2017年大庆市中考数学真题及答案解析
2011----2017年黑龙江省大庆市中考数学试卷含答案

2011年黑龙江省大庆市中考数学试卷含答案一、选择题(本大题共10小题,每小题3分,共30分.在毎小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的序号填涂在答题卡上.)B二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上.)三、解答题(本大题共10小题,共66分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.)≈的解集为. C中,自变量角形,与+y=(+3x+=0=4SB的解集为,,<=0=1B×(B.B=;最后由×,=×=+=+=.中,自变量﹣.,的概率为:=..=﹣﹣﹣﹣)=)﹣)﹣﹣=)=所对的圆心角均为与与=×.×+++1(,y=,,再根据勾股定理可)AM=,.=,则的值.AB=4DE====,===.+3x+=0=0;=0+3x+==,=;,﹣,代入方程得:×﹣是方程时,两根为时,两根为,代入方程得:×﹣不是方程=4S=t==== NE=,根据三角形的面积公式可用AD AF=xBC×=x==)]()+x==t====NE==;,,AD AF=×=,BC××=;AB××=,=,==4×t=.说明:1.试题左侧二维码为该题目对应解析;2.请同学们在独立解答无法完成题目后再扫描二维码查看解析,杜绝抄袭;3.查看解析还是无法掌握题目的,可按下方“向老师求助”按钮;4.组卷老师可在试卷下载页面查看学生扫描二维码查看解析情况统计,了解班级整体学习情况,确定讲解重点;5.公测期间二维码查看解析免扣优点,对试卷的使用方面的意见和建议,欢迎通过“意见反馈”告之。
2014年黑龙江省大庆市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的序号填涂在答题卡上)B上有两点二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)AD=,三、解答题(本大题共10小题,共66分,请在答题卡指定区域内作答,解答时应写出文字说明,证明过程或演算步骤)。
2017年黑龙江省大庆市中考数学模拟试卷3月附答案解析

2017年黑龙江省大庆市中考数学模拟试卷(3月份)一、选择题(本题共10个小题,每小题3分,共30分)1.5的倒数为()A.B.5 C.D.﹣52.下列各式运算正确的是()A.2﹣1=﹣2 B.23=6 C.22•23=26 D.(23)2=263.如图,C,D是线段AB上两点.若CB=4cm,DB=7cm,且D是AC的中点,则AC的长等于()A.3cm B.6cm C.11cm D.14cm4.如图,在△ABC中,AC=DC=DB,∠ACD=100°,则∠B等于()A.50°B.40°C.25°D.20°5.甲、乙两名学生10次立定跳远成绩的平均数相同,若甲10次立定跳远成绩的方差S甲2=0.006,2=0.035,则()乙10次立定跳远成绩的方差S乙A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.甲、乙两人成绩的稳定性不能比较6.经过某十字路口的汽车,它可以继续直行,也可以向左转或向右转.如果这三种可能性大小相同,则两辆汽车经过这个十字路口全部继续直行的概率是()A.B.C.D.7.如图,桌上放着一摞书和一个茶杯,从左边看到的图形是()A.B.C.D.8.如图,点E在AD的延长线上,下列条件中能判断BC∥AD的是()A.∠3=∠4 B.∠A+∠ADC=180°C.∠1=∠2 D.∠A=∠59.如图,将△PQR向右平移2个单位长度,再向下平移3个单位长度,则顶点P平移后的坐标是()A.(﹣2,﹣4)B.(﹣2,4)C.(2,﹣3)D.(﹣1,﹣3)10.反比例函数y=(k>0)的部分图象如图所示,A,B是图象上两点,AC⊥x轴于点C,BD ⊥x轴于点D,若△AOC的面积为S1,△BOD的面积为S2,则S1和S2的大小关系为()A.S1>S2B.S1=S2C.S1<S2D.无法确定二、填空题(本题共8小题,每小题3分,共24分)11.2008年5月18日晚,中央电视台举办了“爱的奉献”大型募捐活动.据了解,本次活动社会各界共向四川灾区捐款大约1510000000元人民币,这个数字用科学记数法可表示为元人民币.12.