稳定同位素地球化学

合集下载

地球化学中的同位素研究及其应用

地球化学中的同位素研究及其应用

地球化学中的同位素研究及其应用地球化学是研究地球上各种化学现象和过程的科学学科。

同位素是元素具有相同的原子序数和化学性质,但质量数不同的不同种类的原子,其在地球化学研究中发挥着重要的作用。

本文将探讨地球化学中的同位素研究以及其在不同领域的应用。

一、同位素的定义和分类同位素是指具有相同原子序数(即原子核中质子的数量相同)但质量数(即原子核中质子和中子的数量之和)不同的原子。

同位素的存在使得地球化学研究可以根据元素的同位素组成来分析物质起源、演化和地球系统中的各种过程。

同位素一般可以分为稳定同位素和放射性同位素两类。

稳定同位素是指在地球化学研究中具有稳定存在状态的同位素,如氢的两种同位素氢-1和氢-2,氧的三种同位素氧-16、氧-17和氧-18。

放射性同位素是指具有不稳定存在状态的同位素,如铀系列的235U和238U以及镭系列的226Ra等。

二、地球化学中的同位素研究方法1. 同位素质谱法同位素质谱法是地球化学研究中常用的分析技术,它可以通过测量元素的同位素比例来获取有关地球物质起源和演化的信息。

该技术基于同位素质量分析仪器,可以对地球系统中的各种物质样品进行同位素组成的测定。

2. 同位素示踪法同位素示踪法是地球化学研究中常用的实验手段,它通过采集含有某种同位素标记的物质,并追踪其在地球系统中的传输和转化过程。

该方法可以帮助科学家们了解物质的迁移路径、生物地球化学循环等过程,为地球系统模型的构建和预测提供重要依据。

三、地球化学中的同位素研究应用1. 地质探测地球化学中的同位素研究可以用于地质探测,例如利用同位素示踪法可以追踪岩石中的放射性同位素衰变过程,从而确定岩石的年代和形成过程。

这对于研究地质构造、地壳运动以及矿床形成等具有重要意义。

2. 古气候研究同位素的组成可以反映地球气候变化的过程。

通过对冰川和海洋沉积物中的同位素比例进行分析,可以了解过去气候变化的规律和机制。

这对于预测未来气候变化趋势以及制定环境保护政策有重要意义。

稳定同位素地球化学研究进展

稳定同位素地球化学研究进展

稳定同位素地球化学研究进展随着科学技术的进步,稳定同位素地球化学研究日益受到重视。

稳定同位素是某种元素的同位素,其原子核中的中子和质子的数量均相同,但质子数不确定。

与放射性同位素不同,稳定同位素不会衰变,因此能够在地球化学和生物地球化学等领域中广泛应用。

本文将从研究意义、研究方法、应用领域等方面进行探讨。

一、研究意义稳定同位素研究在地球科学、环境科学、生物地球化学等学科领域中有着重要的作用。

其中,稳定同位素地球化学的主要研究内容是掌握地球化学过程和环境演化的规律及机制。

例如,在构造地质学中,稳定同位素可以用于推测岩浆源区的成分和动力学过程;在古环境学中,稳定同位素可以用于重现气候变化和环境演化过程;在地球化学污染评价中,稳定同位素可以用于追踪污染物来源和迁移路径。

另外,在生物地球化学中,稳定同位素也发挥着重要的作用。

例如,在动物和植物的生物地球化学循环中,利用稳定同位素可以探究其食物链和生长状态;在微生物地球化学中,通过稳定同位素的应用,可以研究氮、硫、铁、碳等元素的循环和代谢规律。

综上,稳定同位素地球化学研究的意义在于提高对地球化学过程和环境演变规律的认识,为生态保护和资源管理提供科学依据。

二、研究方法稳定同位素研究主要依靠仪器分析技术和数据统计方法。

目前,应用最广泛的稳定同位素测量仪器为质谱仪,在气体、液体和固体样品的分析中均有广泛应用。

根据不同的研究对象和分析场合,稳定同位素分析方法有以下几种:1. 气体-稳定同位素分析法:适用于大气、水体、土壤及生物样品中的小分子有机化合物、气态元素、气体分子等的同位素分析。

