5计算机组成原理第5章_中央处理机

合集下载

计算机组成原理教案(第五章)

计算机组成原理教案(第五章)

(1) I1: ADD R1,R2,R3 ; I2: SUB R4,R1,R5 ;
3.联合控制方式
此为同步控制和异步控制相结合的方式。 情况(1) 大部分操作序列安排在固定的机器周 期中,对某些 时间难以确定的操作则以执行部件的“回答”信号作为本次操 作的结束; 情况(2) 机器周期的节拍脉冲数固定,但是各条指令周期的 机器周期数不固定。
5.4 微程序控制器
5.4.1 微命令和微操作
控 制 字 段 判别测试字段
下地址字段
按照控制字段的编码方法不同,水平型微指令又分为三种:
I. 全水平型(不译法)微指令 II. 字段译码法水平型微指令 III. 直接和译码相混合的水平型微指令。
2.垂直型微指令
微指令中设置微操作码字段,采用微操作码编译法,由 微操作码规定微指令的功能 ,称为垂直型微指令。
下面举4条垂直型微指令的微指令格式加以说明。设微指 令字长为16位,微操作码3位。
(1)寄存器-寄存器传送型微指令 (2)运算控制型微指令
(3)访问主存微指令 (4)
3.水平型微指令与垂直型微指令的比较
(1)水平型微指令并行操作能力强,效率高,灵活性强,垂直型微 指令则较差。
(2)水平型微指令执行一条指令的时间短,垂直型微指令执行时间 长。
5.8.3 流水线中的主要问题
流水过程中通常会出现以下三种相关冲突,使流水线断流。
1. 资源相关
资源相关是指多条指令进入流水线后在同一机器时钟周 期内争用同一个功能部件所发生的冲突。
2. 数据相关
在一个程序中,如果必须等前一条指令执行完毕后,才能 执行后一条指令,那么这两条指令就是数据相关的。
5.8 流水CPU
5.8.1 并行处理技术

白中英第五版计算机组成原理第5章

白中英第五版计算机组成原理第5章

计算机组成原理
共一百零六页
(1)加法(jiāfǎ)
“ADD R2,R0”
PC→AR
取指
M→DR
DR→IR
PCo,G,ARi
R/W=R DRo,G,IRi
PC→AR M→DR DR→IR
(2)减法(jiǎnfǎ) “SUB R1,R3”
PCo,G,ARi
R/W=R
DRo,G,IRi
R2→Y
R0→X
计算机组成原理
运行标志
(biāozhì)触 发器Cr
◆ 当计算机启动时,一定 要从第1个节拍脉冲前沿 开始工作。
◆ 停机时一定要在第4个 节拍脉冲结束后关闭时 序产生器。
计算机组成原理
共一百零六页
5.3.3 控制(kòngzhì)方式
控制器的控制方式:控制不同(bù tónɡ)操作序列时序信号的方法。
1. 同步控制方式
共一百零六页
MOV指令(zhǐlìng)的指令(zhǐlìng)周期——取指
计算机组成原理
共一百零六页
MOV指令的指令周期(zhōuqī)——执行
计算机组成原理
共一百零六页
play
5.2.3 LAD指令(zhǐlìng)的指令(zhǐlìng)周期
LAD R1, 6是一条(yī tiáo)RS指令
计算机组成原理
共一百零六页
计算机组成原理
共一百零六页
5.3 时序产生器和控制(kòngzhì)方式
[思考]
用二进制码表示的指令和数据都放在内存里, 那么CPU是怎样(zěnyàng)识别出它们是数据还是指令呢?
从时间上来说:
◆ 取指发生在指令周期的第一个CPU周期;
◆ 取数发生在后面几个CPU周期,即 “执行指令”阶段。

计算机组成原理(白中英)

计算机组成原理(白中英)

