电子技术基本电路图

合集下载

电力电子技术相关图

电力电子技术相关图
GTR
_ R9 B 311 C +
VD7 VT 4
E
D
VD5 C3
GTR VT5 R15
VD8
Ui
R5
R7 R 13
e
U CC U CC
VD1 R1 VD2 VT2 R3
U CC
R5
ts, tf ( s ) 10 8
IGBT
T R2
R2 VT1 R4
IGBT 霍尔 传感器 6 4 2 0 20 40 ts, tf
U(控制电压) uSU c 1.5kΩ 5.1kΩ 1μF
u SV
uSW
-15V
2.2kΩ 15kΩ Ub 10kΩ U相
16 15 14 13 12 11 10 9 1 2 3 4 5 6 7 8
10kΩ 0.01μF 0.47μF 30kΩ
V相
W相
KC04
KC04
0.47μF
30kΩ
+15V
VT1 1号
整形
R5 C4 VD1 VT2 R6
放大
R8 VD2 R9 VT5 VT4 VT3
+ +
5
+5V
GTO
C8 VD3 VD4 R10
VT1 R3 R2
+
R7
C R 20 C11 R19 VT9
C6
C7
D2
R11
C9
R14 VT7
C 10 R 18 VD5 R16
+
+
4
13V +
C 13 C 1 C12 VT10 R22
CM
P-MOSFET
R1 C1
P-MOSFET

电路与模拟电子技术技术基础_图文

电路与模拟电子技术技术基础_图文

线性:VCR曲线为通过原点的直线。 否则,为非线性。
非时变(时不变): VCR曲线不随时间改变而 改变。 否则,为时变。 即: VCR曲线随时间改变而改变。
电阻元件有以下四种类型:
u-i特性 时不变 时变
线性 u
i u t1 t2
i
非线性 u i
u t1 t2 i
电阻实物
精密型金属膜电阻器
金属氧化皮膜电阻器
直流电流——大小、方向恒定, 用大写字母 I 表示。
参考方向--人为假设,可任意设定,但 一经设定,便不再改变。
参考方向的两种表示方法:
1 在图上标箭头; i
2 用双下标表示
a
b
在参考方向下,若计算值为正,表明
电流真实方向与参考方向一致;若计
算值为负,表明电流真实方向与参考
方向相反。
1.2.2 电压和电压的参考方向
信号处理 (中间环节)
接受转换信 号的设备
(负载)
1.2 电 路 变 量
1.2.1 电流和电流的参考方向
电流方向—正电荷运动的方向
电流参考方向—任选一方向为电流正方向。
如:
a
I
ba
I
b
正值
负值
严格定义:电荷在导体中的定向移动形 成电流。电流强度,简称电流i(t),大 小为:
单位:A , 1安 = 1 库 / 秒

(R=0)时,相当于导线,“短路”
注意:u与 i 非关联时 ,欧姆定理应改写为
例 分别求下图中的电压U或电流I。
3A 2 +U 解:关联
I2 + -6V -
非关联
瞬时功率:
电阻是耗能元件,
是无源元件。

《电路与电子技术》课件.

《电路与电子技术》课件.
文字符号和图形符号
FU
RT14圆筒形熔断器
熔断器底座
螺旋式熔断器
熔体额定电流的选择: 1.照明线路等没有冲击电流的负载 熔体额定电流≥被保护设备的额定电流 2. 一台电动机的熔体 熔体额定电流≥ 电动机的起动电流 2.5 如果电动机起动频繁,则为 电动机的起动电流 熔体额定电流≥ 1.6 ~ 2 3. 多台电动机合用的总熔体 熔丝额定电流 = (1.5 ~ 2.5)容量最大的电动机额定电流 +其余电动机额定电流之和
SB
KM
KM
控制电路
M 3~
2. 单向运行控制电路
Q
FU SBSTP
FR SBST KM
KM
工作过程:按 下SBST → KM 得电→电动机 起动→按下 SBSTP → KM断 电→电动机停 止。
KM
FR
M 3~
过 载 保 护
自锁
用接触器本 身的触点使其线 圈保持通电的环 节称自锁环节。
3. 多地控制电路
7.1.6 热继电器
用途:主要用于电动机的过载保护。
i
热元件
弹簧
i
双金属片
动断 触点 复位 按钮
扣板
热继电器原理图
热继电器的图 形和文字符号
FR
热元件
动断触点
7.1.7 中间继电器
用途:用来传递或转换信号,或同时控制多个 电路,也可以直接控制小容量电动机或其它电气执 行元件。
结构:与交流接触器基本相同,只是容量小些, 触点多些。 选用:中间继电器主要考虑电压等级和触点数 量。
KMR
7.2.3 时限控制
时限控制:按一定的时间间隔来接通或断开控 制电路。 1. 时间继电器 分类:电磁式、空气阻尼式、电子式等类型。