2. 液体-稳定同位素分析法:适用于水体、沉积物、岩石、矿物等大分子有机化合物和元素化合物的同位素分析。

3. 固体-稳定同位素分析法:适用于岩石、矿物、古生物化石等固体样品中的元素同位素分析。

另外,数据统计方法也是稳定同位素研究的重要手段之一,例如稳定同位素分馏和稳定同位素混合模型等。

21-23稳定同位素地球化学

21-23稳定同位素地球化学
Element Notation
Hydrogen Lithium Boron Carbon Nitrogen Oxygen Sulfur δ D δ 6Li δ δ δ δ δ δ
11 6
Ratio
D/H(2H/1H) li/7Li B/10B C/12C N/14N O/16O O/16O S/32S
18 18 216 1/3C16O2+ H O ƒ 1/3C O + H 3 2 3 2 O
α=1.0492
α=1.0286
反应使岩石中富集了18O、而在水中富集16O。由于大 部分岩石中氢的含量很低,因此水岩同位素交换反应 中氢同位素成分变化不大,但在含OH-的矿物中,水 岩反应结果使得矿物的δD增高。
1000ln A 10 / T B
6 2
α是分馏系数;T是绝对温度;A、B是常数,由实验 确定。从上式可知,温度越高,分馏越小;温度越低, 分馏越大。 在实际进行同位素地质温度测定时,只要测定两个共 生矿物的同位素组成,便可根据公式进行同位素平衡 温度计算。
稳定同位素地球化学
例子:含石英、白云母和磁铁矿的花岗片麻岩
H-O同位素地球化学
(3) 矿物晶格化学键 对氧同位素的选择 当火成岩和变质岩 达到氧同位素平衡时, 岩石中矿物氧同位素 有一个相应的分馏次 序,其中Si-O-Si键的 矿物中最富18O,其 次为Si-O-Al键、SiO-Mg键等。
H-O同位素地球化学
云和沉积物五个库间进行。
H-O同位素地球化学
1.H-O同位素的分馏 (1)蒸发-凝聚分馏: 水在蒸发过程中轻水分子H216O比重水分子D218O易于富 集在蒸汽相中,而凝聚作用相反,重的水分子优先凝结。 因此在气、液相之间发生H、O同位素的物理分馏。 由于水分子经过反复多次蒸发-凝聚过程使得内陆及高纬

第十讲 稳定同位素地球化学

第十讲 稳定同位素地球化学

第十讲地质常用主要稳定同位素简介18OFull atmospheric General Circulation Model (GCM) with water isotope fractionation included.内容提要●基本特征●氢同位素●碳同位素●氧同位素●硫同位素10.1. 传统稳定同位素基本特征☐只有在自然过程中其同位素分馏变化为可测量范围的元素,才能应用于地质研究用途,这些元素的质量范围多<40;☐多为能形成固、气、液多相态物质的元素,其稳定同位素组成可发生较大程度变化。

总体上,重同位素趋于在结合紧密的固相物质中富集;重同位素趋于在氧化价态最高的物相中富集;☐生物系统中的同位素变化常用动力效应来解释。

在生物作用过程中(如光合作用、细菌反应及其它微生物过程),相对于反应初始组成,轻同位素趋于在反应生成物中富集。

10.2. 氢(hydrogen)☐直到1930年代,人们才发现H不是由1 个同位素,而是由两个同位素组成:1H:99.9844%2H(D):0.0156%☐在SMOW中D/H=155.8 10-6☐氢还有一个同位素氚(3H),但为放射性核素,半衰期仅为~12.5y。

10.2.1 氢同位素基本特征☐与多数重元素的同位素组成不同,太阳系物质具有高度不均一的氢(氧)同位素组成,尤其是内地行星与彗星之间;☐1H与D同位素间质量相对差最大,在地球样品中表现出最大的稳定同位素变化(分馏)范围;☐从大气圈、水圈直至地球深部,氢总是以HO、OH-,2H2、CH4等形式存在,即在各种地质过程中起着重要作用;☐氢同位素以 D表示,其同位素测量精度通常为0.5‰至2‰(相对其它稳定同位素偏低)。

JFC:Jupiter family cometsOCC:outer solar system Oortcloud comets内地行星与碳质球粒陨石具有相似的氢同位素组成,但与彗星之间存在差异(Taylor,2015,PSRD: Water in Asteroid 4 Vesta)(Robert ,2011,Nature Geoscience)行星和陨石的氢同位素组成(Alexander et al., 2012, EPSL)NASA/JPL-Caltech/UCLA/MPS/DLR/IDAWater in apatite in meteorites from Vesta varies in its hydrogen isotopic composition. Range is similar to the range in Earth.来自小行星带不同陨石样品中磷灰石的氢同位素组成(Sarafian et al.,2014)Hydrogen isotope variations in mantle-derived materials(Bell and Ihinger, 2000)金云母K-碱镁闪石韭闪石&羟钛角闪石10.2.2 主要分馏机制◆发生氢同位素分馏的主要原因是水蒸气压的不同,其次为其冰点差异。

