概率论与数理统计-随机变量及其概率分布
概率论与数理统计教案第2章 随机变量及其分布

概率论与数理统计教学教案 第2章 随机变量及其分布授课序号01教 学 基 本 内 容一.随机变量1. 随机变量:设E 是随机试验,样本空间为S ,如果对随机试验的每一个结果ω,都有一个实数()X ω与之对应,那么把这个定义在S 上的单值实值函数()X X ω=称为随机变量.随机变量一般用大写字母,,X Y Z ,…表示.2.随机变量的两种常见类型:离散型随机变量和连续型随机变量. 二.分布函数1. 分布函数:设X 是一个随机变量,x 是任意实数,称函数{}(),F x P X x x =≤-∞<<∞为随机变量X 的分布函数,显然,()F x 是一个定义在实数域R 上,取值于[0,1]的函数.2.几何意义:在数轴上,将X 看成随机点的坐标,则分布函数()F x 表示随机点X 落在阴影部分(即X x ≤)内的概率,如下图.3.对任意的实数,,()a b c a b <,都有:授课序号02(,)B n p ,其中在二项分(1,)B p X 服从(0-1)分布是二项分布的特例,简记0,1,2,...,其中λ为大于()P λ.在一次试验中出现的概率为(12,kk nnC p p -.)说明:泊松定理表明,泊松分布为二项分布的极限分布,即在试验次数很大,而n np 不太大时,()G p.)说明:几何分布描述的是试验首次成功的次数次才取得第一次成功,前)超几何分布:若随机变量X的分布律为H n N(,,件不合格,从产品中不放回)超几何分布与二项分布之间的区别:超几何分布是不放回抽取,二项分布是放回抽取,因此,二项两个分布之间也有联系,当总体的容量授课序号03(,)U a b .内的任一个子区间()E λ.1,0,xe x λ-⎧->⎪⎨⎪⎩其它.)定理:(指数分布的无记忆性)设随机变量()E λ,则对于任意的正数{}{P X s t t P X >+>=为连续型随机变量,若概率密度为2(,N μσ处取到最大值,并且对于同样长度(iii )当参数μ固定时,σ的值越大,()f x 的图形就越平缓;σ的值越小,()f x 的图形就越尖狭,由此可见参数σ的变化能改变图形的形状,称σ为形状参数.(iv )当参数σ固定时,随着μ值的变化,()f x 图形的形状不改变,位置发生左右平移,由此可见参数μ的变化能改变图形的位置,称μ为位置参数.(4)标准正态分布(0,1)XN(i )概率密度221(),2x x e x ϕπ-=-∞<<∞(ii )分布函数221(),.2t xx e dt x π--∞Φ=-∞<<∞⎰(iii )根据概率密度()x ϕ的对称性,有()1().x x Φ-=-Φ (5)定理:(标准化定理)若2(,)XN μσ,则(0,1).X Z N μσ-=(6)标准化定理的应用:设,,()x a b a b <为任意实数,则(){}{}{}(),X x x x F x P X x P P Z μμμμσσσσ----=≤=≤=≤=Φ{}{}()().a X b b a P a X b P μμμμμσσσσσ-----<≤=<≤=Φ-Φ6.“3σ”法则:设2(,)XN μσ,则{33}(3)(3)2(3)10.997,P X μσμσ-<<+=Φ-Φ-=Φ-≈即正态分布2(,)N μσ的随机变量以99.7%的概率落在以μ为中心、3σ为半径的区间内,落在区间以外的概率非常小,可以忽略不计,这就是“3σ”法则. 三.例题讲解例1.车流中的“时间间隔”是指一辆车通过一个固定地点与下一辆车开始通过该点之间的时间长度.设X 表示在大流量期间,高速公路上相邻两辆车的时间间隔,X 的概率密度描述了高速公路上的交通流量规律,其表达式为:0.15(0.5)0.15,0.5,()0,x e x f x --⎧≥⎪=⎨⎪⎩其它.概率密度()f x 的图形如下图,求时间间隔不大于5秒的概率.例2.设随机变量X 表示桥梁的动力荷载的大小(单位:N ),其概率密度为13,02;()880,x x f x ⎧+≤≤⎪=⎨⎪⎩其它.