建筑节能与可再生能源利用通用规范
电气专业执行GB55015-2021的答疑解惑

《建筑节能与可再生能源利用通用规范》GB55015-2023是全文强制性规范,涉及电气专业的主要是第3.3节〃电气〃和第5.2节〃太阳能系统”两个章节,实施中有几个问题值得思考,特别是对于太阳能系统的设置更需进一步研究。
1、规范适用范围第1.0.2条规定:“新建、扩建和改建建筑以及既有建筑节能改造工程的建筑节能与可再生能源建筑应用系统的设计、施工、验收及运行管理必须执行本规范”。
其条文说明:“不适用于没有设置供暖、空调系统的工业建筑,也不适用于战争、自然灾害等不可抗条件下对建筑节能与可再生能源利用的要求。
对使用期限为2年以下的临时建筑不做强制要求,可参照执行〃。
从规范正文看,规范适用范围包括了几乎所有建筑的全生命周期,而条文说明则将一大批有节能潜力的工业建筑排除在外,实在可惜。
当然条文说明不具备正文的法律效力,按正文要求有法可依,不容置疑。
对于条文说明排除的建筑(临时建筑、抢险救灾及军事建筑、未设置供暖和空调系统的工业建筑),第3.3节电气专业的节能措施同样适用,比如选用节能设备、选择合理的照度及控制方案、降低照明功率密度值等,这是建筑电气设计的基本原则。
对于未设置采暖及空调系统的工业建筑,其电气节能措施则必须按规范第3.3节的要求执行,有条件时还应设置太阳能系统。
对于抢险救灾及军事建筑,侧重其功能,受设备生产周期等因素影响时,允许其使用库存设备(甚至淘汰的二手设备),以尽快形成战斗力为第一要务,节能仅做参考。
2、阳能系统设置2.1前提条件太阳能系统可分为太阳能热利用系统、太阳能光伏发电系统和太阳能光伏光热系统,本文认为设置太阳能系统应满足以下条件:1)丰富的太阳能资源:2)可预期的使用需求;3)可供实施的场所;4)满足安全要求,兼顾文化传承;各地区太阳能资源参数应在规范附录中提供,以便设计作为依据。
在太阳能资源丰富地区采用的太阳能系统形式可根据使用需求来定,当有稳定的热水或供暖需求时宜采用太阳能热利用系统,否则宜采用太阳能光伏发电系统。
完整版建筑节能与可再生能源利用通用规范

国家规范> 建筑专业> 建筑节能与可再生能源利用通用规范[附条文说明] GB55015-2021建筑节能与可再生能源利用通用规范1总则1.0.1为执行国家有关节约能源、保护生态环境、应对气候变化的法律、法规,落实碳达峰、碳中和决策部署,提高能源资源利用效率,推动可再生能源利用,降低建筑碳排放,营造良好的建筑室内环境,满足经济社会高质量发展的需要,制定本规范。
1.0.2新建、扩建和改建建筑以及既有建筑节能改造工程的建筑节能与可再生能源建筑应用系统的设计、施工、验收及运行管理必须执行本规范。
1.0.3建筑节能应以保证生活和生产所必需的室内环境参数和使用功能为前提,遵循被动节能措施优先的原则。
应充分利用天然采光、自然通风,改善围护结构保温隔热性能,提高建筑设备及系统的能源利用效率,降低建筑的用能需求。
应充分利用可再生能源,降低建筑化石能源消耗量。
1.0.4工程建设所采用的技术方法和措施是否符合本规范要求,由相关责任主体判定。
其中,创新性的技术方法和措施,应进行论证并符合本规范中有关性能的要求。
2基本规定2.0.1新建居住建筑和公共建筑平均设计能耗水平应在2016年执行的节能设计标准的基础上分别降低30%和20%。
不同气候区平均节能率应符合下列规定:1严寒和寒冷地区居住建筑平均节能率应为75%;2除严寒和寒冷地区外,其他气候区居住建筑平均节能率应为65%;3公共建筑平均节能率应为72%。
2.0.2标准工况下,不同气候区的各类新建建筑平均能耗指标应按本规范附录A确定。
2.0.3新建的居住和公共建筑碳排放强度应分别在2016年执行的节能设计标准的基础上平均降低40%,碳排放强度平均降低7kgCO2/(m2·a)以上。
