医学统计学第七章卡方检验

合集下载

卡方检验医学统计学

卡方检验医学统计学

卡方检验医学统计学卡方检验是医学统计学中最常用的检验方法之一,它可用于测量两组数据之间的关联性。

在研究中,我们常常需要探究二者之间是否存在某种关联,卡方检验就是我们解决这个问题的利器。

卡方检验的原理卡方检验的原理是基于期望频数和实际频数的差异来检验两个变量之间的关系。

期望频数指的是在假设两个变量独立的情况下,我们可以根据样本量和其他条件,计算出不同组之间的理论值。

而实际频数则是实验中观察到的实际结果。

卡方检验的步骤如下:1.建立零假设和备择假设。

零假设指的是假设两个变量之间不存在任何关系,备择假设则是反之。

2.确定显著性水平 alpha,通常取值为0.05。

3.构建卡方检验统计量。

计算方法为将所有观察值与期望值的差平方后,再除以期望值的总和。

4.根据自由度和显著性水平,查卡方分布表得到 P 值。

5.如果 P 值小于显著性水平,拒绝零假设;否则无法拒绝零假设。

卡方检验的应用卡方检验可以应用于多个领域,其中医学统计学是最为常见的一个。

卡方检验可以用来分析两个疾病之间的相关性或者测量一种治疗方法的效果。

举个例子,某药厂要研发一种新的药物来治疗心脏病。

为了验证该药的疗效,实验组和对照组各50 人。

在 6 个月的治疗后,实验组和对照组中分别有 10 人和 15 人痊愈了。

卡方检验的作用就在于此时可以用来检验两组之间的差异是否具有统计学意义。

除了医学统计学之外,卡方检验在社会学、心理学、市场营销、物理等领域也都有广泛应用。

卡方检验的限制虽然卡方检验被广泛应用于各种实验和研究中,但它也有着自己的限制。

其中比较明显的一点就是对样本量有一定的要求。

当样本量较小的时候,期望频数的计算就会出现一定的误差,进而导致检验结果不准确。

此外,在面对非常态分布数据时,卡方检验也会出现问题。

当数据呈现正态分布时,卡方检验的准确性最高。

然而,实际上,很多数据都呈现出非正态分布,这时需要使用一些修正方法来解决。

卡方检验是医学统计学中最常用的统计方法之一,它可以用来测量两个变量之间的关联性。

最新《卫生统计学》第七章 卡方检验(63P)-药学医学精品资料

最新《卫生统计学》第七章 卡方检验(63P)-药学医学精品资料

Tb417 3 31 512.56
Tc814 3 91 661.56
Tc814 3 31 522 .4 . 4
2 (3 9 3.4 4 )2 4 (8 1.5 2 )2 6 (5 7 6.5 1 )2 6 (2 7 2.4 2 )2 4 3.4 44 1.5 26 6.5 16 2.4 24 3 .52
单纯治疗 61.56 22.44
84
73.3
合 计 96
35
131
73.3
T a 4 7 7.3 3 % 34.4T 4 b 4 2 7 .7 % 6 1 .5 2 . 6 T c 8 7 4 .3 % 3 6 1 .56T d 8 2 4 .7 % 6 2 2 .44
四格表的理论频数由下式求得 :
例7.2
表 1 131 例乳腺癌患者治疗后 5 年存活率的比较 处 理 存活数 死亡数 合计 存活率(%)
联合治疗
39
8 47
83.0
单纯治疗
57
27 84
67.9
合计
96
35 131
73.3
四格表(fourfold table)
➢ 表1 中间阴影部分的四个数据为基本数据,其余数据 均由此四个数据派生出来,故称此种资料为四格表 (fourfold table)资料。
➢ 多(R)个率的比较,其基本数据有R行2列,构成
R×2表,用以表述R个率的基本数据。R×2表的2
检验用于推断R个样本率各自所代表的总体率是否 相等。
多个样本率的比较的公式
2
(Ai Ti )2 Ti
2 n( A2 1)
nRnC
式中,A为第R行第C列对应的实际频数,nR为第R行的行合计,

