这样就会观察到衰落现象。
由于这种原因造成的衰落也叫“阴影效应”或“阴影衰落”。
在阴影衰落的情况下,移动台被建筑物所遮挡,它收到的信号是各种绕射,反射,散射波的合成。
所以,在距基站距离相同的地方,由于阴影效应的不同,它们收到的信号功率有可能相差很大,理论和测试表明,阴影衰落一般表示为电波传播距离r的m次幂与表示阴影损耗的正态对数分量的乘积。
移动用户和基站间距离为r时,传播路径损耗和阴影衰落可以表示为l r,ξ=r m×10ξ10式中,ξ是由于阴影产生的对数损耗(单位为dB),ξ~N(0,σ)。
当用dB表示时,上式变为10lg l r,ξ=10m lg r+ξ式中m称为路径损耗指数,实验数据表明m=4,σ=8 dB是合理的。
2)传播路径损耗传播路径损耗:用于测量发射机与接收机之间信号的平均衰落,即定义为有效发射功率和平均接收功率之间的dB 差值,根据理论和测试的传播模型,无论室内或室外信道,平均接收信号功率随距离对数衰减,这种模型已被广泛地采用。
信道仿真器原理及在移动通信测试中的典型应用

信道模型: 信道仿真 器能够模 拟的信道 模型,如 自由空间、 多径信道 等
Part Two
信道仿真器在移动 通信测试中的应用真实环境:信道仿真器可以模拟真实环境中的信道特性,为移动通信 测试提供更接近实际的测试环境。 提高测试效率:信道仿真器可以快速生成各种信道条件,提高测试效率, 减少测试时间。
优势:能够模拟 真实信道环境, 提高测试准确性
优势:支持多种 通信标准和协议, 满足不同测试需 求
挑战:需要大量 的计算资源和时 间,对硬件要求 高
挑战:需要专业 的技术人员进行 设置和维护,对 操作人员要求高
Part Three
信道仿真器的未来 发展
信道仿真器技术发展趋势
更高精度的仿真:提高信道模型的准确性和仿真结果的可靠性
信道仿真器是 一种模拟无线 通信信道环境
的设备
工作原理:通 过模拟无线信 道中的各种参 数,如频率、 功率、延迟等, 来模拟无线信
道环境
应用:在移动 通信测试中, 信道仿真器可 以用来模拟各 种无线信道环 境,以便于测 试移动通信设
备的性能
特点:信道仿 真器可以模拟 各种复杂的无 线信道环境, 包括多径、衰 落、干扰等。
更广泛的应用领域:从移动通信扩展到其他无线通信领域,如卫星通信、物联网等
更智能的仿真:引入人工智能技术,提高仿真效率和智能化程度 更开放的平台:提供开放的API和SDK,方便用户进行二次开发和定制化应用
信道仿真器在移动通信测试中的未来应用前景
物联网技术的发展:信道仿 真器在物联网测试中的需求 不断增加
降低测试成本:信道仿真器可以减少对真实环境的依赖,降低测试成本。
提高测试准确性:信道仿真器可以精确控制信道条件,提高测试准确性。
多径衰落下通信系统模型研究与仿真分析的开题报告

多径衰落下通信系统模型研究与仿真分析的开题报告一、选题背景及意义随着移动通信技术不断发展,多径衰落成为通信系统中一个重要的问题。
多径衰落现象是指信号在传播过程中受到多个路径的影响,导致接收端收到的信号存在多个版本,并且它们的相位和幅度都可能不同,从而产生失真和干扰,影响通信质量。
因此,研究多径衰落下通信系统模型对于提高通信的可靠性和性能至关重要。
目前,多径衰落下通信系统模型研究已经成为通信领域的一个重要研究方向。
因为相对于理论分析,仿真分析是一种更为直观、更能接近实际情况、更有效的研究方法,因此,研究多径衰落下通信系统模型的仿真分析具有很高的应用和推广价值。
本论文的研究内容涵盖对多径衰落下通信系统模型的建立和仿真分析,旨在为移动通信系统的设计和优化提供一定的理论指导和技术支持。
二、研究目标和内容本论文的研究目标是针对多径衰落下通信系统模型的特点,建立一套完整、准确、高效的仿真分析体系,并在此基础上进行实际应用。
具体研究内容如下:1. 多径衰落的数学模型分析:针对多径衰落下通信系统的数学模型进行分析和研究,探索多路径干扰对通信系统的影响机理,揭示多径衰落下的信道特性。
2. 通信信号的仿真设计:基于Matlab和Simulink平台,设计通信信号的模拟程序,将多径衰落下的通信信号进行仿真,建立通信系统的模型。
3. 通信系统的性能评估:建立多径衰落下的通信信道模型,根据模型进行信号传输的仿真分析,对通信系统的误码率、误比特率等性能指标进行评估。