已知|x|=5,y=3,则x﹣y=.13.计算:=.14.函数y=中自变量x的取值范围是.15.如图,直线AB、CD相交于点O,OE⊥AB,垂足为O,如果∠EOD=42°,则∠AOC=度.16.如图,已知矩形ABCD,P、R分别是BC和DC上的点,E、F分别是PA,PR的中点.如果DR=3,AD=4,则EF的长为.17.观察下面两行数:2,4,8,16,32,64,…①5,7,11,19,35,67,…②根据你发现的规律,取每行数的第10个数,求得它们的和是(要求写出最后的计算结果).18.如图,菱形AB1C1D1的边长为1,∠B1=60°;作AD2⊥B1C1于点D2,以AD2为一边,做第二个菱形AB2C2D2,使∠B2=60°;作AD3⊥B2C2于点D3,以AD3为一边做第三个菱形AB3C3D3,使∠B3=60°…依此类推,这样做的第n个菱形AB n C n D n的边AD n的长是.三、解答题(本题共3小题,每小题5分,共15分)19.计算:(﹣1)﹣2+2sin245°﹣(1﹣)020.先化简,再求值:÷x,其中x=.21.解方程组:.四、应用题(本大题2小题,共12分)22.在同一条件下,对同一型号的汽车进行耗油1升所行驶路程的实验,将收集到的数据作为一个样本进行分析,绘制出部分频数分布直方图和部分扇形统计图.如下图所示(路程单位:km)结合统计图完成下列问题:(1)扇形统计图中,表示12.5≤x<13部分的百分数是;(2)请把频数分布直方图补充完整,这个样本数据的中位数落在第组;(3)哪一个图能更好地说明一半以上的汽车行驶的路程在13≤x<14之间?哪一个图能更好地说明行驶路程在12.5≤x<13的汽车多于在14≤x<14.5的汽车?23.海中有一个小岛P,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A测得小岛P在北偏东60°方向上,航行12海里到达B点,这时测得小岛P在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由.五、推理与计算(本大题3小题,共21分)24.已知反比例函数y=的图象的一支位于第一象限.(1)判断该函数图象的另一支所在的象限,并求m的取值范围;(2)如图,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点B与点A关于x 轴对称,若△OAB的面积为6,求m的值.25.如图,把一张矩形的纸ABCD沿对角线BD折叠,使点C落在点E处,BE与AD交于点F.(1)求证:△ABF≌△EDF;(2)若将折叠的图形恢复原状,点F与BC边上的点M正好重合,连接DM,试判断四边形BMDF 的形状,并说明理由.26.已知:如图,在半径为4的⊙O中,AB、CD是两条直径,M为OB的中点,CM的延长线交⊙O于点E,且EM>MC.连接DE,DE=.(1)求证:AM•MB=EM•MC;(2)求EM的长;(3)求sin∠EOB的值.六、综合应用与探究(本大题2小题,共18分)27.夏季来临,商场准备购进甲、乙两种空调,已知甲种空调每台进价比乙种空调多500元,用40000元购进甲种空调的数量与用30000元购进乙种空调的数量相同.请解答下列问题:(1)求甲、乙两种空调每台的进价;(2)若甲种空调每台售价2500元,乙种空调每台售价1800元,商场计划用不超过36000元购进空调共20台,且全部售出,请写出所获利润y(元)与甲种空调x(台)之间的函数关系式,并求出所能获得的最大利润.28.已知抛物线y=﹣ax2+2ax+b与x轴的一个交点为A(﹣1,0),与y轴的正半轴交于点C.(1)直接写出抛物线的对称轴,及抛物线与x轴的另一个交点B的坐标;(2)当点C在以AB为直径的⊙P上时,求抛物线的解析式;(3)坐标平面内是否存在点M,使得以点M和(2)中抛物线上的三点A、B、C为顶点的四边形是平行四边形?若存在,请求出点M的坐标;若不存在,请说明理由.2017年黑龙江省大庆市中考数学模拟试卷(3月份)参考答案与试题解析一、选择题(本题共10个小题,每小题3分,共30分)1.5的倒数为()A.B.5 C.D.﹣5【考点】倒数.【分析】根据乘积为1的两个数互为倒数,可得一个数的倒数.【解答】解:5的倒数是,故选:A.2.下列各式运算正确的是()A.2﹣1=﹣2 B.23=6 C.22•23=26 D.(23)2=26【考点】负整数指数幂;有理数的乘方;同底数幂的乘法;幂的乘方与积的乘方.