设计制作一个产生正弦波—方波—三角波函数转换器
设计制作一个产生方波-三角波-正弦波函数转换器

模拟电路课程设计报告课题名称:设计制作一个产生方波-三角波-正弦波函数转换器。
姓名:学号:45专业班级:电信指导老师:设计时间: 1月3号设计制作一个产生方波-三角波-正弦波函数转换器(一)设计任务和要求① 输出波形频率范围为0.2KHz~20kHz 且连续可调; ② 正弦波幅值为±2V ,; ③ 方波幅值为2V ;④ 三角波峰-峰值为2V ,占空比可调;⑤ 用桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V )(二)函数发生器的方案(一):直流电源(将220V 的交流电变成+12V 和-12V 的直流电) 直流电源的组成及各部分的作用:1. 直流电源发生电路图如下所示:电网电压电源 变压器整流电路滤波电路稳压电路负载(二)函数发生器方案一:如下图所示:U1UA741CD3247651U2UA741CD 3247651R120kΩR210kΩKey=A50%R310kΩKey=A 50%R420kΩKey=A 50%1D11N5226B D21N5226B VCC 12V VCC3R510kΩKey=A 50%GND6GNDGND VDD-12V VDDC1220nF GNDGNDVCC 12V VDD-12V VDDVCC5GND 2C2470nF C3470nF R6100kΩKey=A 50%R710kΩR810kΩR910kΩR10100Ω8GNDGND9Q12N2218Q22N2218Q32N2218Q42N221810GNDGND 11R11100ΩKey=A 50%121316R1210kΩR1310kΩR1410kΩR1510kΩ17181519GND GND GNDGND C4470nFC51uF 14GND GNDVCC 12V VCC VDD-12VVDDXSC1ABCDGT 4720GNDGND图(1)电压(滞回)比较器积分运算电路 差分放大电路方案二:如下图所示:图(2) 方案三:如下图所示:电压(滞回)比较器积分运算电路二阶低通滤波电路电压(滞回)比较器积分运算电路 利用折线法图(3)方案讨论:(我选择第三种方案)制作一个函数发生器(方波-三角波-正弦波的转换),由电压比较器可以产生方波,方波通过积分可以产生三角波,对于三角波产生正弦波的方法较多。
正弦波—方波—三角波函数发生器设计报告之欧阳德创编

模拟电子技术——课程设计报告题目:函数波形发生器专业:应用电子技术班级:应用电子技术(五)班学号: 0906020129姓名:刘洪小组成员:刘洪阙章明日期:2010-6-24目录(信号发生器)1 函数发生器的总方案及原理框图 (1)1.1电路设计原理框图 (1)1.2 电路设计方案设计 (1)2设计的目的及任务 (2)2.1 课程设计的目的 (2)2.2 课程设计的任务 (2)2.3课程设计的要求及技术指标 (2)3 各部分电路设计 (3)3.1总电路图 (3)3.2正弦波产生电路的工作原理、仿真及结果 (3)3.3 正弦波-方波发生电路的工作原理、仿真及结果 (4)3.4方波-三角波转换电路的工作原理、仿真及结果 (5)3.5电路的参数选择及计算 (5)4 电路的安装与调试 (7)4.1 正弦波发生电路的安装与调试 (7)4.2方波-三角波的安装与调试 (7)4.3总电路的安装与调试 (7)5 电路的实测结果 (8)5.1 正弦波发生电路的实测结果 (8)5.2正弦波-方波转换电路的实测结果 (8)5.3 方波-三角波转换电路的实测结果 (8)5.4 实测电路波形、误差分析及改进方法 (8)5.5 电路安装与调试中遇到的问题及分析解决方法 (8)6 实验总结 (9)7 仪器元件明细清单 (9)8 参考文献 (9)1函数发生器的总方案及原理框图1.1电路设计原理框图正弦波振荡器过零电压比较器积分器图1.1 函数发生器原理框图1.2电路设计方案设计函数发生器一般是指能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形的电路或仪器。