D0
D1
D2
D3
A校验码 B校验码 C校验码 D校验码
系统结构
RAID4
I/O系统
❖ 专用奇偶校验独立存取盘阵列
❖ 数据以块(块大小可变)交叉的方式存于各盘, 奇偶校验信息存在一台专用盘上
数据块
校验码 产生器
A0
A1
A2
A3
B0
B1
B2
B3
C0
C1
C2
C3
D0
D1
D2
D3
A校验码 B校验码 C校验码 D校验码
❖ 只写一次光盘
只写一次光盘(Write Once Only):可以由用户写入 信息,不过只能写一次,写入后不能修改,可以多次读 出,相当于PROM。在盘片上留有空白区,可以把要修 改和重写的的数据追记在空白区内。
❖ 可檫写式光盘
可檫写式光盘(Rewriteable):利用磁光效应存取信 息,采纳特殊的磁性薄膜作记录介质,用激光束来记录、 再现和删除信息,又称为磁光盘,类似于磁盘,可以重 复读写。
RAID6
I/O系统
❖ 双维奇偶校验独立存取盘阵列
❖ 数据以块(块大小可变)交叉方式存于各盘, 检、纠错信息均匀分布在全部磁盘上
系统结构
A0 A1 A2
3校验码 D校验码
B0 B1
2校验码 C校验码
B2
C0
1校验码 B校验码
C1 C2
0校验码 A校验码
D1 D2 D3
校验码 产生器
7.7 光盘存储设备
– 正脉冲电流表示“1”,负脉冲电流表示“0”; – 不论记录“0”或“1”,在记录下一信息前,记录电流
恢复到零电流 – 简洁易行,记录密度低,改写磁层上的记录比较困难,

计算机组成原理复习题带答案

计算机组成原理复习题带答案

计算机组成原理复习题带答案第1章计算机系统概述⼀、选择题1、在下列四句话中,最能准确反映计算机主要功能的是 C。

A、计算机可以存储⼤量信息B、计算机能代替⼈的脑⼒劳动C、计算机是⼀种信息处理机D、计算机可实现⾼速运算2、1946年2⽉,在美国诞⽣了世界上第⼀台电⼦数字计算机,它的名字叫(1)C,1949年研制成功的世界上第⼀台存储程序式的计算机称为(2)。

(1)A、EDVAC B、EDSAC C、ENIAC D、UNIVAC-Ⅰ(2)A、EDVAC B、EDSAC C、ENIAC D、UNIVAC-Ⅰ3、计算机硬件能直接执⾏的只能是B。

A、符号语⾔B、机器语⾔C、汇编语⾔D、机器语⾔和汇编语⾔4、对计算机软、硬件资源进⾏管理,是 A 的功能。

A、操作系统B、数据库管理系统C、语⾔处理程序D、⽤户程序⼆、填空题1、计算机的各⼤部件通过____总线____________连接在⼀起,它是各部件之间传输信息的通道。

2、计算机按内部信息形式可以分为___模拟____________和___数字信号_两类。

3、计算机硬件⼀般由_运算器,控制器_______、__存储器______、_输⼊_______和、____输出____和五⼤部分组成。

4、运算器是⼀个数据加⼯部件,主要完成⼆进制___算术_______运算及__逻辑________运算。

5、运算器的___位数________越多,计算的精度就越⾼,但是所费的电⼦器件也越多,成本越⾼。

三、简答题1、简述计算机的发展过程。

1、第⼀代电⼦管计算机1946年2⽉,诞⽣了世界上第⼀台电⼦数字计算机——ENIAC ,1949年研制成功的世界上第⼀台存储程序式的计算机EDSAC。

2、第⼆代晶体管计算机1947年在贝尔实验室制成第⼀个晶体管,进⼊20世纪50年代全球出现⼀场以晶体管代替电⼦管的⾰命。

3、第三代集成电路计算机4、⼤规模集成电路计算机5、超⼤规模集成电路计算机3、冯.诺依曼计算机的特点是什么?它包括哪些主要组成部分?各部分的功能是什么?1、计算机由运算器、存储器、控制器、输⼊设备和输出设备五⼤部件组成2、指令和数据以同等的地位存放在存储器内,并可以按地址寻访3、指令和数据均⽤⼆进制数表⽰4、指令由操作码和地址组成。