4. 仿真系统的测试与验证:根据通信系统的架构和性能评估结果,测试和验证仿真系统的正确性和准确性,验证仿真系统的可靠性和有效性。
三、研究方法和技术路线为了实现以上研究目标和内容,本论文将采用如下技术路线和研究方法:1. 将多径衰落下的通信信号,视为一个混合系统,利用时变卷积积分模型对其进行数学建模与仿真。
2. 建立移动通信信道模型并进行仿真,根据仿真结果评估通信系统的性能指标。
浅析无线多径信道建模与仿真技术

浅析无线多径信道建模与仿真技术摘要:对于无线通信,衰落是影响系统性能的重要因素,而不同形式的衰落对于信号产生的影响也不相同。
本文在阐述移动多径信道特性的基础上,建立了不同信道模型下多径时延效应的计算机仿真模型,不仅针对不同信道衰落条件下多径衰落引起的多径效应进行仿真,而且进一步阐述了多径效应的影响。
本文运用MATLAB语言对有5条固定路径的多径信道中的QPSK系统进行BER性能仿真。
关键词:多径衰落信道;瑞利/莱斯分布;码间干扰;QPSK;MATLAB仿真;BER移动通信技术越来越得到广泛的应用,在所有移动通信基本理论和工程技术的研究中,移动无线信道的特性是研究各种编码、调制、系统性能和容量分析的基础。
因此,如何合理并且有效地对移动无线信道进行建模和仿真是一个非常重要的问题。
1移动无线信道无线信道是最为复杂的一种信道。
无线传播环境是影响无线通信系统的基本因素。
信号在传播的过程中,受各种环境的影响会产生反射、衍射和散射,这样就使得到达接收机的信号是许多路径信号的叠加,因而这些多径信号的叠加在没有视距传播情况下的包络服从瑞利分布。
当多径信号中包含一条视距传播路径时,多径信号就服从莱斯分布。
在存在多径传输的信道中,由于各路径传输时间延迟不一致,以及传输特性不理想,加上信道噪声的影响,使得接受信号在时间上被展宽,从而延伸到临近码元上去,使得符号重叠,这样的信道会造成码间干扰。
统计模型来说明多径强度从局部特性到全局特性的转变。
因为多次反射或折射而服从对数正态分布的主波,在移动终端所在地方因为当地物体的散射,而分裂成几条子径。
每条子径假定有大概相等的幅度和随机均匀分布的相位。
而且,它们到达移动终端时有大概相同的延时。
这些成分的包络之和服从瑞利分布,而瑞利分布的参数服从对数正态分布,从而构成一个混合分布。
2 多径衰落信道建模为刻画多径衰落信道人们提出了各種各样的模型,几乎都使用了随机过程来描述衰落。
描述多径的模型有两类,离散多径模型(有限数量的多径分量)和散射多径模型(多径分量的连续体)。
毕业论文:OFDM通信系统抗多径衰落性能仿真

OFDM 通信系统抗多径衰落性能仿真陈晓炜王家慧谢丽惠摘要:正交频分复用(OFDM )是第四代移动通信的核心技术。
本文先简要介绍了OFDM的基本原理,然后进行了OFDM 添加循环前缀后可以抗多径干扰的数学推导,在给出OFDM 系统模型的基础上,用MA TLAB 语言对系统进行了仿真。
最后给出不同信道下,循环前缀、均衡技术对系统误码率影响的比较曲线,并得出结论。
关键词:正交频分复用,仿真,循环前缀,均衡Simulation of OFDM communication systemanti-multipath-degradation performanceCHEN Xiao-wei, WANG Jia-hui, XIE Li-huiAbstract : OFDMis the key technology of 4G mobile communication. In this article OFDMb asic principle is briefly introduced. Then, a mathematical derivation is given to reveal the influence of CP on the system. Based on the given system model, OFDMs ystem is computer simulated with MATHLAB language. Finally, the BER curves of CP and equalizer are given and compared. A conclusion is done at last.Keyword: OFDM, simulation, CP, equalizer背景现代移动通信的技术发展趋势之一是移动宽带化,移动系统的宽带接入基本上是发生在靠近用户的最后一公里内,这个范围内的无线信道环境是很恶劣的,会存在多径传输以及由此引发的时间色散效应。