2.0.4新建建筑群及建筑的总体规划应为可再生能源利用创造条件,并应有利于冬季增加日照和降低冷风对建筑影响,夏季增强自然通风和减轻热岛效应。
2.0.5新建、扩建和改建建筑以及既有建筑节能改造均应进行建筑节能设计。
GB_55015—2021《建筑节能与可再生能源利用通用规范》中电气相关条文探讨

1引言GB 55015—2021《建筑节能与可再生能源利用通用规范》[1](以下简称《通用规范》)自2022年4月1日起实施,其中对电气专业的要求所占篇幅相对较少,但在实施过程中,有些问题引起了人们的广泛讨论,笔者针对几个主要问题,总结自己的理解和建议。
2第3.3.1条,对电力变压器、电动机、交流接触器和照明产品的能效水平的要求从降低建筑能耗的角度出发,《通用规范》第3.3.1条要求建筑中使用的电力变压器、电动机、交流接触器和照明产品的能效水平要严于现有产品标准中规定的能效限定值(或能效等级3级)的数值要求。
对于电力系统而言,我国电网损耗占总发电量的7.2%,其中,变压器损耗占比较大。
因此,采用节能型变压器、降低变压器的损耗是电力系统节能工作中的重要内容。
设计工作中,我们应根据GB 20052—2020《电力变压器能效限定值及能效等级》[2]中规定的三相电力变压器的能效限定值、能效等级和试验方法,选择符合条文要求的电力变压器。
民用建筑常用的干式变压器能效等级一、二、三级的型号共有6种,其中三级能效等级包括SCB12系列干式变压器、SCB13系列干式变压器、SCBH15系列非晶合金干式变压器;二级能效等级包括SCB14系列干式变压器、SCBH17系列非晶合金干式变压器;一级能效等级仅有SCB18系列干式变压器。
通过表1可以看出,SCB14型二级能效变压器空载损耗及负载损耗比SCB12型三级能效变压器分别降低15%和10%,SCB13型三级能效干式变压器比SCB12型干式变压器空载损耗及负载损耗均降低10%,也就是说,同容量的二级能效和三级能效的干式变压器,不同型号的节能效果还是有明显区别的,从节能效果看,SCB14变压器>SCB13变压器>SCB12变压器。
另外,从经济性看,SCB13变压器价格比SCB14变压器便宜,省电性比SCB12系列变压器又有明显优势。
【作者简介】陈琦(1982~),男,江苏南京人,高级工程师,从事建筑电气设计与研究。
建筑节能工程中的规范要求与能源利用效率

建筑节能工程中的规范要求与能源利用效率随着环保意识的增强和对能源的关注,建筑节能工程已成为当今社会发展的重要方向。
为了提高建筑的能源利用效率,各国纷纷制定了严格的规范要求。
本文将探讨建筑节能工程中的规范要求和提高能源利用效率的方法。
一、建筑节能规范要求1. 建筑外墙隔热设计要求建筑外墙是建筑物与环境之间的隔热屏障,直接影响建筑物的能源利用效果。
在节能设计中,对建筑外墙材料的选择和施工要求进行了严格规定。
例如,要求使用具有良好隔热性能的材料,设置保温层和隔热层等。
2. 窗户与门的节能设计要求窗户和门是建筑外墙中的重要组成部分,也是热能交换的重要通道。
为了减少室内外热量的传递,建筑节能规范要求采用节能型窗户和门,如双层玻璃、中空玻璃、密封性能好的门窗等。
3. 建筑内部照明设计要求照明是建筑物内部耗电量较大的部分之一,合理设计照明系统能有效节约能源。
规范要求采用高效节能灯具、感应开关、光线传感器等,以实现照明的智能控制和节能效果。
4. 高效供暖与通风系统设计要求供暖和通风系统是影响建筑能源利用效率的关键因素。
规范要求采用高效节能的供暖设备,如地源热泵、空气能热泵等。
同时,要求合理设计通风系统,采用热回收技术,减少冷热能的浪费。
二、提高建筑能源利用效率的方法1. 优化建筑结构合理优化建筑结构可以降低建筑物的能源消耗。
设计时应选用适当的材料和结构形式,减少用能需求。
同时,通过加强建筑物的保温性能和隔热性能,减少能源浪费。