根据用途不同,有产生三种或多种波形的函数发生器,使用的器件可以是分立器件(如低频信号函数发生器S101全部采用晶体管),也可以采用集成电路(如单片机函数发生器模块8038、集成运放管ua741)。
为进一步掌握电路的基本理论及实验调试技术,本课题采用集成运算放大器与比较器、积分器共同租成的正弦波——方波——三角波函数发生器的设计方法。
简易函数信号发生器设计报告

简易函数信号发生器设计报告一、引言信号发生器作为一种测试设备,在工程领域具有重要的应用价值。
它可以产生不同的信号波形,用于测试和调试电子设备。
本设计报告将介绍一个简易的函数信号发生器的设计方案。
二、设计目标本次设计的目标是:设计一个能够产生正弦波、方波和三角波的函数信号发生器,且具有可调节频率和幅度的功能。
同时,为了简化设计和降低成本,我们选择使用数字模拟转换(DAC)芯片来实现信号的输出。
三、设计原理1.信号产生原理正弦波、方波和三角波是常见的函数波形,它们可以通过一系列周期性的振荡信号来产生。
在本设计中,我们选择使用集成电路芯片NE555来产生可调节的方波和三角波,并通过滤波电路将其转换为正弦波。
2.幅度调节原理为了实现信号的幅度调节功能,我们需要使用一个可变电阻,将其与输出信号的放大电路相连。
通过调节可变电阻的阻值,可以改变放大电路的放大倍数,从而改变信号的幅度。
3.频率调节原理为了实现信号的频率调节功能,我们选择使用一个可变电容和一个可变电阻,将其与NE555芯片的外部电路相连。
通过调节可变电容和可变电阻的阻值,可以改变NE555芯片的工作频率,从而改变信号的频率。
四、设计方案1.正弦波产生方案通过NE555芯片产生可调节的方波信号,并通过一个电容和一个电阻的RC滤波电路,将方波转换为正弦波信号。
2.方波产生方案直接使用NE555芯片产生可调节的方波信号即可。
3.三角波产生方案通过两个NE555芯片,一个产生可调节的方波信号,另一个使用一个电容和一个电阻的RC滤波电路,将方波转换为三角波信号。
五、电路图设计设计的电路图如下所示:[在此插入电路图]六、实现效果与测试通过实际搭建电路,并连接相应的调节电位器,我们成功地实现了信号的幅度和频率调节功能。
在不同的调节范围内,我们可以得到稳定、满足要求的正弦波、方波和三角波信号。
七、总结通过本次设计,我们成功地实现了一个简易的函数信号发生器,具有可调节频率和幅度的功能。
课程设计报告设计制作一个方波—三角波—正弦波的函数转换器

课程设计说明书课程设计名称:电子技术(模拟电路部分)课程设计题目:设计制作一个方波—三角波—正弦波的函数转换器学院名称:专业:班级:学号:姓名:评分:教师:20 年月日电子技术(模拟电路部分)课程设计任务书20 -20 学年第学期第周-周题目设计制作一个方波—三角波—正弦波的函数转换器内容及要求1 )输入波形频率范围为0.02Hz~20KHz且连续可调。
2 )正弦波幅值为±2V。
3 )方波幅值为±2V。
4 )三角波峰峰值为2V,占空比可调。
5 )设计电路所需的直流电源可用实验室电源。
进度安排第一周:设计电路图,参考文献,仿真,然后焊接。
第二周:调试装置,总结实验,完成实验报告。
学生姓名:指导时间:年月日至年月日指导地点:楼室任务下达年月日任务完成年月日考核方式 1.评阅□ 2.答辩□ 3.实际操作□ 4.其它□指导教师系(部)主任注:1、此表一组一表二份,课程设计小组组长一份;任课教师授课时自带一份备查。
2、课程设计结束后与“课程设计小结”、“学生成绩单”一并交院教务存档。
摘要函数信号发生器作为一种常用的信号源,是现代测试领域内应用最广泛的通用仪器之一,在研制生产测试和维修各种电子元件和部件都需要有信号源。