电工电子技术基础课件PPT课件

电工电子技术基础课件PPT课件
实验室使用的电源有直流电源和交流电源。
万电用表工电子技术与技能
指针式万用表 1.指针式万用表的结构 主要由表头、测量线路、转换开关三部分组成。外形结 构如图3.12所示。 使用指针式万用表,主要注意下面几点: (1)使用前,应将表头指针调零。 (2)测量前,应根据被测电量的项目和大小,将转换开关 拨到合适的位置。 (3)测量完毕,应将转换开关拨到最高交流电压档,有的 万用表(如500型)应将转换开关拨到标有“.”的空档 位置。
电工电子技术与技能
直流电流的测量
通常采用磁电式电流表。 直流电流表有正、负极性,测量时,必须将电流表的正端钮接被测 电路的高电位端,负端钮接被测电路的低电位端,如图3.5所示。 被测电流超过电流表允许量程时,须采取措施扩大量程。对磁电式 电流表,可在表头上并联低阻值电阻制成的分流器,如图3.6所示。 对电磁式电流表,可通过加大固定线圈线径来扩大量程。也可将固 定线圈接成串、并联形式做成多量程表,如图3.7所示。
电. 工直电流电子压技的术测量与技能
测量方法与交流电压基本相同,但要注意下面二点: (1)与测量交流电压一样,测量前要将转换开关拨到直 流电压的档位上,在事先不清楚被测电压高低的情况下, 量程宜大不宜小;测量时,表笔要与被测电路并联,测 量中不允许拨动转换开关。 (2)测量时,必须注意表笔的正负极性。红表笔接被测 电路的高电位端,黑表笔接低电位端。若表笔接反了, 表头指针会反打,容易打弯指针。如果不知道被测点电 位高低,可将表笔轻轻地试触一下被测点。若指针反偏, 说明表笔极性反了,交换表笔即可。
电电流工表电与子电压技表术与技能
电流表又称为安培表,用于测量电路中的电流。 电压表又称为伏特表,用于测量电路中的电压。 按其工作原理的不同,分为磁电式、电磁式、电动式三种类型,其 原理与结构分别如图3.2(a)、(b)、(c)所示。

电路与电子技术基础 第1章

电路与电子技术基础 第1章

第一章 电路与元件
关联参考方向:电流参考方向与电压参 考方向一致(假定电流方向与假定电压 降方向一致)。
注意: 电压、电流的参 考方向可任意假定互 不相关,但为了分析 电路时方便,常常采 用关联参考方向。
第一章 电路与元件
关联参考方向举例 (associated reference direction)
第一章 电路与元件
第一章 电路与元件
主要内容: 1、电路变量(电流、电压、功率) 2、电路基本定律(欧姆定律、KCL、 KVL) 3、电阻、电源(独立源、受控源) 4、电路的三种状态(开路、短路、 带负载) 注意:电位(电势)
第一章 电路与元件
电路分析的主要任务在于求解电路物 理量,其中最基本的电路物理量就是 电流、电压和功率。
第一章 电路与元件
1.4 理 想 电 源 不管外部电路如何,其两端电压 总能保持定值或一定的时间函数的电 源定义为理想电压源。
图 1.4-1 理想电压源模型
第一章 电路与元件
(1) 对任意时刻t1, (直流)理想电压源 的端电压与输出电流的关系曲线(称伏安特 性)是平行于i轴、其值为us(t1)的直线,如图 1.4-2 所示。 理想电压源的内阻多大? 内阻=伏安曲线斜率
第一章 电路与元件
kW·h读作千瓦小时,它是计量电 能的一种单位。1000W的用电器具加电 使用1h,它所消耗的电能为1kW·h, 即 日常生活中所说的1度电。有了这一概 念,计算本问题就是易事。
第一章 电路与元件
开路和短路
• 开路:两点之间的电阻为无穷大。 根据i = u/R,开路时无论电压多大,电 流恒为零。 • 短路:两点之间的电阻为零。 根据u = i R,短路时无论电流多大,电 压恒为零。