医学统计学:卡方检验

医学统计学:卡方检验

CM C N M P( x ) n CN
式中X的取值是从0与(n-N+M)之较大者开始直到n与M之较小者为止。
卡方检验
■ 四格表资料的χ2检验
3.当n<40,或T<1时,用四格表资料的Fisher确切概率法。 超几何分布
x n x CM CN M P( x ) n CN
C
卡方检验
■ χ2检验的基本思想
卡方检验
■ χ2检验的基本思想
卡方检验
■ χ2检验的基本思想
卡方检验
■ χ2检验的基本思想
卡方检验
■ 四格表资料的χ2检验
1.当n≥40且所有的T≥5时,用χ2检验的基本公式;当P≈α时,改用四格 表资料的Fisher确切概率法。 例 某院欲比较异梨醇口服液(试验组)和氢氯噻嗪+地塞米松(对照组) 降低颅内压的疗效。将200例颅内压增高症患者随机分为两组,结果见表1 。问两组降低颅内压的总体有效率有无差别?
卡方检验
■ 四格表资料的χ2检验
3.当n<40,或T<1时,用四格表资料的Fisher确切概率法。 Fisher确切概率法的基本思想
在四格表周边合计数不变的条件下, 利用超几何分布直接计算样本事件及 比样本事件更极端情形发生的概率。
卡方检验
■ 四格表资料的χ2检验
3.当n<40,或T<1时,用四格表资料的Fisher确切概率法。 Fisher确切概率法的基本思想
卡方检验
■ 四格表资料的χ2检验
1.当n≥40且所有的T≥5时,用χ2检验的基本公式;当P≈α时,改用四格 表资料的Fisher确切概率法。
卡方检验
■ 四格表资料的χ2检验
1.当n≥40且所有的T≥5时,用χ2检验的基本公式;当P≈α时,改用四格 表资料的Fisher确切概率法。

研究生医学统计学 卡方检验 PPT课件.ppt

研究生医学统计学 卡方检验 PPT课件.ppt

431 388 495 137 1451
490 410 587 179 1666
902 800 950 32 2684
合计
1823 1598 2032 348 5801
H0:两种血型系统间无关联 H1:两种血型系统间有关联
=0.05
2 5801( 4312 490 2 ... 322 1) 213 .16
(A T )2 T

行数-1列数 1
2 (99 90.48)2 (5 13.52)2 (75 83.52)2 (2112.48)2 12.86
90.48
13.52
83.52
12.48
(2 1)(2 1) 1
以 1 查 2界值表得P<0.005。按 0.05水准,
拒绝H0,接受H1,可以认为两组降低颅内压的总体有效率不等,即 可认为异梨醇口服液降低颅内压的有效率高于氢氯噻泰+地塞米松 的有效率。
程度太差,不宜用2检验,而应改用确
切概率法。
四格表资料2检验的校正公式
2 C
( A T 0.5) 2 T
2 C
( ad bc n / 2)2 n (a b)(c d )(a c)(b d )
例 7-2 某医师欲比较胞磷胆碱与神经节甘酯治疗脑血管疾病的疗效, 将78例脑血管疾病患者随机分为两组,结果见表7-2。问两种药物治 疗脑血管疾病的有效率是否相等?
组别
阳性
预防注射组 4
非预防组 5(3)
合计
9
阴性 18 6 24
合计 22 11 33
感染率(%) 18.18 45.45 27.27
本例n为33<40,且有一个格子的理论频数为3<5.