由于函数(波形)信号发生器能产生某些特定的周期性时间函数波形(正弦波,方波,三角波,锯齿波和脉冲波等)信号,频率范围可从几个微赫到几十兆赫函数,所以信号发生器在电路实验和设备检测中具有十分广泛的用途。
例如在通信,广播,电视系统中,都需要射频(高频)发射,这里的射频波就是载波,把音频(低频),视频信号或脉冲信号运载出去,就需要能够产生高频的振荡器。
除供通信、仪表和自动控制系统测试用外,还广泛用于其他非电容测量领域。
本次课程设计的目的:采用555集成芯片外界电容电阻来产生正弦波、方波、和三角波,先通过555芯片产生波形通过电容形成方波,接着经过两个电阻分别出现三角波和正弦波,经过仿真得出了三个波形的波形图,通过实验掌握电子系统的一般设计方法,培养综合应用所学知识来指导实践的能力,掌握常用元器件的识别和测试,熟悉常用仪表,了解电路调试的基本方法。
设计题目:如何实现正弦波、方波与三角波信号之间的变换

内蒙古工业大学信息工程学院课程学习报告设计题目:如何实现正弦波、方波与三角波信号之间的变换课程名称:模拟电子技术班级:通信10-1 班姓名:学号:成绩:指导教师:设计题目:如何实现正弦波、方波与三角波信号之间的变换一、课题设计任务与要求1、输出电压:0-1V之间2、频率范围:20Hz-20kHz之间3、信号频率:1KHz的正弦波、2KHz的方波和三角波任务如下:1KHz的正弦波2KHz2KHz的方波2KHz二、总体电路设方案(1)函数信号发生器设计思路①产生正弦波可以通过RC文氏电桥正弦波振荡电路,通过控制RC的值达到选频即控制频率大小的目的。
②产生的方波经RC积分电路后输出,得到三角波,为调节幅值,则用电压跟随器隔离三角波输出端,再用电位器接在运放输出端调节电压输出幅值。
③要先产生方波,就必须先用电压比较器和稳压管组成方波产生电路,为调节幅值,则用专用的电压跟随器隔离方波产生端,再用电位器接在运放输出端调节电压输出幅值。
(2)函数信号发生器原理函数信号发生器是一种用来产生特定需要波形信号的装置,比较常见的有方波、三角波、正弦波和锯齿波发生器。
本实验用来产生正弦波--方波--三角波信号。
正弦波发生器:采用RC桥式振荡电路实现输出为正弦波。
②正弦波转换成方波发生器:采用电压比较器与稳压管相结合,实现输出为方波。
③方波转三角波发生电路:将RC积分电路与运放结合,实现方波转三角波。
(图一)正弦波发生电路图(图二)正弦波转换成方波发生电路图(图三)方波转换成三角波发生电路图错误!未指定书签。
三、电路设计与原理说明1、正弦波发生电路的工作原理正弦波产生电路的目的就是使电路产生一定频率和幅度的正弦波,我们一般在放大电路中引入正反馈,并创造条件,使其产生稳定可靠的振荡。
正弦波产生电路的基本结构是:引入正反馈的反馈网络和放大电路。
其中:接入正反馈是产生振荡的首要条件,它又被称为相位条件;产生振荡必须满足幅度条件;要保证输出波形为单一频率的正弦波,必须具有选频特性;同时它还应具有稳幅特性。
正弦波-方波-三角波信号发生器设计

苏州科技学院天平学院模拟电子技术课程设计指导书课设名称正弦波-方波-三角波信号发生器设计组长李为学号1232106101组员谢渊博学号1232106102组员张翔学号1232106104专业电子物联网指导教师二〇一二年七月模拟电子技术课程设计指导书一设计课题名称正弦波-方波-三角波信号发生器设计二课程设计目的、要求与技术指标2.1课程设计目的(1)巩固所学的相关理论知识;(2)实践所掌握的电子制作技能;(3)会运用EDA工具对所作出的理论设计进行模拟仿真测试,进一步完善理论设计;(4)通过查阅手册和文献资料,熟悉常用电子器件的类型和特性,并掌握合理选用元器件的原则;(5)掌握模拟电路的安装\测量与调试的基本技能,熟悉电子仪器的正确使用方法,能力分析实验中出现的正常或不正常现象(或数据)独立解决调试中所发生的问题;(6)学会撰写课程设计报告;(7)培养实事求是,严谨的工作态度和严肃的工作作风;(8)完成一个实际的电子产品,提高分析问题、解决问题的能力。