电工电子技术_基本放大电路

电工电子技术_基本放大电路

8.1
7
共发射极放大电路
图8.3
放大电路动态工作电流、电压的变化情况
8.2
8
共发射极放大电路的静态分析
直流通路及静态工作点
8.2.1
放大电路不加输入信号(ui=0)时的 状态称为静态。静态时放大电路中只有 直流电源作用,由此产生的所有电流、 电压都为直流量,所以静态又称为直流 状态。静态时三极管各极电流和极间电 压分别用IB、UBE、IC、UCE表示。这些量 在三极管的输入、输出特性曲线上各确 定了一点,该点称为静态工作点,简称 Q点。 静态时直流电流通过的路径称为直 流通路。由于C1、C2的隔直流作用,放 大电路的直流通路如图8.4所示。
这里直流分量是正常放大的基础,交流分量是放大的对象,交流量搭 载在直流上进行传输和放大。如果三极管工作总是处于放大状态,它们的 变化规律是一样的。放大电路的动态分析关注的就是交流信号的传输和放 大情况,动态分析的电路指标主要包括电压放大倍数、输入电阻、输出电 阻等。
8.3
12
共发射极放大电路的动态分析
图8.1
共发射极放大电路
8.1
5
共发射极放大电路
2.各元器件的作用 (1)晶体管VT (2)集电极电源EC (3)集电极电阻RC (4)基极电源EB和基极偏置电阻RB (5)电容C1和C2 由于该电路使用两组电源,很不经 济。若只使用电源EC,将RB连到EC上, 只要适当调整RB阻值,保证发射结正偏 ,产生合适的基极偏流IB,就可省掉电 源EB。另外,为了使作图简洁,常不画 出电源回路,只标出EC正极对地的电位 值UCC和极性(“+”或“-”),如图8.2 所示。
图8.8
共发射极放大电路的微变等效电路
8.3

电力电子技术整流波形图

电力电子技术整流波形图
波形图的特征分析包括对电压、电流波形的形状、幅度、频率和相位进行分析。这些特征反映了整流 电路的工作状态和性能。
分析波形图的特征可以帮助我们了解电路的工作效率、稳定性以及可能存在的问题。例如,如果输出 电压的波形出现畸变,可能表明电路存在谐波干扰或热稳定性问题。
波形图的优化建议
根据对波形图的解读和特征分析,可以提出针对性的优化建 议。优化建议可能涉及电路参数的调整、元件的更换或改进 电路拓扑结构等。
实例二:三相整流波形图
总结词
三相整流波形图在电力电子技术中常用 于描述三相整流电路的工作状态。
VS
ቤተ መጻሕፍቲ ባይዱ
详细描述
三相整流电路通常用于大功率场合,如电 动机驱动、电网系统等。三相整流波形图 能够展示三相输入电压、输出电压和电流 的波形,帮助工程师了解电路的工作原理 和性能,并优化电路设计。
实例三:PWM整流波形图
更高效和更可靠
未来整流波形图将更加注重高效和可靠,通过优化控制策 略和改进电路拓扑结构,提高整流系统的稳定性和可靠性 。
更广泛的应用领域
随着电力电子技术的不断发展和应用领域的扩大,整流波 形图将应用于更多领域,如电动汽车、可再生能源、智能 电网等。
THANKS FOR WATCHING
感谢您的观看
电力电子技术整流波 形图
contents
目录
• 整流技术简介 • 整流波形图的基本概念 • 整流波形图的解析 • 整流波形图的应用实例 • 整流波形图的发展趋势与展望
01
整流技术简介
整流技术的定义
01
整流技术是一种将交流(AC)电 源转换为直流(DC)电源的电力 电子技术。
02
它通过利用二极管的单向导电性 ,将交流电的正负半周分别转换 为直流电的正负极。

《电工电子技术》(曹建林) PPT课件:7.3 基本运算电路

《电工电子技术》(曹建林)  PPT课件:7.3 基本运算电路

解:由式 uO= 1+ —Rf uI 可得 R1
uO=
1+ R—f R1
uI =
20
1+——
×1=11(V)
2
iF Rf
i1 R1 u-


uI
R2 u+ +
+
uO
图7.3.2 同相比例运算电路
7.3 基本运算电路
反相比例运算电路
同相比例运算电路
加法、减法运算电路
1.加法运算电路
在反相输入端增加若干个输入信号组成的 电路,就构成反相加法运算电路,如图7.3.3所 示。根据“虚短” 、“虚断”、 “虚地”得
i11=
—uI1 R11
i12=
u—I2 R12
iF=
i11+i12
=—u—I1 + R11
—uI—2 =R12
—uO— Rf
于是,输出电压为
uO= − —RR—f11uI1+ —RR—1f2uI2
(7.3.7)
当R11=R12 =Rf时,则uO=−(uI1+uI2)。
uI1 i11
R11
iF
Rf
uI2 i12
uO=uI2− uI1
(7.3.11)
7.3 基本运算电路
反相比例运算电路
同相比例运算电路
加法、减法运算电路
例 图7.3.4减法电路中,设Rf=R1=R2= R3,UI1=3V,
UI2=1V。求输出电压UO。
解:因为Rf=R1=R2= R3,故可得 UO=UI2−UI1=1−3=−2(V)

i1= iF

i1
=
—u—I , R1
iF
=
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工程师应该掌握的20个模拟电路
对模拟电路的掌握分为三个层次。