2. 采用节能设备与系统建筑节能工程中,采用节能设备和系统是提高能源利用效率的重要手段。
如使用高能效的照明设备、空调设备、供暖设备等,通过智能控制系统进行精确控制,实现高效使用能源。
3. 推广可再生能源利用可再生能源是建筑节能的重要来源之一。
通过使用太阳能、风能等可再生能源,转化为电能或热能供应给建筑物,可以大幅减少对传统能源的依赖,提高能源利用效率。
4. 加强能源管理与监测建筑节能工程的成功离不开科学的能源管理与监测。
一建碳排放规定

一建碳排放规定
1.全部强制,必须严格执行
2. 建筑节能与可再生能源通用规范覆盖面广,涉及新建建筑、既有建筑、可再生能源系统、施工调试验收与运行管理等内容
3.建筑碳排放计算作为强制要求
4.可再生能源利用要求细化
5.新建建筑节能设计水平进一步提升。
《通用规范》提高了居住建筑、公共建筑的热工性能限值要求,与大部分地区现行节能标准不同,平均设计能耗水平在现行节能设计国家标准和行业标准的基础上分别降低30%和20%。
严寒和寒冷地区居住建筑平均节能率应为75%;
其他气候区居住建筑平均节能率应为65%;
公共建筑平均节能率应为72%。
6.新增温和地区工业建筑节能设计指标要求。
相比于《工业建筑节能设计统一标准》GB 51245-2017,《通用规范》新增温和A区
设置供暖空调系统的工业建筑节能设计指标,拓展工业标准适用范围,温和地区工业建筑严格执行。
7.暖通空调系统效率和照明要求全面提升
意义和制定标准:
《建筑节能与可再生能源利用通用规范》(以下简称《节能规范》)的推出,是为了执行国家有关节约能源、保护生态环境、应对气候变化的法律、法规,落实碳达峰、碳中和决策部署,提高能源资源利用效率,推动可再生能源利用,降低建筑碳排放,营造良好的建筑室内环境,满足经济社会高质量发展的需要。
《节能规范》贯彻了改革和完善工程建设标准体系精神,对提升建筑品质、促进建筑行业高质量发展和绿色发展具有重要作用。
突出了技术法规性质,从新建建筑节能设计、既有建筑节能、可再生能源利用三个方面,明确了设计、施工、调试、验收、运行管理的强制性指标及基本要求。
内容架构、要素构成、主要技术指标等与发达国家相关技术法规和标准接轨,总体上达到国际先进水平。
建筑绿色环保设计的规范要求与可再生能源

建筑绿色环保设计的规范要求与可再生能源随着全球环境问题日益突出,建筑绿色环保设计成为当今建筑行业发展的重要趋势。
在建筑设计与施工中,应充分考虑环保因素,减少对环境的不良影响,推广可再生能源的应用。
本文将就建筑绿色环保设计的规范要求与可再生能源进行探讨。
一、绿色环保设计的规范要求1. 建筑整体设计要与自然环境协调建筑设计应尽可能与自然环境协调,充分利用自然资源,减少对环境的破坏。
建筑物的造型、朝向、采光等方面应与自然环境相契合,减少能源的消耗。
2. 合理利用节能材料绿色建筑要求使用保护环境、节约能源的建筑材料。
如利用可再生资源制造的木材、环保型建筑材料等,可有效减少资源的消耗,降低二氧化碳的排放。
3. 实施节约用水措施合理利用水资源是绿色建筑的重要组成部分。
在建筑设计中,应采取措施减少用水量,如使用节水器具、循环水处理系统等,提高水资源利用效率。
4. 建筑节能技术的应用绿色建筑的设计应充分考虑节能技术的应用,包括建筑外保温、采光与通风系统、太阳能利用等。
通过合理利用自然能源,减少对电力等非可再生能源的依赖,实现能源的高效利用。
二、可再生能源在建筑设计中的应用1. 太阳能利用太阳能是一种丰富的可再生能源,可以广泛应用于建筑领域。
通过安装光伏发电系统,可以将太阳能转化为电能,满足建筑的一部分能源需求。
此外,利用太阳能进行热水供应、空调制冷等也是可行的。
2. 风能利用风能是一种清洁而可再生的能源,可以通过风力发电系统将风能转化为电能。
在建筑设计中,可以考虑安装风力发电装置,利用风能为建筑供应电力。