求:(1)分布函数()F x ;(2)概率{1 1.5}P X ≤≤及{1}P X >.例3.某食品厂生产一种产品,规定其重量的误差不能超过3克,即随机误差X 服从(-3,3)上的均匀分布.现任取出一件产品进行称重,求误差在-1~2之间的概率.例4.设随机变量X 在(1,4)上服从均匀分布,对X 进行三次独立的观察,求至少有两次观察值大于2的概率.例5.设随机变量X 表示某餐馆从开门营业起到第一个顾客到达的等待时间(单位:min ),则X 服从指数分布,其概率密度为0.40.4,0,()0,xex f x -⎧>⎪=⎨⎪⎩其它.求等待至多5分钟的概率以及等待3至4分钟的概率.例6.汽车驾驶员在减速时,对信号灯做出反应所需的时间对于帮助避免追尾碰撞至关重要.有研究表明,驾驶员在行车过程中对信号灯发出制动信号的反应时间服从正态分布,其中μ=1.25秒,σ=0.46秒.求驾驶员的制动反应时间在1秒至1.75秒之间的概率?如果2秒是一个非常长的反应时间,那么实际的制动反应时间超过这个值的概率是多少?例7.设某公司制造绳索的抗断强度服从正态分布,其中μ=300千克,σ=24千克.求常数a ,使抗断强度以不小于95%的概率大于a .授课序号0450。
《概率论与数理统计》课件-第2章随机变量及其分布 (1)

HAINAN UNIVERSITY
概率论与数理统计
第二五章 基随本机极变限量定及理其分布
泊松分布的应用
“稠密性”问题(一段时间内,电话交换中心接到的呼叫次 数,公共汽车车站候车的乘客数,售票窗口买票的人数, 原子放射的粒子数,保险公司在一定时期内被索赔的次 数等)都服从泊松分布.
随机变量的分布函数
1.定义: 设X为一随机变量, x为任意实数, 称函数 F(x)=P{X≤x}为X的分布函数.
注: ① F(x)是一普通函数, 其定义域为 ,; ② F x的值为事件X x的概率; ③ F x可以完全地描述随机变量取值的规律性.
例如: Pa X b PX b PX a
连续型随机变量及概率密度函数
1.定义: 设X ~ F(x), 若存在一个非负可积的函数 f (x),
使 x R, 有
F ( x)
PX
x
x
f
(t)dt
,
则称X为连续型随机变量, f (x) 称为X的概率密度函数或
分布密度函数.
2.几何意义:
HAINAN UNIVERSITY
概率论与数理统计
第二五章 基随本机极变限量定及理其分布
二、随机变量的概念
定义: 设试验E的样本空间为 , 若对于每个样本
点 , 均有一个实数 X ()与之对应, 这样就得
到一个定义在 上的单值函数 X X () , 称X为随
机变量.
X
样本空间
实数
注: ① 随机变量是一个定义在样本空间上的实函数, 它取值的随机性是由样本点的随机性引起的;
x 1
x0
0 x x
不是 (不满足规范性)
概率论与数理统计第二章 随机变量及其分布

15
例4: 甲、乙两名棋手约定进行10盘比赛,以赢的盘数 较多者为胜. 假设每盘棋甲赢的概率都为0.6,乙赢的概 率为0.4,且各盘比赛相互独立,问甲、乙获胜的概率 各为多少? 解 每一盘棋可看作0-1试验. 设X为10盘棋赛中甲赢的 盘数,则 X ~ b(10, 0.6) . 按约定,甲只要赢6盘或6盘 以上即可获胜. 所以
定义:若随机变量X所有可能的取值为x1,x2,…,xi,…,且 X 取这些值的概率为 P(X=xi)= pi , i=1, 2, ... (*)
则称(*)式为离散型随机变量X 的分布律。 分布律的基本性质: (1) 表格形式表示: pi 0, i=1,2,... (2)
i
pi 1
X pk
x1 p1
这里n=500值较大,直接计算比较麻烦. 利用泊松定理作近似计算: n =500, np = 500/365=1.3699>0 ,用 =1.3699 的泊松分布作近似 计算:
(1.3669) 5 1.3669 P{ X 5} e 0.01 5!