【分析】分别根据负整数指数幂、有理数的乘方、同底数幂的乘法、幂的乘方与积的乘方的法则计算即可.【解答】解:A、错误,应等于;B、错误,应等于8;C、错误,应等于25;D、正确.故选D.3.如图,C,D是线段AB上两点.若CB=4cm,DB=7cm,且D是AC的中点,则AC的长等于()A.3cm B.6cm C.11cm D.14cm【考点】两点间的距离.【分析】先根据CB=4cm,DB=7cm求出CD的长,再根据D是AC的中点求出AC的长即可.【解答】解:∵C,D是线段AB上两点,CB=4cm,DB=7cm,∴CD=DB﹣BC=7﹣4=3cm,∵D是AC的中点,∴AC=2CD=2×3=6cm.故选B.4.如图,在△ABC中,AC=DC=DB,∠ACD=100°,则∠B等于()A.50°B.40°C.25°D.20°【考点】三角形的外角性质;三角形内角和定理.【分析】根据等边对等角和三角形的内角和定理,可先求得∠CAD的度数;再根据外角的性质,求∠B的度数.【解答】解:∵AC=DC=DB,∠ACD=100°,∴∠CAD==40°,∵∠CDB是△ACD的外角,∴∠CDB=∠A+∠ACD=100°=40°+100°=140°,∵DC=DB,∴∠B==20°.故选D.5.甲、乙两名学生10次立定跳远成绩的平均数相同,若甲10次立定跳远成绩的方差S甲2=0.006,2=0.035,则()乙10次立定跳远成绩的方差S乙A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.甲、乙两人成绩的稳定性不能比较【考点】方差;算术平均数.【分析】本题考查了如何判定一组数据的稳定性,数据的方差越小,数据就越稳定.【解答】解:因为甲乙平均数相同,而S甲2=0.006,S乙2=0.035,很显然S甲2<S乙2,所以甲的成绩更稳定一些.故选A.6.经过某十字路口的汽车,它可以继续直行,也可以向左转或向右转.如果这三种可能性大小相同,则两辆汽车经过这个十字路口全部继续直行的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】列举出所有情况,看两辆汽车经过这个十字路口全部继续直行的情况占总情况的多少即可.【解答】解:列表得:(直,直)(左,直)(右,直)∴一共有9种情况,两辆汽车经过这个十字路口全部继续直行的有一种,∴两辆汽车经过这个十字路口全部继续直行的概率是,故选A.7.如图,桌上放着一摞书和一个茶杯,从左边看到的图形是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从左面看所得到的图形即可.【解答】解:从左面可看到几个上下相邻的长方形上面有一个小长方形.故选D.8.如图,点E在AD的延长线上,下列条件中能判断BC∥AD的是()A.∠3=∠4 B.∠A+∠ADC=180°C.∠1=∠2 D.∠A=∠5【考点】平行线的判定.【分析】结合图形分析两角的位置关系,根据平行线的判定方法判断.【解答】解:∵∠1=∠2,∴BC∥AD(内错角相等,两直线平行).故选C.9.如图,将△PQR向右平移2个单位长度,再向下平移3个单位长度,则顶点P平移后的坐标是()A.(﹣2,﹣4)B.(﹣2,4)C.(2,﹣3)D.(﹣1,﹣3)【考点】坐标与图形变化﹣平移.【分析】直接利用平移中点的变化规律求解即可.【解答】解:由题意可知此题规律是(x+2,y﹣3),照此规律计算可知顶点P(﹣4,﹣1)平移后的坐标是(﹣2,﹣4).故选A.10.反比例函数y=(k>0)的部分图象如图所示,A,B是图象上两点,AC⊥x轴于点C,BD ⊥x轴于点D,若△AOC的面积为S1,△BOD的面积为S2,则S1和S2的大小关系为()A.S1>S2B.S1=S2C.S1<S2D.无法确定【考点】反比例函数系数k的几何意义.【分析】根据反比例函数的性质可以得到△AOC和△DBO的面积等于|k|的一半,由此可以得到它们的关系.【解答】解:依据比例系数k的几何意义可得两个三角形的面积都等于|k|,故S1=S2.故选B.二、填空题(本题共8小题,每小题3分,共24分)11.2008年5月18日晚,中央电视台举办了“爱的奉献”大型募捐活动.据了解,本次活动社会各界共向四川灾区捐款大约1510000000元人民币,这个数字用科学记数法可表示为 1.51×109元人民币.