计算机组成原理.各章例题

计算机组成原理.各章例题

第一章计算机系统概论例1,冯·诺依曼机工作的基本方式的特点是什么?解:冯·诺依曼机工作的基本方式的特点是:按地址访问并顺序执行指令。

冯·诺依曼机工作原理为:例2,Cache是一种A. ______存储器,是为了解决CPU和主存之间B. ______不匹配而采用的一项重要硬件技术。

现发展为多级cache体系,C. ______分设体系。

解:A. 高速缓冲B. 速度C. 指令cache与数据cache例3,完整的计算机应包括那些部分?解:完整的计算机应包括配套的硬件设备和软件系统。

例4,计算机系统的层次结构是怎样的?解:计算机系统的层次结构如图:第二章 运算方法和运算器例 1.设机器字长32位,定点表示,尾数31位,数符1位,问:(1)定点原码整数表示时,最大正数是多少?最大负数是多少? (2)定点原码小数表示时,最大正数是多少?最大负数是多少? 解:(1最大正数:数值 = (231 – 1)10最大负数: 数值 = -(231 – 1)10 (2)定点原码小数表示: 最大正数值 = (1 – 231 )10最大负数值 = -(1–231 )10例2.已知 x = - 0.01111 ,y = +0.11001, 求 [ x ]补 ,[ -x ]补 ,[ y ]补 ,[ -y ]补,x + y = ? ,x – y = ?解:[ x ]原 = 1.01111 [ x ]补 = 1.10001 所以 :[ -x ]补 = 0.01111[ y ]原 = 0.11001 [ y ]补 = 0.11001 所以 :[ -y ]补 = 1.00111 [ x ]补 11.10001 [ x ]补 11.10001 + [ y ]补 00.11001 + [ -y ]补 11.00111 [ x + y ]补 00.01010 [ x - y ]补 10.11000所以: x + y = +0.01010 因为符号位相异,结果发生溢出例3.设有两个浮点数 N 1 = 2j1 × S 1 , N 2 = 2j2 × S 2 ,其中阶码2位,阶符1位,尾数四位,数符一位。

计算机组成原理第6版(白中英)第5章中央处理器

计算机组成原理第6版(白中英)第5章中央处理器
11
5.2.1 指令周期的基本概念
也叫节拍脉冲或T周期,是计算机处理操作的基本时间单位。 在一个CPU周期内,要完成若干个微操作。这些微操作有的 可以同时执行,有的需要按先后次序串行执行。因而需要把 一个CPU周期分为若干个相等的时间段,每一个时间段称为 一个节拍脉冲或T周期。 时钟周期通常定义为机器主频的倒数。
10
5.2.1 指令周期的基本概念
CPU执行程序是一个“取指令—执行指令”的循环过程。
CPU从内存中取出一条指令,并执行这条指令的时间总和; 指令周期常用若干个CPU周期来表示。 又称机器周期,一般为从内存读取一条指令字的最短时间; 一个CPU周期可以完成CPU的一个基本操作。 一个CPU周期包含若干时钟周期。
3
3
5.1.2 CPU的基本组成
现代的CPU的组成
冯·诺依曼机的定义
• 运算器、控制器 、片内Cache;
控制器的主要功能
• 从内存中取出一条指令,并指出下条指令的存放位置;PC、IR
• 对指令进行译码,产生相应的操作控制信号;
ID、时序电路、操 作控制器
• 控制CPU、内存和输入/输出设备之间数据流动;
12
5.2.1 指令周期的基本概念
定长CPU周期的指令示意图:
单周期CPU:在一个时钟周期内完成从指令取出到得到结果的工作,
以最长指令为准,效率低,目前较少采用。
多周期CPU:将指令的执行分成多个阶段,每个阶段在一个时钟周期
内完成,因而时钟周期段,不同指令所用的周期数不同。以下仅讨论多周 期CPU。
求操作数 有效地址
14
5.2.1 指令周期的基本概念 一个简单的程序
地址 指令
说明
100

计算机组成原理第5章 中央处理器

计算机组成原理第5章 中央处理器

19
第二节 一、指令执行分析 任何一条指令的执行都要经过读取指令、分析 指令和执行指令三个阶段。指令执行过程一般可分 为:1)取指令 2 3 4 5
20
图5.5
流水处理
21
二、 计算机的功能是执行程序。执行程序时,计算 机操作由一系列指令周期组成,每个周期执行一条 机器指令,而每个指令周期又由若干个机器周期组 成,一种通常的办法是分解成取指、取操作数、执 行和中断,只有取指和执行周期总是必有的。 1 2 图
10
二、时序控制方式 计算机的基本任务是执行指令。执行一条指令 的过程是分为若干步来实现的,每一步对应某些微 操作。由于不同指令所对应的微操作及繁简程度大 不相同,因而每条指令和每个微操作所需的执行时 间也不相同,这就需要引入时序信号来对这些微操 作进行定时控制。时序控制方式,就是指微操作与 时序信号之间采取何种关系。按照同步或非同步的 关系,可将时序控制方式分为同步控制和异步控制
13
计算机从取指令到执行完指令所需要的时间称 为指令周期。不同的指令,其功能不同,其指令周 期长短也就可以不同。在系统中,通常不为指令周 期设置时间标志信号,因而也不将其作为时序的一 级。时序信号通常划分为三级,即机器周期、节拍
14
图5.2
时序系统结构框图
15
3) 异步控制方式中没有统一的时钟信号,各部件 按自身固有的速度工作,通过应答方式进行联络, 常见的应答信号有准备好(READY)或等待( WAIT
16
图5.3 多级时序
17
图5.4
异步应答流程
18
在CPU中,控制器的任务是决定在什么时间、 根据什么条件、发什么命令、做什么操作。因此, 产生微命令的基本依据是时间、指令代码、状态、 外部请求等。这些信息或作为逻辑变量,经组合逻 辑电路产生微命令序列;或形成相应的微程序地址, 通过执行微指令直接产生微命令序列。按照微命令 的产生方式,可将控制器分为组合逻辑控制器和微