2.2课程设计要求(1)根据技术指标要求及实验室条件设计出电路图,分析工作原理,计算元件参数;(2)列出所有元器件清单;(3)安装调试所设计的电路,达到设计要求;2.3技术指标(1)输出波形:方波-三角波-正弦波;(2)频率范围:100HZ~200HZ连续可调;(3)输出电压:正弦波-方波的输出信号幅值为6V.三角波输出信号幅值为0~2V连续可调;γ。
(4)正弦波失真度:%≤5三系统知识介绍3 函数发生器原理本设计要求产生三种不同的波形分别为正弦波\方波\ 三角波。
实现该要求有多种方案。
方案一:首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波。
方案二:首先产生方波——三角波,再将方波变成正弦波或将三角波变成正弦波。
3.1函数发生器的各方案比较我选的是第一个方案,上述两个方案均可以产生三种波形。
方案二的电路过多连接部方便而且这样用了很多元器件,但是方案的在调节的时候比较方便可以很快的调节出波形。
正弦波方波三角波发生器设计

一设计的目的及任务1.1 设计目的1 掌握电子系统设计的一般方法。
2 培养综合应用理论知识指导实践的能力。
3 掌握电子元件的识别和测试。
4 了解电路调试的基本方法。
1.2 设计任务和要求1 设计一个能产生正弦波方波三角波的函数转换器。
2 能同时输出一定频率一定幅度的3种波形:正弦波、方波和三角波。
3 可以用±12V或±15V直流稳压电源供电。
1.3 课程设计的技术指标1输出波形频率范围0.02hz~20khz且能连续可调。
2 正弦波幅值为±2V。
3方波幅值为2V。
4三角波峰峰值为2V且占空比可调。
二方案比较与论证2.1方案一方案一采用LC正弦波振荡电路、电压比较器、积分电路,构成正弦波-方波-三角波函数转换器。
LC正弦波振荡电路具有容易起振、振幅大、频率调节范围宽等特点,但是输出波形较差。
LC正弦波振荡电路电压比较器积分电路图2.1.1 方案一原理框图2.2方案二方案二采用石英晶体正弦波振荡电路产生正弦波,石英晶体正弦波振荡电路具有振荡频率稳定度高的优点,但其频率调节性能较差且受环境温度影响大。
石英晶体正弦波振荡电路电压比较器积分电路图2.2.1 方案二原理框图2.3方案三方案三首先用一个RC振荡电路产生正弦波,然后在用一个电压比较器产生方波,最后在方波基础上利用积分电路产生三角波。
电路框图如图2.3.1所示。
RC正弦波振荡电路电压比较器积分电路图2.3.1 方案三原理框图综上三种方案,方案一虽然对频率的调节性能好,但输出波形较差;方案二振荡频率稳定性好,但频率不易调节,且受环境影响大,对电子元件要求也较高;方案三能实现频率的连续可调,具有简单容易操作等优点,而且对电子元件的要求也不高,都为常用元件。
综上所述,方案三为最佳方案。
三 系统组成及工作原理3.1正弦波发生电路的工作原理3.1.1 产生正弦波的振荡条件所谓正弦振荡,是指在不加任何输入信号的情况下,由电路自身产生一定频率、一定幅值的正弦波电压输出。
模拟电子技术课程设计产生正弦波,方波,三角波,且占空比可调,频率可调,幅度可调

模拟电子技术课程设计产生正弦波,方波,三角波,且占空比可调,频率可调,幅度可调模拟电子技术课程设计任务书一、设计题目:波形发生器的设计(二)方波/三角波/正弦波/锯齿波函数发生器二、设计目的1、研究正弦波等振荡电路的振荡条件。
2、学习波形产生、变换电路的应用及设计方法以及主要技术指标的测试方法。
三、设计要求及主要技术指标设计要求:设计并仿真能产生方波、三角波及正弦波等多种波形信号输出的波形发生器。
1、方案论证,确定总体电路原理方框图。
2、单元电路设计,元器件选择。
3、仿真调试及测量结果。
主要技术指标1、正弦波信号源:信号频率范围20Hz,20kHz 连续可调;频率稳定度较高。