23
例2: 某人进行射击,其命中率为0.02,独立射击400次,试求击 中的次数大于等于2的概率。 解 将每次射击看成是一次贝努里试验,X表示在400次射击中 击的次数,则X~B(400, 0.02)其分布律为
k 0,1
14
(2) 二项分布 设在一次伯努利试验中有两个可能的结果,且有 P(A)=p 。则在 n 重伯努利试验中事件 A发生的次数 X是一个 离散型随机变量,其分布为
P ( X k ) C nk p k q n k
k =0, 1, 2 ,, n
称X 服从参数为n,p的二项分布,记为 X~b(n, p) 对于n次重复一个0-1试验. 随机变量X表示: n次试验中, A发生的次数. 如: 掷一枚硬币100次, 正面出现的次数X服从二项分布. b(100, 1/2) 事件 X~
概率论与数理统计图文课件最新版-第2章-随机变量及其分布

函数 f ( x),使得对于任意实数 x 有:
x
F ( x) f (t)dt ( P( X x))
则称 X 为连续型变量,f ( x)为 X 的概率密度函数 注 ▲ 连续型随机变量与离散型随机变量的区别
离散型: P( X xk ) 0 连续型:P( X xk ) 0
机
多,而且还不能一 一列
变 连续型随机变量 量
举,而是充满一个区间
例如,“电视机的寿命”,实际中
常 遇到的“测量误差”等等.
概率统计
第二章知识结构图
随机变量
离散型随 机变量
连续型随 机变量
分布律
分布 函数
函数的 分布
概率 密度
分布 函数
函数的 分布
定义 常用分布
概率统计
定义 常用分布
第四节 连续型随机变量及其概率密度
0 x 0
则称 X 为服从参数 的指数分布.
概率统计
二 . 连续型随机变量的分布函数
定义: 若定义在 (, )上的可积函数 f ( x)
满足: (1). f ( x) 0
(2). f ( x)dx 1
f (x)确定了 分布函数F(x),
则称 F ( x)
x
f ( x)dx
f (x)是F(x)的 导函数, F(x)是f (x)的一
(2) 某段时间内候车室的旅客数目为 X , 则它也是一个随机变量,它可以取 0 及一切 自然数。X 是定义在样本空间,则:
S e {人数 人数 0}
X X (e)的值域RX [0, )
概率统计
二. 随机变量的分类 离散型随机变量
概率论与数理统计-随机变量及其分布

解
直接对上式求导有
二、连续型随机变量函数的分布
81
例 18
解
二、连续型随机变量函数的分布
82
定理 1
定理 2
83
总结/summary
离散型随机变量:分布律
分 二项分布、泊松分布、几何
随 布 分布
机 变
函 数
连续型随机变量:密度函数
量 均匀分布、指数分布、正态
分布
随机变量函数的分布
84
谢谢观赏
46
47
目录/Contents
2.1 随机变量及其分布 2.2 常用的离散型随机变量 2.3 常用的连续型随机变量 2.4 随机变量函数的分布
48
目录/Contents
2.3 常用的连续型随机变量
一、均匀分布 二、指数分布 三、正态分布
一、均匀分布
49
一、均匀分布
50
一、均匀分布
51
一、均匀分布
15
定义3
(1)非负性 (2)规范性
三、离散型随机变量及其分布律
16
换句话说,如果一个随机变量只可能取有限个 值或可列无限个值, 那么称这个随机变量为(一维) 离散型随机变量.