初级层次是熟练记住这二十个电路,清楚这二十个电路的作用。

只要是电子爱好者,只要是学习自动化、电子等电控类专业的人士都应该且能够记住这二十个基本模拟电路。

中级层次是能分析这二十个电路中的关键元器件的作用,每个元器件出现故障时电路的功能受到什么影响,测量时参数的变化规律,掌握对故障元器件的处理方法;定性分析电路信号的流向,相位变化;定性分析信号波形的变化过程;定性了解电路输入输出阻抗的大小,信号与阻抗的关系。

有了这些电路知识,您极有可能成长为电子产品和工业控制设备的出色的维修维护技师。

高级层次是能定量计算这二十个电路的输入输出阻抗、输出信号与输入信号的比值、电路中信号电流或电压与电路参数的关系、电路中信号的幅度与频率关系特性、相位与频率关系特性、电路中元器件参数的选择等。

达到高级层次后,只要您愿意,受人尊敬的高薪职业--电子产品和工业控制设备的开发设计工程师将是您的首选职业。

一、桥式整流电路
1、二极管的单向导电性:
2、桥式整流电流流向过程:
输入输出波形:
3、计算:Vo, Io,二极管反向电压。

二、电源滤波器
1、电源滤波的过程分析:
波形形成过程:
2、计算:滤波电容的容量和耐压值选择。

三、信号滤波器
1、信号滤波器的作用:
与电源滤波器的区别和相同点:
2、LC串联和并联电路的阻抗计算,幅频关系和相频关系曲线。

3、画出通频带曲线。

计算谐振频率。

一、微分和积分电路
1、电路的作用,与滤波器的区别和相同点。

2、微分和积分电路电压变化过程分析,画出电压变化波形图。

3、计算:时间常数,电压变化方程,电阻和电容参数的选择。

二、共射极放大电路
1、三极管的结构、三极管各极电流关系、特性曲线、放大条件。

2、元器件的作用、电路的用途、电压放大倍数、输入和输出的信号电压相位关系、交流和直流等效电路图。

3、静态工作点的计算、电压放大倍数的计算。

三、分压偏置式共射极放大电路
1、元器件的作用、电路的用途、电压放大倍数、输入和输出的信号电压相位关系、交流和直流等效电路图。

2、电流串联负反馈过程的分析,负反馈对电路参数的影响。

3、静态工作点的计算、电压放大倍数的计算。

4、受控源等效电路分析。

一、共集电极放大电路(射极跟随器)
1、元器件的作用、电路的用途、电压放大倍数、输入和输出的信号电压相位关系、交流和直流等效电路图。

电路的输入和输出阻抗特点。

2、电流串联负反馈
过程的分析,负反
馈对电路参数的影
响。

3、静态工作点的计
算、电压放大倍数
的计算。

八、电路反馈框图
1、反馈的概念,正负反馈及其判断方法、并联反馈和串联反馈及其判断方法、电流反馈和电压反馈及其判断方法。

2、带负反馈电路的放大增益。

3、负反馈对电路的放大增益、通频带、增益的稳定性、失真、输入和输出电阻的影响。

九、二极管稳压电路
1、稳压二极管的特性曲线。

2、稳压二极管应用注意事项。

3、稳压过程分析。

十、串联稳压电源
1、串联稳压电源的组成框图。

2、每个元器件的作用;稳压过程分析。

3、输出电压计算。

十一、差分放大电路
1、电路各元器件的作用,电路的用途、电路的特点。

2、电路的工作原理分析。

如何放大差模信号而抑制共模信号。

3、电路的单端输入和双端输入,单端输出和双端输出工作方式。

十二、场效应管放大电路
1、场效应管的工作特点、场效应放大器的特点。

各元器件的作用。

2、放大过程分析。

3、电压放大增益的计算。

十三、选频(带通)放大电路
1、每个元器件的作用:
选频放大电路的特点:
电路的作用:
2、特征频率的计算:
选频元件参数的选择:3、幅频特性曲线:
十四、运算放大电路
十五、差分输入运算放大电路
1、差分输入运算放大电路的的特点:
用途:
输出信号电压与输入信号电压的关系式。

相关文档
最新文档