信号幅度可以在一定范围内连续可调;2、各种输出波形幅值均连续可调,方波占空比可调;3、设计完成后可以利用示波器测量出其输出频率的上限和下限,还可以进一步测出其输出电压的范围。
四、仿真需要的主要电子元器件1、运算放大电路2、滑线变阻器3、电阻器、电容器等五、设计报告总结(要求自己独立完成,不允许抄袭)。
1、对所测结果(如:输出频率的上限和下限,输出电压的范围等)进行全面分析,总结振荡电路的振荡条件、波形稳定等的条件。
2、分析讨论仿真测试中出现的故障及其排除方法。
3、给出完整的电路仿真图。
4、体会与收获。
1(正弦波输出电路14R116V23kΩR13R212 VD1D28.2kΩ50%6.8kΩ11U1A1N40071N4007XSC1R90Key=A172ExtTrig10kΩ1+R8180_3BA275.1kΩ4__LM324AD++R5R75.1kΩ5.1kΩ192411U3AR62511U2AR4225.1kΩC215.1kΩ15C11223233420LM324 AD4.7nF4R10LM324AD4.7nFR112kΩR3262kΩ100kΩ50%R12Key=A2128 0100kΩ50%Key=A00V112 V如图所示为频率可调、幅度可调的正弦波振荡电路。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模拟电路课程设计报告设计课题:设计制作一个产生正弦波—方波—三角波函数转换器专业班级:电信本学生姓名:学号:46指导教师:设计时间: 01/05设计制作一个产生正弦波-方波-锯齿波函数转换器一、设计任务与要求1、?输出波形频率范围为~20kHz且连续可调;2、?正弦波幅值为±2V;3、?方波幅值为2V;4、?三角波峰-峰值为2V,占空比可调;5、?分别用三个发光二极管显示三种波形输出;??6、用桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V)。
二、方案设计与论证设计要求产生三种不同的波形分别为正弦波、方波、三角波。
正弦波可以通过RC 桥式正弦波振荡电路产生。
正弦波通过滞回比较器可以转换成方波,方波通过一个积分电路可以转换成三角波,只要调节三角波的占空比就可以得到锯齿波。
各个芯片的电源可用直流电源提供。
方案一1、直流电源部分电路图如图1所示图1 直流电源2、波形产生部分方案一: LC 正弦波振荡电路与RC 桥式正弦波振荡电路的组成原则在本质上是相似的,只是选频网络采用LC 电路。
在LC 振荡电路中,当f=f 0时,放大电路的放大倍数数值最大,而其余频率的信号均被衰减到零;引入正反馈后,使反馈电压作为放大电路的输入电压,以维持输出电压,从而形成正弦波振荡。
方案二1、 直流电源部分同上2、电路图如图2所示正、反积分时间常数可调的积分电路 滞回比较器 LC 正弦波振荡电路图2 正弦波—方波—三角波函数转换电路方案论证LC正弦波振荡电路特别是方案一所采取的电感反馈式振荡电路中N1与N2之间耦合紧密,振幅大;当C采用可变电容时,可以获得调节范围较宽的振荡频率,最高频率可达几十兆赫兹。
由于反馈电压取自电感,对高频信号具有较大的电抗,输出电压波形中常含有高次谐波。
因此,电感反馈式振荡电路常用在对波形要求不高的设备之中,如高频加热器、接受机的本机振荡电路等。
另外由于LC正弦波振荡电路的振荡频率较高,所以放大电路多采用分立元件电路,必要时还应采用共基电路。
因此对于器材的选择及焊接的要求提高了。
相反,RC正弦波振荡电路的振荡频率较低,一般在1MHz以下,它是以RC串并联网络为选频网络和正反馈网络,以电压串联负反馈放大电路为放大环节,具有振荡频率稳定,带负载能力强,输出电压失真小等优点,因此获得相当广泛的应用。
另外对于器材的要求也不高,都是写常见的的集成块、电容、电位器等。
在布局方面,简单,清晰!综合对比两种方案,我选择第二种方案。
三、单元电路设计与参数计算1、直流电源(1)、整流电路设变压器副边电压U2=wtU sin22, U2为其有效值。