计算机组成原理期末试题及答案

计算机组成原理期末试题及答案

第一章电脑系统概论电脑的硬件是由有形的电子器件等构成的,它包括运算器、存储器、控制器、适配器、输入输出设备。

早起将运算器和控制器合在一起称为CPU〔中央处理器〕。

目前的CPU包含了存储器,因此称为中央处理器。

存储程序并按地址顺序执行,这是冯·诺依曼型电脑的工作原理,也是CPU自开工作的关键。

电脑系统是一个有硬件、软件组成的多级层次结构,它通常由微程序级、一般程序级、操作系统级、汇编语言级、高级语言级组成,每一级上都能进行程序设计,且得到下面各级的支持。

习题:4冯·诺依曼型电脑的主要设计思想是什么?它包括那些主要组成部分?主要设计思想是:存储程序通用电子电脑方案,主要组成部分有:运算器、逻辑控制装置、存储器、输入和输出设备5什么是存储容量?什么是单元地址?什么是数据字?什么是指令字?存储器所有存储单元的总数称为存储器的存储容量。

每个存储单元都有编号,称为单元地址。

如果某字代表要处理的数据,称为数据字。

如果某字为一条指令,称为指令字7指令和数据均存放在内存中,电脑如何区分它们是指令还是数据?每一个基本操作称为一条指令,而解算某一问题的一串指令序列,称为程序第二章运算方法和运算器按对阶操作。

直接使用西文标准键盘输入汉字,进行处理,并显示打印汉字,是一项重大成就。

为此要解决汉字的输入编码、汉字内码、子模码等三种不同用途的编码。

1第三章 内部存储器即CPU 能直接访问内存〔cache 、主存〕,双端口存储器和多模块交叉存储器属于并行存储器结构。

cache 是一种高速缓冲存储器,是为了解决CPU 和主存之间速度不匹配而采用的一项重要的硬件技术,并且发展为多级cache 体系,指令cache 与数据cache 分设体系。