无线移动通信中的信道建模与仿真

无线移动通信中的信道建模与仿真一、引言随着移动通信技术的不断发展,人们对信道建模和仿真的需求也越来越高。
信道建模和仿真是无线通信系统设计中必不可少的一环,是保证通信系统性能的重要因素。
这篇文章将介绍信道建模和仿真在无线移动通信中的应用,以及信道建模和仿真的一些基本概念和方法。
二、信道建模1. 信道模型的概念信道模型是指对无线通信信道进行描述和建模的数学模型。
在实际通信中,无线信号在传输过程中会受到多种因素的影响,如多径、衰落、干扰等,这些因素对无线信号的传输造成了很大的影响,因此,对无线信道进行建模是保证通信系统性能的关键。
2. 信道参数的描述信道参数通常包括信道增益、时延、多普勒频移、相位等。
其中,信道增益是指信号在传输过程中所受到的衰落程度,时延是指信号从发射端到接收端所需要的时间,多普勒频移是由于接收端和发射端之间的运动速度而引起的信号频率偏移,相位是指信号的相位差。
3. 信道建模方法信道建模方法主要包括理论分析、数值模拟和实测建模三种方法。
其中,理论分析主要是通过数学模型对无线信道的特性进行推导和描述。
数值模拟方法是通过计算机程序对无线信道进行模拟和仿真。
实测建模方法则是通过实际测量得到无线信道的特性参数。
三、信道仿真1. 仿真概念信道仿真是通过计算机程序对无线信道进行模拟和实验,以调查和预测无线通信系统的性能。
仿真是一个相对较为简单的方法,可以帮助设计人员快速验证设计方案的可行性和正确性。
2. 仿真方法信道仿真方法主要包括离散事件仿真和连续仿真两种方法。
其中,离散事件仿真是指通过模拟在时间上出现的离散事件进行仿真。
连续仿真则是通过模拟在时间上连续变化的信号进行仿真。
3. 仿真参数信道仿真参数通常包括信噪比、误码率、比特误差率等。
其中,信噪比是指信号功率和噪声功率之间的比值,误码率是指在传输过程中产生的误码比率,比特误差率是指在传输过程中每个比特产生误码的比率。
四、移动通信中的信道模型和仿真1. 多径衰落信道模型多径衰落信道是指无线信号在传输过程中由于多种因素的影响而经历多条路径从发射端到达接收端,导致信号发生衰落的过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
*******************实践教学*******************兰州理工大学计算机与通信学院2011年秋季学期移动通信课程设计题目:移动无线信道多径衰落的仿真专业班级:姓名:学号:指导教师:成绩:在移动通信迅猛发展的今天,人与人的交流越来越多的依赖于无线通信。
而无线信道的好坏直接制约着无线通信质量的提高,因此对无线信道的研究有利于提高通信传输速率。
本次课程设计用simulink对移动无线信道多径衰落特性进行了仿真,并且和理想传输环境下的情况进行比较得出了结论。
关键词:移动通信;无线信道;频率选择性衰落;多径传播移动通信是指双方或至少其中一方在运动状态中进行信息传递的通信方式,是实现通信理想目标的重要手段。
移动通信满足了人们在任何时间任何空间上通信的需求,同时,由于集成电路、计算机和软件工程的迅速发展为移动通信的发展提供了技术支持,移动通信的发展速度远远超过了人们的预料。
移动通信追求在任何时间任何地方以任何方式与任何人进行通信,也就是移动通信的理想境界——个人通信。
要实现这个理想,高效率、高质量是前提。
所以,除了研究发射机接收机可以达到目的外,对于无线信道的研究更为重要。
无线信道的好坏直接影响无线通信的质量和效率,对无线信道建立数学模型是一种科学的研究方法,通过建模可以了解影响信号传输质量的因素以及解决的方法。
无线信道中,小尺度衰落占有重要地位,所以,研究小尺度衰落的特性和建模方法对于无线信道的研究具有重大意义。