3. 生物质能的利用利用农作物秸秆、木屑等生物质资源进行发电,可以实现能源的可再生。
在建筑设计中,可以采用生物质能发电装置,通过燃烧生物质材料产生热能,满足建筑的能源需求。
4. 地源热泵技术地源热泵技术是一种利用地下热能进行供暖和制冷的方法。
通过将地下的稳定温度转化为建筑所需的热能或冷能,实现能源的有效利用。
三、案例研究:某绿色建筑项目以某建筑项目为例,该项目应用了绿色建筑设计理念,并充分利用可再生能源,实现了可持续发展。
建筑节能与可再生能源通用规范

建筑节能与可再生能源通用规范第一节:规范的概述建筑节能与可再生能源是当前社会发展中非常重要的话题。
建筑节能是指采用一系列措施,以减少能源消耗、提高能源利用效率,减少对环境的影响。
可再生能源是指会不断补充并且不受限制地使用的能源。
本规范以提高建筑节能环保能力,促进可再生能源利用为目标,依据国家相关法律法规制定,详细规定了建筑节能与可再生能源相关技术规范。
第二节:建筑节能的要求1.选材节能:建筑用材应具有良好的隔热性能和保温性能,以减少对冷、热源的散失。
2.设备节能:采用节能设备,如高效空调系统、LED照明等,以减少对电力能源的消耗。
同时,可以采用太阳能、地热能等可再生能源来替代传统的化石能源。
3.建筑设计:精心设计建筑,以适应当地自然环境并充分利用自然光、自然风、地形、气候等元素,减少采光照明需求和建筑冷热负荷,提高建筑节能性能。
4.节能管理:建筑应具备智能化节能管理系统,对建筑的能源消耗、使用情况进行实时监控和调整,以最大程度地减少能源的浪费和损耗。
第三节:可再生能源的应用1.太阳能:应用光伏发电技术,在建筑顶部、墙面等位置安装光伏电池板,将太阳能转化为电能供给建筑使用。
此外,太阳能热水等技术也可以用于建筑的热水供应。
2.风能:利用风力发电机,将风能转化为电能。
在适当的地方安装风力发电设备,可以为建筑提供清洁、可再生的电力能源。
3.地热能:利用地下深层地热进行供暖和制冷。
在地下深层进行地热能的开发利用,可以为建筑提供安全、环保的能源。
4.水能:利用水力发电技术,通过水流转化为电能。
在一些水资源丰富的地区,可以利用水力发电技术为建筑提供电力支持。
第四节:建筑节能与可再生能源通用规范1.规范的适用范围:本规范适用于各类新建、改扩建建筑,以及建筑节能与可再生能源利用系统的设计、施工、验收和运行管理。
2.设计原则:建筑节能设计应遵循科学合理的原则,充分考虑建筑的地理位置、气候条件、建筑功能等因素,以最大程度地减少能源消耗,提高建筑的能源利用效率。
建筑节能与可再生能源利用通用规范

建筑节能与可再生能源利用通用规范通风空调及生活热水供应系统、照明系统的效率,在保证相同的室内热环境参数前提下,与未采取节能改造措施前相比,供暖通风空调及生活热水供应系统、照明系统的全年能耗降低30%以上,且静态投资回收期小于等于6年时,应进行节能改造。
4.4.2综合节能改造效果应采用节能量进行评估。
改造后节能量应按下式进行计算:Econ=Ebaseline-Epre + Ecal (4.5.2)式中:Econ,节能措施的节能量;Ebaseline,基准能耗,即节能改造前,1年内设备或系统的能耗,即改造前的能耗;Epre,当前能耗,即改造后的能耗; Ecal,调整量。
5可再生能源应用系统设计5.1一般规定5.1.1可再生能源应用系统设计时,应根据当地太阳能资源、地热资源和空气源热泵、风能适用条件统筹规划。
5.1.2太阳能热利用系统应做到全年综合利用,根据使用地的气候类型、实际需求和适用条件,具备为建筑物提供生活热水、供暖或供冷的功能。
5.1.3采用太阳能系统时,应进行太阳能与建筑一体化设计。
5.1.4采用可再生能源时,应根据适用条件和投资规模确定该类能源可提供的用能比例或贡献率。