要求cache 的命中率接近于1适度地兼顾了二者的优点又尽量防止其缺点,从灵活性、命中率、硬件投资来说较为理想,因而得到了普遍采用。

习题: 1设有一个具有20位地址和32位字长的存储器,问:〔1〕该存储器能存储多少个字节的信息? 〔2〕如果存储器由512K ×8位SRAM 芯片组成,需要多少片;〔3〕需要多少位地址做芯片选择?(1)字节M 4832*220= (2)片84*28*51232*1024==K K (3)1位地址作芯片选择 2 已知某64位机主存采用半导体存储器,其地址码为26位,假设使用4M ×8位DRAM 芯片组成该机所允许的最大主存空间,并选用内存条结构形式,问:〔1〕 假设每个内存条16M ×64位,共需几个内存条?〔2〕每个内存条共有多少DRAM 芯片? 〔3〕主存共需多少DRAM 芯片?CPU 如何选择各内存条?(1). 共需模块板数为m :m=÷2^24=4(块)(2). 每个模块板内有DRAM 芯片数为32 (片)(3) 主存共需DRAM 芯片为:4*32=128 (片)每个模块板有32片DRAM 芯片,容量为16M ×64位,需24根地址线(A23~A0) 完成模块板内存储单元寻址。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年5月2日星期五 32
动画演示 5.14.swf
P139 图5.14方框图语言表示的指令周期
MOV R0 , R1 LAD R1 , 6
ADD R1 , R2 STO R2 , (R3) JMP 101
2014年5月2日星期五
33
课本P139 【例1】
图5.15所示为双总线结构机器的数据通路,各构成部件如图, 线上标注有小圈表示有控制信号,未标字符的线为直通线。
方框
代表一个CPU周期; 方框中的内容表示数据通路的操作或某种控制操作。 菱形 通常用来表示某种判别或测试; 时间上依附于之前一个方框的CPU周期,而不单独占用一 个CPU周期; ~(公操作符号) 表示一条指令已经执行完毕,转入公操作。 所谓公操作就是一条指令执行完毕后,CPU所开始的一些 操作,比如对外围设备请求的处理等。
指令周期应包括取指 周期和执行周期;
→ (R0)+(R2)→R0
取指周期 执行周期 R20 G Yi R00 G Xi
PC读 指令Cache启动
③ PC PC+1,为取下条指令做好准备; PC增量
④ IR中的操作码被译码或测试,CPU识别出是指令MOV。 2.
R1读 ① R1ALU,R1中数据通过ALU传送; ALU传送控制 ALU输出 ② ALU DBUS DRR0; DR锁存 R0写
2014年5月2日星期五 19
① “ADD R2,R0”指令完成(R0)+(R2)→R0的功能操作,画 出其指令周期流程图,并列出相应的微操作控制信号序列。
② “SUB R1,R3”指令完成(R3)-(R1)→R3的操作,画出其 指令期流程图,并列出相应的微操作控制信号序列。
2014年5月2日星期五
34
(1) “ADD R2,R0”
PC、IR 从内存中取出一条指令,并指出下条指令的存放位置;
操作控制器
冯· 诺依曼机的定义
运算器、控制器 、片内Cache;
对指令进行译码,产生相应的操作控制信号; CU、时序电路、 控制CPU、内存和输入/输出设备之间数据流动;
运算器的主要功能:
执行所有的算术运算; 执行所有的逻辑运算,并进行逻辑测试。

该过程为间址周期;
R2读 数据Cache写
R3读 AR锁存
R2DBUS数据Cache;
2014年5月2日星期五
28
5.2.6 JMP 101指令的指令周期
JMP指令是一条无条件转移指令,用来改变程序的 执行顺序;
JMP指令的执行需要两个CPU周期: ①取指周期(略) ②执行周期
使用JMP指令中的直接地址为PC赋值;
100
LAD R1,6


103 102
动画 演示
LAD ③ 6
2014年5月2日星期五 21
LAD R1 , 6指令周期中的控制信号
D取指周期
CPU动作与取MOV指令的取值周期中一样。
D指令的执行周期
IR DBUS AR;

该过程为寻址周期;
IR读 AR锁存
ARABUS数据Cache ,译码并启动; 数据Cache启动 数据Cache DBUS DRR1;
2014年5月2日星期五 11
采用时序逻辑技术实现; 采用存储逻辑实现;
③ 前两种方式的结合;
数据通路的建立
写入 读出 运算 类型 写入 读出 写入 写入 读出
读出
增量
写入
锁存
锁存
读出
写入
读出
2014年5月2日星期五 12
5.2 指令周期
5.2.1 指令周期的基本概念 5.2.2 MOV R0 , R1指令的指令周期 5.2.3 LAD R1 , 6指令的指令周期 5.2.4 5.2.5 ADD R1 , R2指令的指令周期 STO R2 , (R3)指令的指令周期
16
2014年5月2日星期五
5.2.2 MOV R0 , R1指令的指令周期
MOV是一条RR型指令,它需 要两个CPU 周期: 取指周期
① 从存储器中取出指令;
② 程序计数器PC加1;
③ 译码或测试指令操作码,
发出控制信号;
执行周期
在控制信号的作用下,
将R1中的数据经过ALU 送入R0;
2014年5月2日星期五 9
5.1.3
CPU中的主要寄存器(3/3)
5.程序计数器(PC) 始终存放下一条指令的地址,对应于指令Cache的访问; 其内容变化分两种情况


顺序执行: PC+1PC
转移执行: (指令OPR)PC
计数功能 寄存功能
6.指令寄存器(IR) 保存当前正在执行的一条指令。 指令寄存器中操作码字段的输出就是指令译码器的输入。
③执行周期
将寄存器R2中的数据送入指定的存储单元;
2014年5月2日星期五
26
STO R2 , (R3)指令的执行过程演示