第1章移动通信概述 (1)1.1移动通信的发展史 (1)1.2移动通信的特点 (2)第2章无线信道的概念和特性 (4)2.1 无线信道的定义 (4)2.2 无线信道的类型 (4)2.2.1 传播路径损耗模型(Propagation Path Loss Model) (4)2.2.2 大尺度传播模型(Large Scale Propagation Model) (5)2.2.3 小尺度传播模型(Small Scale Propagation Model) (5)2.3 无线移动信道的概念 (5)2.4 移动信道的特点 (6)2.4.1 移动通信信道的3个主要特点 (6)2.4.2 移动通信信道的电磁波传输 (6)2.4.3 接收信道的3类损耗 (6)2.4.4 三种快衰落(选择性衰落)产生的原因 (7)第3章调制解调 (8)第4章系统仿真及结果分析 (9)4.1 QPSK 调制解调系统的仿真 (9)4.2 利用Matlab研究QPSK信号 (11)总结 (15)参考文献 (16)附录一: (17)附录二: (19)第1章移动通信概述1.1移动通信的发展史移动通信的发展大致经历了以下几个发展阶段:1.20世纪20~30年代:警车无线电调度电话(AM调幅),使用频率为2 MHz。
2.20世纪40~50年代:人工接续的移动电话(FM调频),单工工作方式,使用频段为150 MHz及450 MHz。
特别值得一提的是1947年Bell实验室提出了蜂窝的概念。
3.20世纪60年代:自动拨号移动电话,全双工工作方式,使用频段为150 MHz及450 MHz。
1964年美国开始研究更先进的移动电话系统(AMTS)。
4.20世纪70~80年代:AMPS、TACS分别在美国、英国投入使用。
使用频段为800/900 MHz(早期曾使用450 MHz),全自动拨号,全双工工作,具有越区频道转换,自动漫游通信功能。
频谱利用率、系统容量和话音质量都有明显的提高。
5.20世纪90年代:GSM数字移动通信系统和窄带CDMA(IS-95A)数字移动通信系统及卫星移动通信投入使用。
6.21世纪初:基于窄带IS-95CDMA技术的宽带CDMA技术的cdma2000、基于日本无线工业广播协会(ARIB)支持的纯W-CDMA和欧洲电信标准协会(ETSI)制定的UTRA 两个独立建议的W-CDMA、由我国提出的时分同步CDMA(TD-SCDMA)等第三代(3G)系统(IMT-2000)陆续开始投入使用或建立试验网。
其中,第三代(3G)系统使用频段为1885~2025 MHz,2110~2200 MHz,全球统一标准。
在使用的150MHz、450MHz、900MHz三个频段的具体收发频率间隔分别为: 150MHz的收发频率间隔为5.7MHz;450 MHz 的收发频率间隔为10MHz;900MHz 的收发频率间隔为45 MHz。
20世纪80年代发展起来的模拟蜂窝移动电话系统,人们把它称为第一代移动通信系统。
其主要技术是模拟调频、频分多址,主要业务是电话。
代表这一系统的有美国的AMPS,英国的TACS,北欧的NMT-900等。
模拟系统的主要缺点是:频谱利用率低,不能与ISDN兼容,保密性差,以及移动终端要进一步实现小型化、低功耗、低价格的难度都较大。
美国的AMPS最早是由美国于1971年开始研制并投入军用的。
1973年,美国Motorola公司向美国联邦通信委员会(FCC)提出申请AMPS(Advanced Mobile Phone Service)系统,经批准于1983年投入使用。
1.2移动通信的特点移动通信是指通信双方至少有一方在移动中进行信息传输和交换,这包括移动体和移动体之间的通信,移动体和固定体之间的通信。
1.移动通信必须利用无线电波进行信息传输这种传播媒质允许通信中的用户可以在一定范围内自由活动,其位置不受束缚,不过无线电波的传播特性一般都很差。
首先,移动通信的运行环境十分复杂,电波不仅会随着传播距离的增加而发生弥散损耗,并且会受到地形、地物的遮蔽而发生“阴影效应“,而且信号经过多点反射,会从多条路径到达接收地点,这种多径信号的幅度、相位和到达时间都不一样,它们相互叠加会产生电平衰落和时延扩展;其次,移动通信常常在快速移动中进行,这不仅会引起多普勒频移,产生随机调频,而且会使得电波传播特性发生快速的随机起伏,严重影响通信质量。
因此,移动通信系统必须根据移动信道的特征,进行合理的设计。
2.移动通信是在复杂的干扰环境中运行的除去一些常见的外部干扰,如天电干扰、工业干扰和信道噪声外,系统本身和不同系统之间,还会产生这样或那样的干扰。
因为在移动通信系统中,常常有多部用户电台在同一地区工作,基站还会有多部收发信机在同一地点上工作,这些电台之间会产生干扰。