《医学统计概论》第7章卡方检验Chi-square test

《医学统计概论》第7章卡方检验Chi-square test
(2) 当n≥40,有任一格1≤T<5时,可用Yates校正公式;
(3) 当n<40或有T<1时,用Fisher’s exact probability。
7.2 配对四格表资料的χ2检验
配对设计包括:(1)同一批样品用两种不同的处理方法;(2)观察 对象根据配对条件配成对子,同一对子内不同的个体分别接受不同的处理; (3)在病因和危险因素的研究中,将病人和对照按配对条件配成对子, 研究是否存在某种病因或危险因素。
表7-1 两组降低颅内压有效率的比较(P137)
组别
试验组 对照组 合计
有效
99 75 174
无效
5 21 26
合计
104 96 200
有效率(%)
95.20 (p1) 78.13 (p2) 87.00 (pc)
实际频数A (actual frequency) 理论频数T (theoretical frequency)
,
1
因为有一格1<T<5,且n>40时,所以应用连续性校
正χ2检验。
四、精确概率法(Fisher’s exact probability)
在无效假设成立的前提下且周边合计固定时,产生任意 一个四格表(i)的概率Pi 服从于超几何分布,其计算式为:
a b!c d !a c!b d !
Pi
a!b!c!d !n!
药物治疗组 164
18
182
外用膏药组 118
26
144
4.59
>0.0125 (NS)
合计
282
44
326
二、各实验组与同一对照组比 关键是检验水平的校正
'
2k 1
自学
7.6 双向有序分组资料的线性趋势检验

医学统计学-卡方检验

医学统计学-卡方检验
医学统计学-卡方检验
卡方检验是一种常用的统计方法,用于比较观察值和期望值之间的差异。它 在医学研究中有着广泛的应用,可以帮助我们验证假设、推断总体特征以及 分析类别变量的相关性。
卡方检验的定义和原理
卡方检验是一种基于卡方分布的统计检验方法。它基于观察值与期望值之间 的差异来判断样本数据与理论分布的拟合程度。
卡方检验的局限性和注意事项
• 卡方检验只能验证分类变量之间的关联性,不能验证因果关系。 • 卡方检验对样本足够大和数据分类合理的要求比较严格。 • 卡方检验结果受样本选择和观察误差的影响,需要谨慎解释。 • 在进行卡方检验前,需要对数据进行充分的清洗和准备。
结论和要点
卡方检验是一种常用的统计方法
卡方检验的应用领域
医学研究
卡方检验可以用来分析疾病的发生与某个因素之间的关联性,如吸烟与肺癌。
社会科学
卡方检验可以用来研究不同人群之间的行模式和态度偏好,如性别与政治观点。
市场调研
卡方检验可以用来分析消费者的购买偏好和市场细分,如年龄与产品偏好。
卡方检验的假设和前提条件
1 独立性假设
卡方检验基于观察值和期望值之间的差异来验证两个变量之间是否存在独立性。
它可以帮助我们验证假设、推断总体特征以 及分析类别变量的相关性。
结果解读和意义
卡方检验的结果可以帮助我们了解变量之间 的关系,并为决策提供依据。
应用广泛
卡方检验在医学研究、社会科学和市场调研 等领域都有着重要的应用。
局限性和注意事项
卡方检验有一定的局限性,需要注意样本大 小和数据分类的合理性。
4
比较卡方值和临界值
判断卡方值是否大于临界值,从而做出关于拒绝或接受原假设的决策。
卡方检验的结果解读和意义

医学统计学--卡方检验

医学统计学--卡方检验
பைடு நூலகம்
笃 学
精 业
修 德
厚 生
6
2 ( A T ) 2值的大小还取决于 个数的多少(严 T 2 ( A T ) 格地说是自由度 的大小)。由于各 皆是 T 2
正值,故自由度 愈大, 值也会愈大;所以只 2 值才能正确地反映 有考虑了自由度 的影响,
实际频数 A和理论频数 T 的吻合程度。检验时, 要根据自由度 查 2 界值表。当 2≥ 2时, P , ,
2 中,若拒绝无效假设
H0只能做出总的结论,但还不知道哪两
个率之间有差别。若想知道哪两个率之间
有差别,还要进行两两比较,本节介绍两
两比较的方法之一:行×列表的分割。
笃 学
精 业
修 德
厚 生
30
4.行×列表的分割 (一)多个实验组间的两两比较 由于要做重复多次的假设检验,需对第Ⅰ 类错误作校正,新的校正检验水准为:
第七章 掌握内容:
2 检 验
1.检验的基本思想和用途 2.成组设计四格表资料检验的计算及应用条件
3.配对设计四格表资料检验 4.行列表资料检验及应用时应注意的问题 5.频数分布拟合优度的检验 了解内容 1.四格表资料的Fisher精确概率法的基本思想 与检验步骤
笃 学 精 业 修 德 厚 生
2 检验是一种用途很广的假设检验方
处理组 1 2 属性 阳性 阴性 合计
合计
a (T11) c (T21) m1
b (T12) d (T22) m2
n1(固定值) n2(固定值) n
要想知道处理组1,2之间差别是否有统计学意义, 常用 2 检验统计量来作假设检验。
笃 学 精 业 修 德 厚 生
5