百科知识精选同位素地球化学

百科知识精选同位素地球化学

分馏系数分馏系数表示同位素的分馏程度,反映了两种物质或两种物相之间同位素相对富集或亏损程度。

在自然界,分馏系数是指两种矿物或两种物相之间的同位素比值之商。

其表达式为:□ A-B=RA/RB式中A和B表示两种物质(物相),R代表重同位素对轻同位素的比值,如18O/16O,13C/12C等。

□ 值偏离1愈大,说明两种物质之间的同位素分馏程度也就愈大;□=1时,物质间没有同位素分馏。

δ值稳定同位素组成常用δ值表示,δ值指样品中某元素的稳定同位素比值相对标准(标样)相应比值的千分偏差。

其公式为□δ值能清楚地反映同位素组成的变化,样品的δ值愈高,反映重同位素愈富集。

样品的δ值总是相对于某个标准而言的,同一个样品,对比的标准不同得出的δ值各异。

所以必须采用同一标准;或者将各实验室的数据换算成国际公认的统一标准,这样获得的δ值才有实际应用价值。

比较普遍的国际公认标准为:①SMOW,即标准平均海洋水,作为氢和氧的同位素的国际统一标准;② PDB,是美国南卡罗来纳州白垩系皮狄组地层内的似箭石,一种碳酸钙样品,用作碳同位素的国际统一标准,有时也作为沉积碳酸盐氧同位素的标准;③CDT,是美国亚利桑纳州迪亚布洛峡谷铁陨石中的陨硫铁,用作硫同位素的国际统一标准。

稳定同位素实验研究表明,大多数矿物对体系(矿物-矿物)或矿物-水体系,在有地质意义的温度范围内,103ln□ 值与T 2成反比,T为绝对温度。

103ln□ 值可以近似地用两种物质的δ差值表示,即δ-δB=ΔA-B≈103ln□A-B。

因此,只要测得样品的δ值,就可直接计算出103ln□值。

它同样表示物质间同位素分馏程度的大小,利用它可绘制同位素分馏曲线,拟合同位素分馏方程式和计算同位素平衡温度(见地质温度计)。

在稳定同位素地球化学研究中,H、C、O、S等研究较深入。

它们在天然物质中分布广泛,可形成多种化合物,由于它们的同位素质量数都比较小,相对质量差别大,因而同位素分馏更明显,这对确定地质体的成因及其物质来源和判明地质作用特征具有重要意义。

稳定同位素地球化学

稳定同位素地球化学

地球化学→地球科学问题(I)
➢ 陨石化学研究,了解地球和太阳系的形成; ➢ 确定地质时间; ➢ 确定岩浆房的深度和温度; ➢ 发现地幔柱; ➢ 沉积物可以俯冲进入地幔; ➢ 确定不同类型变质岩的形成温度和压力; ➢ 确定造山带上升的程度和速度以及剥蚀速率; ➢ 确定地壳形成时间和方式; ➢ 确定大气形成时间和演化方式; ➢ 了解地幔对流; ➢ 了解冰期的寒冷程度及其成因; ➢ 38亿年前早期生命的化学证据.
地球化学→地球科学问题(II)
➢寻找火星生命; ➢探索其它行星(金星,火星,木星); ➢环境科学和环境问题(酸雨,臭氧空洞;
温室效应和全球变暖;水和土壤污染等); ➢不可再生资源(如金属矿床和石油); ➢寻找新的矿产资源。
原文:
''When, however, the geologist advances further, and desires to study something more than the mere external forms and physical characters of the materials of which our globe is built up, he is compelled to call in the aid of chemistry, for it is by chemical science alone that he can be enabled to demonstrate the true nature of these materials, to explain their formation or origin, or to discover the causes which have produced the changes or alterations which they have already experienced, or which they may now be undergoing.''