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1510000000元人民币,这个数字用科学记数法可表示为 1.51×109元人民币,故答案为:1.51×109.12.已知|x|=5,y=3,则x﹣y=2或﹣8.【考点】有理数的减法;绝对值.【分析】绝对值等于一个正数的数有两个,且它们互为相反数.熟练运用有理数的运算法则.【解答】解:∵|x|=5,∴x=±5,又y=3,则x﹣y=2或﹣8.13.计算:=.【考点】分式的加减法.【分析】本题考查了分式的加减运算.解决本题首先应通分,最后要注意将结果化为最简分式.【解答】解:原式=.故答案为.14.函数y=中自变量x的取值范围是x≥﹣且x≠1.【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0,分母不等于0列式求解即可.【解答】解:根据题意得,2x+1≥0且x﹣1≠0,解得x≥﹣且x≠1.故答案为:x≥﹣且x≠1.15.如图,直线AB、CD相交于点O,OE⊥AB,垂足为O,如果∠EOD=42°,则∠AOC=48度.【考点】垂线;对顶角、邻补角.【分析】由OE⊥AB,∠EOD=42°,利用互余关系求∠BOD,再利用对顶角相等求∠AOC.【解答】解:∵OE⊥AB,∠EOD=42°,∴∠BOD=90°﹣∠EOD90°﹣42°=48°,∵∠BOD与∠AOC是对顶角,∴∠BOD=∠AOC=48°.16.如图,已知矩形ABCD,P、R分别是BC和DC上的点,E、F分别是PA,PR的中点.如果DR=3,AD=4,则EF的长为 2.5.【考点】三角形中位线定理;矩形的性质.【分析】根据勾股定理求AR ;再运用中位线定理求EF . 【解答】解:∵四边形ABCD 是矩形, ∴△ADR 是直角三角形, ∵DR=3,AD=4,∴AR===5,∵E 、F 分别是PA ,PR 的中点,∴EF=AR=×5=2.5. 故答案为:2.5.17.观察下面两行数: 2,4,8,16,32,64,…① 5,7,11,19,35,67,…②根据你发现的规律,取每行数的第10个数,求得它们的和是 2051 (要求写出最后的计算结果).【考点】规律型:数字的变化类.【分析】观察①中各数都符合2n 的形式,②中各数比①中对应数字大3,按此规律即可求得①、②中第10个数的值,从而求和.【解答】解:根据题意可知,①中第10个数为210=1024;②第10个数为210+3=1027,故它们的和为1024+1027=2051.18.如图,菱形AB 1C 1D 1的边长为1,∠B 1=60°;作AD 2⊥B 1C 1于点D 2,以AD 2为一边,做第二个菱形AB 2C 2D 2,使∠B 2=60°;作AD 3⊥B 2C 2于点D 3,以AD 3为一边做第三个菱形AB 3C 3D 3,使∠B 3=60°…依此类推,这样做的第n 个菱形AB n C n D n 的边AD n 的长是.【考点】菱形的性质.【分析】本题要找出规律方能解答.第一个菱形边长为1,∠B1=60°,可求出AD2,即第二个菱形的边长…按照此规律解答即可.【解答】解:第1个菱形的边长是1,易得第2个菱形的边长是;第3个菱形的边长是()2;…每作一次,其边长为上一次边长的;故第n个菱形的边长是()n﹣1.故答案为:()n﹣1.三、解答题(本题共3小题,每小题5分,共15分)19.计算:(﹣1)﹣2+2sin245°﹣(1﹣)0【考点】特殊角的三角函数值;零指数幂;负整数指数幂.【分析】本题涉及零指数幂、负整数指数幂、特殊角的三角函数值.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式==1.20.先化简,再求值:÷x,其中x=.【考点】分式的化简求值.【分析】本题的关键是正确进行分式的通分、约分,并准确代值计算.【解答】解:原式==+1=,当x=时,原式==﹣4.21.解方程组:.【考点】解二元一次方程组.【分析】此题先采用加减消元法再用代入消元法最简单,将(1)+(2)即可达到消元的目的.【解答】解:①+②,得3x=9,∴x=3.把x=3代入②,得3﹣y=5,∴y=﹣2.∴原方程组的解是.四、应用题(本大题2小题,共12分)22.在同一条件下,对同一型号的汽车进行耗油1升所行驶路程的实验,将收集到的数据作为一个样本进行分析,绘制出部分频数分布直方图和部分扇形统计图.