医学统计学第七章卡方检验

医学统计学第七章卡方检验

n 40 或 T 1,直接计算概率。
2 连续性校正仅用于 的1 四格表资料,当
,一般不作校正。
时2
23
第二十三页,共100页
例7-2 某医师欲比较胞磷胆碱与神
经节苷酯治疗脑血管疾病的疗效,将78 例脑血管疾病患者随机分为两组,结果 见表7-3。问两种药物治疗脑血管疾病的
有效率是否相等?
24
阳性 阴性
4
18
5(3) 6
9
24
合计 感染率(%)
22
18.18
11
45.45
33
27.27
39
第三十九页,共100页
一、基本思想
在四格表周边合计数固定不变的条件
下,计算表内4个实际频数变动时的各种
组合之概率 ;再Pi按检验假设用单侧 或双侧的累计概率 ,依P据所取的检验
水准 做出推断。
40
第四十页,共100页
b, c为两法观察结果不一致的两种情况。
检验统计量为
2 (b c)2 , 1
bc
2 c
( b c 1)2 bc
Байду номын сангаас
,
=1
33
第三十三页,共100页
注意:
本法一般用于样本含量不太大的资料。因为
它仅考虑了两法结果不一致的两种情况(b, c),
而未考虑样本含量n和两法结果一致的两种情况
(a, d)。所以,当n很大且a与d的数值很大(即两
1.各组合概率Pi的计算 在四格表周边合计数不 变的条件下,表内4个实际频数 a,b,c,d 变动的 组合数共有“周边合计中最小数+1”个。如例
7-4 , 表 内 4 个 实 际 频 数 变 动 的 组 合 数 共 有 9+1=10个,依次为:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

105
3
目的: 推断两个总体率或构成比之间有无差别
多个总体率或构成比之间有无差别 多个样本率的多重比较 两个分类变量之间有无关联性 频数分布拟合优度的检验。
检验统计量: 2
应用:计数资料
第一节 四格表资料的 2 检验
105
5
目的:推断两个总体率(构成比)是 否有差别
(和u检验等价)
要求:两样本的两分类个体数排列成四 格表资料
第七章
2 检验
Chi-Square Test
105
1
Content
• 2 test of fourfold data
• 2 test of paired fourfold data • Fisher probabilities in fourfold data
• 2 test of R×C table
α=0.05。
105
18
(2)求检验统计量值
T 1 11 0 14 /7 24 0 90 .4 0, 8T 12 1 09.4 4 0 8 1.5 32 T 2 11 79.4 4 0 8 8.5 3, 2 T 22 2 6 1.5 3 2 1.4 2。 8
2(9990.48)2(513.52)2(7583.52)2(2112.48)2
• Multiple comparison of sample rates
• 2 test of goodness of fit
105
2
第一节 四格表资料的 2 检验 第二节 配对四格表资料的 2 检验 第三节 四格表资料的 Fisher 确切概率法 第四节 行×列表资料的 2 检验 第五节 多个样本率间的多重比较 第六节 有序分组资料的线性趋势检验(不讲) 第七节 频数分布拟合优度的 2 检验
合 计 174(a+c)
26(b+d)
200 (n)
87.00
105
10
本例资料经整理成图7-2形式,即有两 个处理组,每个处理组的例数由发生数和 未发生数两部分组成。表内有 9 7 9 5 2 1 5 四个 基本数据,其余数据均由此四个数据推算 出来的,故称四格表资料。
105
11
处理组 发生数 未发生数 合计
果见表7-1。问两组降低颅内压的总体有效率有无
差别?
105
9
表7-1 两组降低颅内压有效率的比较
组 别 有效
无效
合 计 有效率(%)
试验组 99(90.48) a 5(13.52) b 104 (a+ b)
95.20
对照组 75(83.52) c 21(12.48) d 96 (c+d)
78.13
105
6
一、 2 检验的基本思想
1. 2 分布
(1) 2 分布是一种连续型分布:按分布的密度函数可给出
自由度=1,2,3,……的一簇分布曲线 (图7-1)。
(2) 2 分布的一个基本性质是可加性: 如果两个独立的
随机变量X1和X2分别服从自由度ν1和ν2的分布,
即 X1~ 21, X2~22,那么它们的和( X1+X2 )服从自由度
105
16
由公式(7-1)还可以看出: 2 值的大小还取决于 ( A T ) 2
个数的多少(严格地说是自由度ν的大小)。由于各
(
A
T
T
)2
T
皆是正值,故自由度ν愈大, 2 值也会愈大;所以只有考虑
了自由度ν的影响, 值2 才能正确地反映实际频数A和理论频
数T 的吻合程度。
2 检验的自由度取决于可以自由取值的格