一维离散型随机变量的分布律也可表示为:
三、离散型随机变量及其分布律
17
例2
求
三、离散型随机变量及其分布律
18
解
四、连续型随机变量及其密度函数
2.1 随机变量及其分布 2.2 常用的离散型随机变量 2.3 常用的连续型随机变量 2.4 随机变量函数的分布
73
目录/Contents
2.4 随机变量函数的分布 一、离散型随机变量函数的分布 二、连续型随机变量函数的分布
随机变量及其概率分布

随机变量及其概率分布随机变量是概率论和数理统计中的重要概念,描述了随机事件的数值特征。
概率分布则用于描述随机变量取值的概率情况。
本文将介绍随机变量及其概率分布的基本概念和常见的概率分布模型。
一、随机变量的定义与分类随机变量是对随机事件结果的数值化描述。
随机变量可分为离散型随机变量和连续型随机变量两种。
1. 离散型随机变量离散型随机变量只能取有限个或可数个值,常用字母X表示。
例如,抛掷骰子的点数就是一个离散型随机变量,可能取1、2、3、4、5、6之一。
2. 连续型随机变量连续型随机变量可以取某个区间内的任意值,通常用字母Y表示。
例如,测量某个物体长度的随机误差就可看作是一个连续型随机变量。
二、概率分布的概念与性质概率分布描述了随机变量取值的概率情况。
常见的概率分布包括离散型分布和连续型分布。
1. 离散型概率分布离散型概率分布描述了离散型随机变量取值的概率情况。
离散型概率分布函数可以用概率质量函数(probability mass function,PMF)来表示。
PMF表示了随机变量取某个特定值的概率。
离散型概率分布函数具有以下性质:①非负性,即概率大于等于0;②归一性,即所有可能取值的概率之和等于1。
常见的离散型概率分布有:伯努利分布、二项分布、几何分布、泊松分布等。
2. 连续型概率分布连续型概率分布描述了连续型随机变量取值的概率情况。
连续型概率分布函数可以用概率密度函数(probability density function,PDF)来表示。
PDF表示在随机变量取某个特定值附近的概率密度。
连续型概率分布函数具有以下性质:①非负性;②积分为1。
常见的连续型概率分布有:均匀分布、正态分布、指数分布等。
三、常见的1. 伯努利分布伯努利分布描述了一次随机试验中两个互斥结果的概率情况,取值为0或1。
其概率质量函数为:P(X=k) = p^k * (1-p)^(1-k),k=0或1其中,p为成功的概率,1-p为失败的概率。
概率论与数理统计教案-随机变量及其分布

概率论与数理统计教案-随机变量及其分布一、教学目标1. 了解随机变量的概念及其重要性。
2. 掌握随机变量的分布函数及其性质。
3. 学习离散型随机变量的概率分布及其数学期望。
4. 理解连续型随机变量的概率密度及其数学期望。
5. 能够运用随机变量及其分布解决实际问题。
二、教学内容1. 随机变量的概念及分类。
2. 随机变量的分布函数及其性质。
3. 离散型随机变量的概率分布:二项分布、泊松分布、超几何分布等。
4. 连续型随机变量的概率密度:正态分布、均匀分布、指数分布等。
5. 随机变量的数学期望及其性质。
三、教学方法1. 采用讲授法,系统地介绍随机变量及其分布的概念、性质和计算方法。
2. 利用案例分析,让学生了解随机变量在实际问题中的应用。
3. 借助数学软件或图形计算器,直观地展示随机变量的分布情况。
4. 开展小组讨论,培养学生合作学习的能力。
四、教学准备1. 教学PPT课件。
2. 教学案例及实际问题。
3. 数学软件或图形计算器。
4. 教材、辅导资料。
五、教学过程1. 导入:通过生活实例引入随机变量的概念,激发学生的学习兴趣。
2. 讲解随机变量的定义、分类及其重要性。
3. 讲解随机变量的分布函数及其性质,引导学生理解分布函数的概念。
4. 讲解离散型随机变量的概率分布,结合实例介绍二项分布、泊松分布、超几何分布等。
5. 讲解连续型随机变量的概率密度,介绍正态分布、均匀分布、指数分布等。
6. 讲解随机变量的数学期望及其性质,引导学生掌握数学期望的计算方法。
7. 案例分析:运用随机变量及其分布解决实际问题,提高学生的应用能力。
8. 课堂练习:布置适量练习题,巩固所学知识。
10. 作业布置:布置课后作业,巩固课堂所学。
六、教学评估1. 课堂提问:通过提问了解学生对随机变量及其分布的理解程度。
2. 课堂练习:检查学生解答练习题的情况,评估学生对知识的掌握程度。
3. 课后作业:布置相关作业,收集学生作业情况,评估学生对知识的运用能力。
概率论与数理统计-随机变量及其分布-随机变量与分布函数

7
01 随机变量
如何描述随机变量的统计规律呢 ?