当采用地源热泵、空气源热泵系统时,应根据项目负荷特点和当地资源条件进行适宜性分析,采用地源热泵、空气源热泵系统一次能源利用率应高于本项目可用的常规能源一次能源利用率。
5.1.5建筑方案和初步设计文件应分析可再生能源利用的可行性,如不采用应提供理由。
施工图设计文件中应注明可再生能源系统运营管理的技术要求。
5.2太阳能系统5.2.1太阳能热利用或太阳能光伏发电系统及其构件应满足结构及防火安全的要求。
5.2.2由太阳能集热器构成的阳台栏板,应满足其刚度、强度及防护功能要求。
5.2.3安装太阳能集热器或光伏电池板的建筑,应设置安装和运行维护的安全防护措施,防止太阳能集热器或光伏电池板损坏后部件坠落伤人的安全防护设施。
5.2.4太阳能热利用系统应根据不同地区和使用条件采取防冻、防结霜、防过热、防热水渗漏、防雷、防雹、抗风、抗震和保证电气安全等技术措施。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
建筑节能与可再生能源利用通用规范(征求意见稿)目录1总则 (1)2基本规定 (2)3新建建筑节能设计 (3)3.1一般规定 (3)3.2建筑和围护结构 (3)3.3暖通空调 (6)3.4给排水、电气及燃气 (13)4既有建筑节能改造诊断、设计与评估 (20)4.1一般规定 (20)4.2围护结构 (20)4.3建筑设备系统 (22)4.4综合节能改造 (23)5可再生能源应用系统设计 (25)5.1一般规定 (25)5.2太阳能系统 (25)5.3地源热泵系统 (26)5.4空气源热泵系统 (27)6施工、调试及验收 (29)6.1一般规定 (29)6.2围护结构 (31)6.3建筑设备系统 (35)6.4可再生能源应用系统 (36)7运行管理 (38)7.1运行与维护 (38)7.2节能管理 (39)附录A建筑分类及参数计算 (41)附录B不同气候区建筑设计平均能耗指标 (43)附录C建筑围护结构热工性能权衡判断 (44)附录D建筑围护结构热工性能限值 (52)附:起草说明 (65)1总则1.0.1为贯彻国家有关节约能源、保护生态环境、应对气候变化的法律、法规和政策,提高能源资源利用效率,充分利用可再生能源,改善建筑室内环境,加强建筑节能工程的质量管理,促进建筑节能工作,满足经济社会管理基本需要,依据有关法律、法规,制定本规范。
1.0.2建筑节能与可再生能源建筑应用系统的设计、施工、验收及运行管理应遵守本规范。
1.0.3本规范是建筑节能与可再生能源建筑应用系统工程设计、施工、验收及运行管理过程中技术和管理的基本要求。
当建筑节能与可再生能源利用的设计方法、材料、构件、技术措施、施工质量控制与验收检验内容(方法)等与本规范的规定不一致时,经合规性判定,能够实现既定节能目标,且能保障建筑安全可靠,及正常使用,应允许使用。
1.0.4建筑节能与可再生能源建筑应用系统的设计、施工、验收及运行管理除应遵守本规范外,尚应遵守国家现行有关规范的规定。
2基本规定2.0.1建筑节能应以保证安全生产和生活所必需的室内环境参数和使用功能为前提,以降低建筑本身能源需求并降低建筑的化石能源消耗量为目标,并优先利用可再生能源。
2.0.2新建居住建筑的供暖和空调平均能耗水平应在2016年现行居住建筑节能设计标准的基础上降低30%;2.0.3新建公共建筑的供暖、通风、空调和照明平均能耗水平应在2016年现行公共建筑节能设计标准的基础上降低20%。
2.0.4不同类型的建筑应按建筑分类分别满足相应性能要求。
建筑分类及参数计算应符合附录A的规定。
2.0.5不同气候区建筑设计平均能耗指标应符合本规范附录B。
2.0.6建筑用能系统应设置能量计量装置,可再生能源应用系统应设置可再生能源及常规能源分项计量装置。
3新建建筑节能设计3.1一般规定3.1.1建筑群整体规划应减轻热岛效应;建筑的总体规划和总平面设计应有利于自然通风和冬季日照,并应缩短能源供应输送距离。