地球化学研究中的稳定同位素地球化学

地球化学研究中的稳定同位素地球化学

地球化学研究中的稳定同位素地球化学地球化学研究旨在了解我们的行星是如何以及为什么形成的,包括地壳、大气、水体和生物。

地球化学家使用各种方法和技术来研究这些过程,而稳定同位素地球化学是其中之一。

本文将介绍稳定同位素地球化学的基本概念,以及它如何应用于了解地球化学过程的早期历史和现代系统。

稳定同位素是指具有相同原子核数的元素,但具有不同的中性子数。

同位素地球化学是研究这些同位素在地球化学中的分布和交换过程的学科。

由于同位素的数目非常相似,因此它们的化学性质也非常相似。

这使得它们在地球化学和生物学中的应用非常广泛。

稳定同位素地球化学的应用广泛,仅举几例。

首先,它可以用于了解过去的气候和环境条件。

例如,钋同位素比研究表明,过去的气候变化和气候区域变化对全球生态系统和人类社会造成了深远的影响。

其次,它可以用于研究物质循环和生态系统中的动态变化。

例如,地球上的水循环和生态系统中碳、氮、硫等元素的循环和利用,可以用稳定同位素技术进行研究和监测。

此外,它还可以用于了解矿床和石油等地下资源的形成和演化过程。

除了稳定同位素外,同位素地球化学也包括放射性同位素地球化学。

与稳定同位素不同,放射性同位素衰变会导致元素发生变化,而稳定同位素只涉及元素内部中性子数量的变化。

两类同位素地球化学研究可以相互补充。

稳定同位素地球化学的应用有赖于其具有高精度、多重标记和非破坏性等特点。

例如,一些同位素的比例测量可以用极高的精度实现,达到1/1000万或更高的精度。

这在研究少量物质的分布和交换过程时非常有用。

稳定同位素还可以用于多个化学物种的标记。

其中,氢、氧、碳、氮和硫等元素的同位素标记被广泛应用于研究生态系统和地壳环境中的物质循环。

最后,稳定同位素技术是一种非破坏性的分析方法。

这使得它能够在不影响样品的情况下分析地球化学系统的动态变化。

鉴于稳定同位素地球化学的广泛应用,地球科学家使用许多技术和方法来进行稳定同位素分析。

其中一种最常用的技术是质谱仪。

地球化学研究中的同位素分析技术

地球化学研究中的同位素分析技术

地球化学研究中的同位素分析技术地球化学研究是研究地球和行星体中的元素组成、地球历史演化以及地球的生命起源和演化等问题的学科。

同位素分析技术在地球化学研究领域中起着重要作用。

同位素是同一元素的不同质量核素,具有不同的原子质量,通过同位素的测量,可以揭示地球和宇宙中的一些重要物理、化学和生物过程。

本文将介绍地球化学研究中常用的同位素分析技术。

一、同位素分析技术的原理同位素分析技术是基于同位素的相对丰度差异进行的一种分析方法。

同位素相对丰度的测量可以通过质谱仪、质光谱仪、中子活化分析等手段进行。

这些方法通过测量同位素的质量、电荷、光谱峰位置等特性,从而确定样品中不同同位素的相对含量。

二、同位素分析技术的应用1. 放射性同位素分析放射性同位素是一种具有放射性衰变性质的同位素,通过测量放射性同位素的衰变速率,可以推断出地质历史、地球年龄以及地球内部的物质循环过程。