STO R2,(R3)
120 30
②104 105源自动画 演示STO③
2014年5月2日星期五 27
STO R2 , (R3)指令周期中的控制信号
1. 取指周期(略) 2. 执行周期 R3DBUSAR,发出地址启动数据Cache;
控制程序的执行顺序; 操作控制 对指令操作码译码后产生控制信号 产生和发送各操作信号; 时间控制 维持各类操作的时序关系 控制指令、或操作的实施时间; 数据加工 由ALU完成具体的运算 对数据进行算术逻辑运算;

2014年5月2日星期五 4
5.1.2 CPU的基本组成
现代的CPU的组成 控制器的主要功能
2014年5月2日星期五 10
5.1.4 操作控制器与时序产生器
数据通路
寄存器之间传送信息的通路。 操作控制器
根据指令操作码和时序信号,产生各种操作控制信号;
建立正确地数据通路,从而完成指令的执行。 根据设计方法不同,操作控制器可分为 ① 硬布线控制器: ② 微程序控制器: 时序产生器 对各种操作实施时间的控制。
2014年5月2日星期五 17
MOV R0 , R1指令的执行过程演示
MOV R0 , R1
① ④ 10 ②
101 102
动画 演示
MOV ③
2014年5月2日星期五 18
MOV R0 , R1指令周期中的控制信号
1.
① PCABUS指令Cache ,译码并启动;
Cache读 ② 指令Cache IR; 指令 IR写
LAD R1 , 6
ADD R1 , R2
取数指令LAD从6号单元中取数100R1
加法指令ADD执行(R1)+(R2)R2,结果为(R2)=120
STO R2 , (R3) 存数指令STO用(R3)间接寻址,(R2)=120写入30号单元 JMP 101 AND R1 , R3
转移指令JMP改变程序执行顺序,转到101号单元 逻辑与指令AND执行(R1) · (R2) R3
第5章 中央处理机
目录
5.1 CPU的功能和组成 5.2 指令周期 5.3 时序产生器和控制方式 5.4 微程序控制器 5.5 硬连线控制器 5.6 传统CPU ——掌握 ——掌握 ——了解 ——掌握 ——了解 ——了解
5.7 流水CPU
——掌握
2014年5月2日星期五
2
5.1 CPU的组成和功能
2014年5月2日星期五 14
关于指令周期
一个完整的指令周期由若干机 器周期:
取指周期——间址周期—— 执行周期——中断周期 本教材上,间址周 求操作数 有效地址
期和执行周期统称 所有指令的第一个机器周期必 为取指周期; 为执行周期!
一个基本的CPU周期包含4个时 钟周期,对于某些CPU周期可 以包含更多的时钟周期。 不同指令的指令周期所包含的 时钟周期个数不一定相同。
数据Cache读 DR锁存 R1写
22
2014年5月2日星期五
5.2.4 ADD R1 , R2指令的指令周期
ADD指令的指令周期由两个CPU周期组成 。
①取指周期(略) ②执行周期
从寄存器R1、R2中取出数据,作为源操作数; 将两数据送往ALU,并使ALU进行加运算; 结果保存到R1中。
2014年5月2日星期五
ALU、通用寄存器组、 标志寄存器
5
CPU模型图
运算器
动画演示:5-1.swf
Cache
控制器
2014年5月2日星期五 6
5.1.3
CPU中的主要寄存器
各种计算机的CPU可能有这样或那样的不同,但 是在CPU中至少要有6类寄存器: ①指令寄存器(IR) ②程序计数器(PC) ③数据地址寄存器(AR) ④缓冲寄存器(DR) ⑤通用寄存器(R0~R3) ⑥状态字寄存器(PSW)
5.2.6 JMP 101指令的指令周期
5.2.7 用方框图语言表示指令周期
2014年5月2日星期五 13
5.2.1 指令周期的基本概念
CPU执行程序是一个“取指令—执行指令”的循环过程。 指令周期 CPU从内存中取出一条指令,并执行的时间总和;
CPU周期
又称机器周期,一般为从内存读取一条指令字的最短时间; 一个CPU周期可以完成CPU的一个基本操作。 时钟周期 也叫节拍脉冲或T周期,是计算机处理操作的基本时间单位。 动画演示:5-2.swf
2014年5月2日星期五
7
5.1.3
CPU中的主要寄存器(1/3)
1. 数据缓冲寄存器(DR)
暂时存放CPU与外界传送的数据,可以是指令字或数据字。 作用
① ②
作为CPU和内存、外部设备之间信息传送的中转站; 补偿CPU和内存、外围设备之间在操作速度上的差别;
相关文档
最新文档