无论是离散型随机变量,还是连续型随机变量以及其他类型 的随机变量,都需要一种统一的描述工具.
对一个样本空间,当建立了随机变量后,我们感兴趣的随机 变量落在某区间或等于某特定值的概率. 为此给出分布函数的概 念.
8
本讲内容
01 随机变量 02 分布函数
02 分布函数 定义 设 X 为随机变量,x 是任意实数,称函数 为 X 的分布函数.
x
如果将 X 看作数轴上随机点的坐标,那么分布函数 F(x) 的
值就表示 X 落在区间
的概率.
10
02 分布函数
用分布函数计算 X 落在( a ,b ] 里的概率:
因此,只要知道了随机变量X的分布函数, 它的统计特性 就可以得到全面的描述.
分布函数是一个普通的函数,正是通过它,我们可以用数 学分析的分布函数
分布函数的性质
(1) F ( x ) 单调不减,即
(3) F ( x ) 右连续,即 如果一个函数具有上述性质,则一定是某个随机变量X 的分 布函数. 也就是说,性质(1)--(3)是鉴别一个函数是否是某随机变 量的分布函数的充分必要条件.
01 随机变量
随机变量 ( random variable ) 定义 设 S 是试验E的样本空间, 若
按一定法则
ω.
X(ω)
R
4
01 随机变量
随机变量通常用
X,Y,Z或 , ,等表示
随机事件可以通过随机变 量的关系式表达出来 例如 某人每天使用移动支付的次数——随机变量X {某天至少使用1次移动支付} {某天1次也没有使用}
12
02 分布函数
例 解
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
25
例2.4 设随机变量 X ~ B(100, 0.05), 求P(X 10)和P(X 10)
解:设A={接受该批产品}。 设X为第一次 抽得的次品数,Y为第2次抽得的次品数.
则X ~ B(10, p),Y ~ B(5, p), 且{X i}与{Y j}独立.
P( A) P(X 0) P(1 X 2且Y 0)
P(X 0) P(1 X 2) P(Y 0)
P(X 0) (P(X 1) P(X 2)) P(Y 0)
P( X 3) P( A1A 2 A3 ) p3
一般 P( X k) Cnk pk (1 p)nk , k 0,1, 2, , n
例2.3 有一大批产品,其验收方案如下: 先作第一次检验,从中任取10件,经检 验无次品接受这批产品,次品数大于2 拒收;否则作第二次检验,从中任取5 件,仅当5件中无次品便接受这批产品, 设产品的次品率为p.求这批产品能被 接受的概率.
写出每个取值相应的概率.
例2.1 某人骑自行车从学校到火车站,一 路上要经过3个独立的交通灯,设各灯工作 独立,且设各灯为红灯的概率为p,0<p<1, 以X表示首次停车时所通过的交通灯数,求 X的概率分布律。
解:设Ai={第i个灯为红灯},则P(Ai)=p, i=1,2,3 且A1,A2,A3相互独立。
3
定 义 : 设 随 机 试 验 的 样 本 空 间 为 S e , 若
X X (e) 为定义在样本空间 S 上的实值单值函数, 则称 X X (e) 为随机变量。
一般采用大写英文字母 X ,Y , Z 来表示随机变量
引入随机变量的目的是用来描述随机现象
4
一般地,若I 是一个实数集合,则
在S上定义一个服从(0-1)分布的随机
变量。
0, X X (e) 1,
当e e1, 当e e2.