a
b
a+b

c
d
c+d
合 计 a+c b+d
n
图7-2 四格表资料的基本形式
105
12
基本思ห้องสมุดไป่ตู้:可通过 2 检验的基本公式
来理解。
2 (A T )2, (行 数 - 1 )(列 数 1 )
T
式中,A为实际频数(actual frequency), T为理论频数(theoretical frequency)。
子数目,而不是样本含量n。四格表资料只
有两行两列,=1,即在周边合计数固定的情
况下,4个基本数据当中只有一个可以自由
取值。
105
17
3. 假设检验步骤
(1) 建立检验假设,确定检验水平。
H0:π1=π2 即试验组与对照组降低颅内压的总体有效率相等 H1:π1≠π2 即试验组与对照组降低颅内压的总体有效率不相等
105
15
检验统计量 2 值反映了实际频数与理
论频数的吻合程度。
若 检 验 假 设 H0:π1=π2 成 立 , 四 个 格 子 的 实 际 频数A 与理论频数T 相差不应该很大,即统计量
不应该很大。如果 2 值很大,即相对应的P 值很
小,若 P ,则反过来推断A与T相差太大,超出 了抽样误差允许的范围,从而怀疑H0的正确性, 继而拒绝H0,接受其对立假设H1,即π1≠π2 。
105
13
理论频数由下式求得:
TRC

nR nC n
式中,TRC 为第R 行C 列的理论频数
nR 为相应的行合计
nC 为相应的列合计
105
14
理论频数 T 是根据检验假设H0:12,且用合
并率来估计 而定的。
如上例,无效假设是试验组与对照组降低颅内压的 总体有效率相等,均等于合计的有效率87%。那么 理论上,试验组的104例颅内压增高症患者中有效 者应为104(174/200)=90.48,无效者为 104(26/200)=13.52;同理,对照组的96例颅内压增 高症患者中有效者应为96(174/200)=83.52,无效者 为96(26/200)=12.48。
( ν1+ν2 )的 分 2 布,即 (X1 X2~)
。 2 1 2
( 3)2界 值 : 当 确 定 后 , 2 分 布 曲 线 下 右 侧 尾 部 的 面 积 为 时 , 横 轴 上 相 应 的 2值 , 记 作 2, (见 附 表8)。 2值 愈 大 , P值 愈 小 ; 反 之 , 2 值 愈 小 , P值 愈 大 。
105
7
0.5
0.4
0.3
f ( 2 ) 0.2
0.1
1
6
10
0 0 2 4 6 8 10 12 14 16
2
105
8
2. 2 检验的基本思想
例7-1 某院欲比较异梨醇口服液(试验组)和
氢氯噻嗪+地塞米松(对照组)降低颅内压的疗
效。将200例颅内压增高症患者随机分为两组,结
相关文档
最新文档