常用的放射性同位素分析技术包括铀系列、钍系列和钾系列等。

2. 稳定同位素分析稳定同位素是指不发生放射性衰变的同位素。

稳定同位素分析常用于研究地球系统中的元素循环、生物地球化学循环以及古气候变化等问题。

例如,氧同位素分析技术可以用于研究古气候变化、古海洋生物演化等;碳同位素分析技术可以用于研究碳循环、生物地球化学循环等。

3. 稳定同位素示踪技术稳定同位素示踪技术是通过测量示踪物中同位素的相对含量变化来研究地质过程和环境变化的方法。

例如,氧同位素示踪技术可以用于研究水循环、地下水补给和河流水源等;硫同位素示踪技术可以用于研究硫的来源、硫循环以及硫化物的形成和分解等。

三、同位素分析技术的挑战和发展趋势同位素分析技术在地球化学研究中起着重要作用,但也存在一些挑战。

首先,同位素分析技术需要高精度的仪器设备和实验条件,成本较高。

其次,样品准备和分析过程中存在一定的干扰因素,影响测量的准确性和可重复性。

此外,某些同位素的测量范围和准确性仍然有待提高。

为了克服这些挑战,同位素分析技术正在不断发展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

稳定同位素
➢稳定同位素(stable isotope):无可测放射 性的同位素
➢其中一部分是放射性同位素衰变的最终 稳定产物,称之为放射成因同位素 (radiogenic isotope)
➢另一部分是天然的稳定同位素,即自核 合成以来就保持稳定的同位素。
稳定同位素地球化学建立
✓ 与20世纪前半叶现代物理的发展密切相关; ✓ 中子的发现(H. Urey, 1932),20世纪30和40年代关
• 近代地球化学
各项技术的发展,特别是分析测试技术 (电子探针、X射线衍射、拉曼和红外光 谱、质谱、离子探针等); 地球内部、宇宙空间 定性、半定量-定量
地球化学主要工具
• 元素 主量元素 微量元素
• 同位素 放射成因同位素 稳定同位素
强有力的工具,渗透到地球科学的各个领域
✓天体化学 ✓陨石学 ✓大地构造 ✓岩石学 ✓矿物学 ✓矿床学 ✓海洋地质
地球化学→地球科学问题(II)
➢寻找火星生命; ➢探索其它行星(金星,火星,木星); ➢环境科学和环境问题(酸雨,臭氧空洞;
温室效应和全球变暖;水和土壤污染等); ➢不可再生资源(如金属矿床和石油); ➢寻找新的矿产资源。
原文:
''When, however, the geologist advances further, and desires to study something more than the mere external forms and physical characters of the materials of which our globe is built up, he is compelled to call in the aid of chemistry, for it is by chemical science alone that he can be enabled to demonstrate the true nature of these materials, to explain their formation or origin, or to discover the causes which have produced the changes or alterations which they have already experienced, or which they may now be undergoing.''
✓同位素(isotope):质子数相同而中子数不同 的原子 表示方法
✓等中子素(isotone) ✓同质异位素(isobar) ✓同质异能素(isomer)
同位素分类
✓放射性同位素(radioactive ቤተ መጻሕፍቲ ባይዱsotope):凡能 自发地放出离子并衰变为另一种同位素 者。
长寿命放射性同位素
太阳系早期短寿命放射性同位素
稳定同位素地球化学 Stable Isotope Geochemistry
地球化学定义
• 研究地球(包括天体)的化学组成、化学作用 及化学演化的学科。
• Geochemistry, we use the tools of chemistry to solve geological problems; that is, we use chemistry to understand the Earth and how it works.
(“关于化学地质的研究” Geological Magazine, 1868, 5:366-370)
——D. Forbes. 1868
地球化学的发展
• 瑞士化学家 Schönbein于1838首次使用“地球化 学”(geochemistry)这个名词.
• 两个主要发展阶段 经典地球化学阶段:着重研究元素的丰度、分布和 迁移;研究手段:传统化学方法 代表人物: 克拉克 维尔纳茨基 戈尔德斯密特
于轻同位素组成变化的证实(A. Nier); ✓ Harold Urey于1947发表文章“The
Thermodynamic Properties of Isotopic Substances”; ✓ 理论上预测了同位素分馏,并认为可以提供有用
的地球化学信息; ✓ 建立实验室测定天然物质的同位素组成,并试验
129I-129Xe, half-life: 16 Ma. 16 Ma, 50%; 32 Ma, 25%;64 Ma, 6.125%; 160 Ma, 1/210 (0.1%).
天然和人工核反应生成的短寿命 放射性同位素
✓天然: 14C 3He 10Be
✓人工合成 超铀元素 第一个人工合成元素:锝(43 Tc)
地球化学→地球科学问题(I)
➢ 陨石化学研究,了解地球和太阳系的形成; ➢ 确定地质时间; ➢ 确定岩浆房的深度和温度; ➢ 发现地幔柱; ➢ 沉积物可以俯冲进入地幔; ➢ 确定不同类型变质岩的形成温度和压力; ➢ 确定造山带上升的程度和速度以及剥蚀速率; ➢ 确定地壳形成时间和方式; ➢ 确定大气形成时间和演化方式; ➢ 了解地幔对流; ➢ 了解冰期的寒冷程度及其成因; ➢ 38亿年前早期生命的化学证据.
('On the study of Chemical geology' Geological Magazine, 1868, 5:366-370) 译文:
''然而,当地质学家站得更高时,渴望能够了解除了我们星 球组成物质的外部形态和物理属性之外的其它东西,他不 得不寻求化学的帮助。这是因为只有化学才能使他更加清 楚地认识这些物质的真正本质,解释它们的组成或来源, 或者发现它们经历过或可能现在正在进行的变化或者蚀变。 ''
测定同位素分馏与温度的关系。
稳定同位素地球化学发展
✓水文地质 ✓冰川学 ✓大气化学 ✓古气候研究 ✓环境科学 ✓古环境研究 ✓考古 ✓医学和食品工业
由于各学科如此广泛地应用同位素地球化学研究手段,所有从事 地球科学研究的的科学家都有必要用同位素地球化学的基础理论 来武装自己。
时间尺度:太阳系演化早期到现代
地球科学中的空间尺度
元素周期表
基本概念
相关文档
最新文档