则:输出电压的平均值输出电流的平均值I O(AV)=R L脉动系数 S=)(1AV O M O U U = 2/3= 二极管的选择最大镇流电流I F >LR U π22 最高反向工作电压 U RM >22U(2)、滤波电路U O(AV)=2U 2(1-T/4R L C)当R L C=(3~5)T/2时,U O(AV) =脉动系数为S=TC R T L -4 滤波后的电压: (3)、稳压电路在稳压二极管所组成的稳压电路中,利用稳压管所起的电流调节作用,通过限流电)41(22U U U 2Omin Omax AV O C R T U L -=+=)(阻R上电压或电流的变化进行补偿,来达到稳压的目的。
限流电阻R是必不可少的元件,它既限制稳压管中的电流使其正常工作,又与稳压管相配合以达到稳压的目的。
一般情况下,在电路中如果有稳压管存在,就必然有与之匹配的限流电阻。
1)稳压电路输入电压UI的选择:根据经验,一般选取UI =(2~3)UOUI确定后,就可以根据此值选择整流滤波电路的元件参数。
2)稳压管的选择:UZ =UO;IZmax -IZmin>ILmax-ILmin;稳压管最大稳定电流 IZM >=ILmax+ILmin3)限流电阻R的选择:通过查手册可知:IZMIN <=IDZ<=IZMAX;计算可知:maxR=(U Imin-U Z)/(I Z+I Lmax)Rmin =(UImax-UZ)/(IZM+ILmin)其中变压器用 220V~15V规格的选的三端稳压器为:LM7812、LM7912,整流用的二极管可用1N4007 ,电解电容用3300uf C7与C8可用220Uf电容C3与C3可用 C5与C6可用,发光二极管上的R用 1KΩ。
2、波形转换部分(1)、RC 正弦波振荡电路的参数设计RC 正弦波振荡电路图如图3所示令R2=R’=R图3 RC 正弦波振荡电路F=Uf\Uo=jwc R jwc R jwc /1///1/1//R ++整理可得F=)/1(31wRC wRC j -+ 令W 。
=1/RC,则 f 。
=1/2ПRC,根据起振条件和幅值平衡条件 Au=U 。
/Up=1+Rf/R1≥3,整理得:Rf ≥2R1因为输出波形频率范围为-20KHz,取C=,故R=用5K 的电位器去调,且正弦波的幅值为2V,故R1用10K 的电位器,Rf 用50K 的电位器。
正弦波发生器仿真电路图如图4所示图4 RC 正弦波振荡电路的仿真电路图正弦波——方波转换器实验原理如图5所示图5 正弦波—方波转换器实验原理方框图滞回比较器如图6所示,其电压传输特性如图7所示图6 滞回比较器 图7 电压传输特性方波 滞回比较器 正弦波发生电路电路组成:集成运放uA741,R5,R6图6为一种电压比较器电路,双稳压管用于输出电压限幅,R3起限流作用,R1和R2构成正反馈,运算放大器当Up >Uc 时工作在正饱和区,而当Uc >Up 时工作在负饱和区。
从电路结构可知,当输入电压U ⅰ小于某一负值电压时,输出电压U 。
= -U Z ;当输入电压U ⅰ大于某一电压时,u o = +U Z 。
又由于“虚断”、“虚短”Up =Uc =0,由此可确定出翻转时的输入电压。
u p 用u i 和u o 表示,有21o 1i 221o 2i 1p 1111R R u R u R R R u R u R u ++=++==u n =0 得此时的输入电压U th 称为阈值电压。
滞回电压比较器的直流传递特性如图7所示。
设输入电压初始值小于-U th ,此时u o = -U Z ;增大u i ,当u i =U th 时,运放输出状态翻转,进入正饱和区。
如果初始时刻运放工作在正饱和区,减小u i ,当u i = -U th 时,运放则开始进入负饱和区。
由于是正弦波—方波转换电路,输出端加一个限流电阻R7=2K,根据设计要求方波幅值为2V ,因此选择的稳压二极管可选用稳压为的,共两个。