来描述这个随机试验的结果。
检查产品的质量是否合格,对新生婴儿 的性别进行登记,检验种子是否发芽以 及前面多次讨论过的“抛硬币”试验都 可以用(0-1)分布的随机变量来描述 。
17
一个随机试验,设A是一随机事件,且
P( X 0) P( A1) p ; P( X 1) P( A1A2 ) (1 p) p ;
P( X 2) P( A1A2 A3) (1 p)2 p ;
P( X 3) P( A1A2 A 3) (1 p)3 ;
10
X0
1
2
3
p
p p(1-p) (1-p)2p (1-p)3
11
例2.2 若随机变量X的概率分布律为
P( X k ) c k ,k 0,P{X k} k 0
k
c
ce
k0 k !
c e
几个重要的离散型随机变量分布
一、0-1分布 若X的分布律为:
X 01 p qp
随机变量只可能 取0、1 两个值
牌},则每次只有两个结果: A, A,
P A 1 2.
如果是不放回抽样呢? 不是独立试验!
21
设A在n重贝努利试验中发生X次,则
P( X k) Cnk pk (1 p)nk,k 0,1,, n
并称X服从参数为n,p的二项分布,记
X ~ B(n,p)
n
注:1 ( p q)n Cnk pk qnk 其中q 1 p k 0
P{X 1} P{X 0} P{X 1} 1/ 2
X 01
2
3
p
1/8 3/8 3/8 1/8
6
2.2 离散型随机变量及其分布
定义:取值至多可数的随机变量为离散 型的随机变量。概率分布律为
X x1 p p1
x2
…
xi
…
p2
…
pi
…
概率分布律性质: pi 0, pi 1 i 1
7
写出所有可能取值; 概率分布律
第二章 随机变量及其分布
随机变量 离散型随机变量 分布函数 连续型随机变量 随机变量的函数
1
2.1 随机变量
常见的两类试验结果:
示数的——降雨量; 候车人数; 发生交通事故的次数…
示性的——明天天气(晴,云…); 化验结果(阳性,阴性)…
中心问题:将试验结果数量化
s e
x
X=X(e)--为S上的实值单值函数
(p+q=1,p>0,q>0) 则称X服从参数为p的0-1分布,或两点分布.
记为 X ~ 0 1( p) 或 B(1, p)
0-1(p)分布的分布律还可以写为
P( X k) pk (1 p)1k , k 0, 1.
15
对于一个随机试验,如果它的样本空间只
包含两个元素,即 S {e1, e2} ,我们总能
22
推导:以n=3为例,设Ai={ 第i次A发生 }
P( X 0) P( A1A 2 A3) (1 p)3
P( X 1) P( A1A 2 A3 A1A 2 A3 A1A 2 A3 ) C31 p1(1 p)31
P( X 2) P( A1A 2 A3 A1A 2 A3 A1A 2 A3 ) C32 p 2 (1 p)32
P(A)=p,(0<p<1).若仅考虑事件A发生与否,
定义一个服从参数为p的0-1分布的随机变
量:
X
1,
0,
若A发生, 若A不发生(即A发生).
来描述这个随机试验的结果。
只有两个可能结果的试验,称为贝努利试验。
二、二项分布
n重贝努利试验:设试验E只有两个可
能的结果:A与A ,P(A)=p,0<p<1,将
{X I} 为事件 {e : X (e) I}
常见的两类随机变量
离散型的 连续型的
例1.1 掷硬币3次,出现正面的次数记为X.
样本点 X的值
TTT TTH THT HTT HHT HTH THH HHH 0 1 1 12 2 2 3
P{X 0} P{TTT} 1/ 8
P{X 1} P{TTH,THT, HTT} 3 / 8
E独立地重复进行n次,则称这一串重 复的独立试验为n重贝努利试验。
即每次试验结果 互不影响
在相同条件下 重复进行
19
独立重复地抛n次硬币,每次只有两个 可能的结果:正面,反面,
P出现正面 1 2.
将一颗骰子抛n次,设A={得到1点},则 每次试验只有两个结果:A, A,
P A 1 6.
从52张牌中有放回地取n次,设A={取到红