当具备可再生能源利用条件时,应统筹规划。
3.1.2建筑节能应遵循被动节能措施优先的原则,充分利用天然采光、自然通风,通过改善围护结构保温隔热性能,提高建筑设备及系统的能源利用效率,降低建筑的用能需求。
3.1.3工程设计变更后,应对建筑节能措施重新进行审核。
3.2建筑和围护结构3.2.1建筑的体形系数应符合下列规定:1居住建筑体形系数不应大于表3.2.1-1规定的限值。
当设计建筑不满足表3.2.1-1规定限值时,应按本规范附录C的规定进行围护结构热工性能权衡判断;表3.2.1-1 体形系数限值2 严寒和寒冷地区公共建筑体形系数不应大于表3.2.1-2规定的限值。
表3.2.1-2 严寒和寒冷地区公共建筑体形系数限值3.2.2居住建筑的窗墙面积比不应大于表3.2.2规定的限值。
当设计建筑不满足表3.2.2规定限值时,应按本规范附录C的规定进行围护结构的权衡判断。
表3.2.2 窗墙面积比限值注: 600的范围;“东、西”代表从东或西偏北小于等于300至偏南小于600的范围;“南”代表从南偏东小于等于300至偏西小于等于300的范围。
3.2.3甲类公共建筑的屋顶透光部分面积不应大于屋顶总面积的20%。
当不能满足本条的规定时,应按本规范附录C的规定进行围护结构的权衡判断。
3.2.4设置供暖、空调系统的工业建筑总窗墙面积比不应大于0.50,屋顶透光部分面积不应大于屋顶总面积的15%。
当不能满足本条的规定时,应按本规范附录C的规定进行围护结构的权衡判断。
3.2.5外窗的通风开口面积应符合下列规定:1夏热冬暖地区居住外窗(包含阳台门)的通风开口面积不应小于房间地面面积的10%或外窗面积的45%,其他地区每套居住建筑的通风开口面积不应小于地面面积的5%。
2公共建筑中主要功能房间的外窗(包括透光幕墙)应设置可开启窗扇或通风换气装置,甲类公共建筑外窗(包括透光幕墙)通风开口有效通风换气面积不应小于所在房间外墙面积的10%。
建筑中庭应充分利用自然通风降温。
3.2.6遮阳措施应符合下列规定:1夏热冬暖、夏热冬冷地区的甲类公共建筑南、东、西向外窗和透光幕墙应采取遮阳措施。
2除严寒地区外,甲类公共建筑南、东、西向外窗和透光幕墙的单一立面窗墙面积比大于或等于0.5时,应采用活动式建筑外遮阳或活动式中置遮阳。
3建筑室内中庭应有遮阳设计。
4夏热冬暖地区,居住建筑的东、西向外窗必须采取建筑外遮阳措施,建筑外遮阳系数SD不应大于0.8。
3.2.7建筑围护结构的热工性能指标应符合本规范附录D的规定。
当设计建筑不满足附录D规定限值时,应按本规范附录C的规定进行围护结构热工性能权衡判断。
3.2.8建筑幕墙、外窗及敞开阳台的门气密性等级不应低于表3.2.8规定的限值。
表3.2.8 建筑幕墙、外窗及敞开阳台的门气密性气密性等级限值3.2.9当公共建筑入口大堂采用全玻幕墙时,全玻幕墙中非中空玻璃的面积不应超过同一立面透光面积(门窗和玻璃幕墙)的15%,且应按同一立面透光面积(含全玻幕墙面积)加权计算平均传热系数。
3.2.10采光装置应符合下列规定:1 采光窗的透光折减系数Tr应大0.45;2 导光管采光系统在漫射光条件下的系统效率应大于0.5。
3.2.11有采光要求的功能性房间或场所,室内各表面的加权平均反射比不应低于0.4。
3.3暖通空调3.3.1除乙类公共建筑外,集中供暖和集中空气调节系统的施工图设计,必须对设置供暖、空调装置的每一个房间进行热负荷和逐项逐时冷负荷计算。
3.3.2除符合下列条件之一外,不得采用电直接加热设备作为供暖热源:1 电力供应充足,且电力需求侧管理鼓励用电时;2 无城市或区域集中供热,采用燃气、煤、油等燃料受到环保或消防限制,且无法利用热泵提供供暖热源的建筑;3 以供冷为主、供暖负荷非常小,且无法利用热泵或其他方式提供供暖热源的建筑;4 以供冷为主、供暖负荷小,无法利用热泵或其他方式提供供暖热源,但可以利用低谷电进行蓄热、且电锅炉不在用电高峰和平段时间启用的空调系统;5 利用可再生能源发电,其发电量能满足自身用电量需求,且无法利用热泵供暖的建筑。