正弦波——方波转换仿真电路图如图8所示图8 正弦波——方波转换仿真电路图方波——锯齿波转换器实验原理如图9所示图9 方波——锯齿波转换器实验原理 方波发生电路 正、反积分时间常数可调的积分电路锯齿波电路组成:(1)积分运算电路积分运算电路如图10所示图10 积分运算电路由于“虚地”, U-=0, 故:Uo=-Uc由于“虚断”,i 1=i C , 故:Ui=i 1R=i c R 得:⎰⎰-=-=-=t u RC t i C u u C C d 1d 1I O ;τ = RC (积分时间常数) 由上式可知,利用积分电路可以实现方波——三角波的波形变换。
(2)占空比可调电路方波—三角波转换电路的仿真图如图11所示图11 方波—三角波转换电路的仿真图由于是方波—三角波波转换电路,因此在第二个集成块的输出端加上个限流阻R5=2K,根据设计要求三角波的峰—峰值为2V ,且占空比可调。
Uo=-R8C 1Uz(t1-t0)+U O (t0) 当Uo=R9)C R81+(Uz(t2-t1)+U O (t1)T=R6R9)C2R82R5+(,取R9、R5为10K的电位器,R8为50K电位器。
解之可得:R6=282/T=282f=~,因此取R6=10K,积分电路中C=220nf,改变占空比的二极管可选用2个1N4007,补偿电阻R12可选取10K,以保证集成运放输入级差分放大电路的对称性。
四、总原理图及元器件清单1、总原理图(1)、直流电流如图12所示图12 直流电源(2)、正弦波—方波—三角波函数转换电路如图13所示图13 正弦波—方波—三角波函数转换电路3、元件清单元件清单如表1所示表元件清单装与调试11)、按所设计得电路图在电路板上做好布局,准备焊接电路板。
(2)、用万用表测得输出为+和,与理论值有一定的误差;并且测出7812、7912输入与输出的压差分别为+和,并记录。
2、正弦波、方波、三角波波形转换(1)、按照设计好的电路图正确地布局好电路,焊接电路板.(2)、经“起振”调试后用示波器可测得各输出端的波形,并记录。
(3)、用示波器读出格数,计算峰—峰值;然后用数字毫伏表读出其有效值,并记录。
(4)、调节各个电位器,用函数发生器的输入端测出各个波形的频率范围,并记录。
六、性能测试与分析1、直流电源部分输出:+,。
稳压块电势差:LM7812为,LM7912为。
误差分析:LM7812端的输出:()/12⨯100 %=%。
LM7912端的输出:()/12⨯100 %=%。
2、波形转换部分经“起振”调试后用示波器可测得各输出端的波形,并记录。
用示波器读出格数,计算峰—峰值;然后用数字毫伏表读出其有效值,并记录。
调节各个电位器,用函数发生器的输入端测出各个波形的频率范围,并记录。
数据记录:(1)、正弦波(幅值可调、频率可调)峰-峰值:Up-p=2⨯2=4V 有效值为:U=4/22=频率调节范围为:—相对误差:()/⨯%=%(2)、方波峰-峰值:Up-p=⨯=5V 有效值为:U=5/22=相对误差:||/2⨯100%=25%(3)、三角波峰-峰值:Up-p=2⨯2V=4V 有效值为:U=4/22=相对误差:|2-2|/2⨯100%=0误差分析:1、电路参数选择不合理2、焊电路板的时候,焊点时间太长了,影响了器件的阻值3、焊点不紧凑4、直流电源输出的信号不是标准的±12V5、读数时未正视6、电位器太多了,不便于调节七.结论与心得实验结果:1、若正弦波失真,可调电位器R1,若不能稳幅,则调电位器Rf。
2、调节电位器的滑动端可以改变占空比。
3、调节RC串并联网络的电位器可改变正弦波的频率。
心得:这次的课程设计的方案很快就出来了,可是,由于电位器太多了,特别不好调试。
调了一天才终于调试出来,虽然久,但是心里还是有一点的成就感,因为从小就对电有种恐惧感。
这次的课程设计我学到了很多,不仅仅是课内的知识,比如,我们必须将所学的理论知识同客观实际相结合,才能真正的学好!而且,团队合作在试验中有着举足轻重的重要。