随着移动通信网所采用的制式不同,所产生的干扰也会有所不同。
归纳起来说,这些干扰有邻道干扰、互调干扰等。
3.移动通信可以利用的频谱资源非常有限,而移动通信业务量的需求却与日俱增如何提高通信系统的通信容量,始终是移动通信发展中的焦点。
为了解决这一矛盾,一方面要开辟和启用新的频段;另一方面要研究各种新技术和新措施,以压缩信号所占的频带宽度和提高频谱利用率。
可以说,移动通信无论是从模拟向数字过渡,还是再向新一代发展,都离不开这些新技术和新措施的支撑。
此外,有限频谱的合理分配和严格管理是有效利用频谱资源的前提。
4.移动通信的网络结构多种多样,网络的管理和控制必须有效根据通信地区的不同需要,移动通信网络可以组成带状、面状或立体状等,它能单网运行,也可以多网并行并实现互连互通。
为此,移动通信网络必须具备很强的管理和控制功能,诸如用户的登记和定位,通信链路的建立和拆除,信道的分配和管理,通信的计费、鉴权、安全和保密管理以及用户过境切换和漫游的控制等。
5.移动通信设备必须适于在移动环境中使用对手机的要求是体积小、重量轻、省电、操作简单的携带方便。
车载台和机载台除要求操作简单和维修方便外,还应保证在震动、冲击、高低温变化等恶劣环境中正常工作。
第2章无线信道的概念和特性2.1 无线信道的定义各类信号从发射端发送出以后,在到达接收端之前经历的所有路径,统称为信道。
其中,如果传输的是无线电信号,电磁波所经历的路径,我们则称之为无线信道。
与其它通信信道相比,无线信道是最为复杂的一种,其衰落特性取决于无线电波传播环境。
不同的环境,其传播特性也不尽相同。
无线信道可能是很简单的直线传播(Line of Sight, LOS),也可能会被许多不同的因素所干扰,例如:信号经过建筑物,山丘,或者树木等反射而产生的多径效应,使信号放大或衰落。
在无线信道中,信号衰落是经常发生的,衰落深度可达30dB。
对于数字传输来说,衰落使比特误码率(BER)大大增加。
这种衰落现象严重恶化接收信号的质量,影响通信可靠性。
移动信道与非移动点对点无线信道相比,信号传输的误比特率前者比后者高106倍。
另外,在陆地移动系统中,移动台处于城市建筑群之中或处于地形复杂的区域,其天线将接收从多条路径传来的信号,再加移动台本身的运动,使得信号产生多普勒效应,并且信道的特性也随时间变化而变化,增加了信号的不确定性,使得移动台和基站之间的无线信道多变且难以控制。
所以,与传统模型相比,无线信道多径数目增多,时延扩展加大,衰落加快。
2.2 无线信道的类型在无线通信系统中,无线信道通常是利用信道的统计特性来分析和仿真的,一般来说,整个无线信道对信号产生的影响,可以分为以下三大类:2.2.1 传播路径损耗模型(Propagation Path Loss Model)一般来说,可以把接收信号的功率或者传播路径的损耗看作一个随机变量,而传播路径损耗模型是用来描述接收信号的平均功率或是传播路径的平均损耗,平均功率会随着传播距离的增加而减少,而传播路径的损耗会随着传播距离的增加而增加,因此,这个随机变量是传播距离的函数,随着距离的改变,会有不同的平均值或中间值。
这种模型中较常使用的模型有:自由空间传播模型(Free Space Propagation Model)、对数距离路径损耗模型(Log-Distance Path Loss Model)及哈他模型(Ha Ta Model)。
2.2.2 大尺度传播模型(Large Scale Propagation Model)这个模型是用来描述信号经过长距离传播的变化(几百个波长或更多波长),主要探讨各类地形与地物对传播信号所产生的遮蔽效应(Shadowing Effect)。
遮蔽效应可以用一个随机变数来描述,大部分的文献都一致的假设:遮蔽效应会使接收到的信号功率呈现对数常态分布(Log–Normal Distribution)。
对数-常态遮蔽效应指的就是:在相同的传收距离下,不同接收机所接收到的信号强度(单位为dB)将呈现高斯或是常态分布,这也就是说传播路径所造成的功率损耗(以dB为单位)是呈现高斯或是常态分布的,而且这个随机变数标准差σ的单位也是dB。
大尺度传播中的衰落包括:信号经过一段距离时信号的平均衰落。
以及大型物体(如山脉或摩天大楼)导致的信号衍射而产生的衰落,并且大尺度衰落的信号的平均功率是缓慢变化的。