3.3.3除符合下列条件之一外,不得采用电直接加热设备作为空气加湿热源:1 电力供应充足,且电力需求侧管理鼓励用电时;2 利用可再生能源发电,且其发电量能满足自身加湿用电量需求的建筑;3 冬季无加湿用蒸气源,且冬季室内相对湿度控制精度要求高的建筑。
3.3.4锅炉的选型,应与当地长期供应的燃料种类相适应。
在名义工况和规定条件下,锅炉的设计热效率不应低于表3.3.4的数值。
表3.3.4 名义工况下锅炉的热效率(%)3.3.5当设计采用户式燃气供暖热水炉作为供暖热源时,其热效率应满足表3.3.5的规定。
表3.3.5户式燃气供暖热水炉的热效率注:η1 为供暖炉额定热负荷和部分热负荷(供暖状态为30%的额定热负荷)下两个热效率值中的较大值,η2 为较小值。
3.3.6除下列情况外,不应采用蒸气锅炉作为热源:1 厨房、洗衣、高温消毒以及工艺性湿度控制等必须采用蒸气的热负荷;2 蒸气热负荷在总热负荷中的比例大于70%且总热负荷不大于1.4MW。
3.3.7电动压缩式冷水机组的总装机容量,应按本规范第3.3.1条的规定计算的空调冷负荷值直接选定,不得另作附加。
在设计条件下,当机组的规格不符合计算冷负荷的要求时,所选择机组的总装机容量与计算冷负荷的比值不得大于1.1。
3.3.8采用电机驱动的蒸气压缩循环冷水(热泵)机组时,其在名义制冷工况和规定条件下的性能系数(COP)应符合下列规定:1 水冷定频机组及风冷或蒸发冷却机组的性能系数(COP)不应低于表3.3.8的数值;2 水冷变频离心式机组的性能系数(COP)不应低于表3.3.8中数值的0.93倍;3 水冷变频螺杆式机组的性能系数(COP)不应低于表3.3.8中数值的0.95倍。
表 3.3.8 名义工况下冷水(热泵)机组的制冷性能系数(COP)3.3.9电机驱动的蒸气压缩循环冷水(热泵)机组的综合部分负荷性能系数(IPLV)应按下式计算:IPLV=1.2%×A+32.8%×B+39.7%×C+26.3%×D(3.2.9)式中:A——100%负荷时的性能系数(W/W),冷却水进水温度30℃/冷凝器进气干球温度35℃;B——75%负荷时的性能系数(W/W),冷却水进水温度26℃/冷凝器进气干球温度31.5℃;C——50%负荷时的性能系数(W/W),冷却水进水温度23℃/冷凝器进气干球温度28℃;D——25%负荷时的性能系数(W/W),冷却水进水温度19℃/冷凝器进气干球温度24.5℃。
3.3.10当采用电机驱动的蒸气压缩循环冷水(热泵)机组时,综合部分负荷性能系数(IPLV)应符合下列规定:1 综合部分负荷性能系数(IPLV)计算方法应符合第3.3.9条的规定;2 水冷定频机组的综合部分负荷性能系数(IPLV)不应低于表3.3.10的数值;3 水冷变频离心式冷水机组的综合部分负荷性能系数(IPLV)不应低于表3.3.10中水冷离心式冷水机组限值的1.30倍;4 水冷变频螺杆式冷水机组的综合部分负荷性能系数(IPLV)不应低于表3.3.10中水冷螺杆式冷水机组限值的1.15倍。
表3.3.10 名义工况下冷水(热泵)机组综合部分负荷性能系数(IPLV)3.3.11空调系统的电冷源综合制冷性能系数(SCOP)不应低于表3.3.11的数值。
对多台冷水机组、冷却水泵和冷却塔组成的冷水系统,应将实际参与运行的所有设备的名义制冷量和耗电功率综合统计计算,当机组类型不同时,其限值应按冷量加权的方式确定。
表3.3.11 电冷源综合制冷性能系数(SCOP)3.3.12采用名义制冷量大于7.1kW、电机驱动的单元式空气调节机、风管送风式和屋顶式空气调节机组时,其在名义制冷工况和规定条件下的能效比(EER)不应低于表3.3.12的数值。