如下图所示(路程单位:km)结合统计图完成下列问题:(1)扇形统计图中,表示12.5≤x<13部分的百分数是;(2)请把频数分布直方图补充完整,这个样本数据的中位数落在第组;(3)哪一个图能更好地说明一半以上的汽车行驶的路程在13≤x<14之间?哪一个图能更好地说明行驶路程在12.5≤x<13的汽车多于在14≤x<14.5的汽车?【考点】频数(率)分布直方图;扇形统计图;中位数.【分析】(1)用单位1减去其他所占的百分比即可;(2)以第3组为基准算出总数:9÷0.3=30,那么中位数应是第15个和第16个的平均数,前两个小组的人数之和为:2+30×0.3=11,那么中位数就落在第3小组;(3)直方图能反映数据集中的趋势,扇形统计图能更好的显示出相应的百分比.【解答】解:(1)1﹣13.3%﹣6.7%﹣30%﹣30%=20%;(2)第2组的频数=30×20%=6,如图:样本数据的中位数落在第3组;(3)扇形统计图能很好地说明一半以上的汽车行驶的路程在13≤x<14之间;条形统计图(或直方统计图)能更好地说明行驶路程在12.5≤x<13的汽车多于在14≤x<14.5的汽车.23.海中有一个小岛P,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A测得小岛P在北偏东60°方向上,航行12海里到达B点,这时测得小岛P在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由.【考点】解直角三角形的应用﹣方向角问题.【分析】过点P作PD⊥AC于D,在Rt△PBD和Rt△PAD中,根据三角函数AD,BD就可以PD 表示出来,根据AB=12海里,就得到一个关于PD的方程,求得PD.从而可以判断如果渔船不改变航线继续向东航行,有没有触礁危险.【解答】解:有触礁危险.理由:过点P作PD⊥AC于D.设PD为x,在Rt△PBD中,∠PBD=90°﹣45°=45度.∴BD=PD=x.在Rt△PAD中,∵∠PAD=90°﹣60°=30°∴AD=x∵AD=AB+BD∴x=12+x∴x=∵6(+1)<18∴渔船不改变航线继续向东航行,有触礁危险.五、推理与计算(本大题3小题,共21分)24.已知反比例函数y=的图象的一支位于第一象限.(1)判断该函数图象的另一支所在的象限,并求m的取值范围;(2)如图,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点B与点A关于x 轴对称,若△OAB的面积为6,求m的值.【考点】反比例函数的性质;反比例函数的图象;反比例函数图象上点的坐标特征;关于x轴、y轴对称的点的坐标.【分析】(1)根据反比例函数的图象是双曲线.当k>0时,则图象在一、三象限,且双曲线是关于原点对称的;(2)由对称性得到△OAC的面积为3.设A(x、),则利用三角形的面积公式得到关于m 的方程,借助于方程来求m的值.【解答】解:(1)根据反比例函数的图象关于原点对称知,该函数图象的另一支在第三象限,且m﹣7>0,则m>7;(2)∵点B与点A关于x轴对称,若△OAB的面积为6,∴△OAC的面积为3.设A(x,),则x•=3,解得m=13.25.如图,把一张矩形的纸ABCD沿对角线BD折叠,使点C落在点E处,BE与AD交于点F.(1)求证:△ABF≌△EDF;(2)若将折叠的图形恢复原状,点F与BC边上的点M正好重合,连接DM,试判断四边形BMDF 的形状,并说明理由.【考点】翻折变换(折叠问题);全等三角形的判定;菱形的判定.【分析】(1)因为△BCD关于BD折叠得到△BED,显然△BCD≌△BED,得出CD=DE=AB,∠E=∠C=∠A=90°.再加上一对对顶角相等,可证出△ABF≌△EDF;(2)利用折叠知识及菱形的判定可得出四边形BMDF是菱形.【解答】(1)证明:由折叠可知,CD=ED,∠E=∠C.在矩形ABCD中,AB=CD,∠A=∠C.∴AB=ED,∠A=∠E.∵∠AFB=∠EFD,∴△AFB≌△EFD.(2)解:四边形BMDF是菱形.理由:由折叠可知:BF=BM,DF=DM.由(1)知△AFB≌△EFD,∴BF=DF.∴BM=BF=DF=DM.∴四边形BMDF是菱形.26.已知:如图,在半径为4的⊙O中,AB、CD是两条直径,M为OB的中点,CM的延长线交⊙O于点E,且EM>MC.连接DE,DE=.(1)求证:AM•MB=EM•MC;(2)求EM的长;(3)求sin∠EOB的值.【考点】相似三角形的判定与性质;勾股定理;圆周角定理;锐角三角函数的定义.【分析】(1)连接A、C,E、B点,那么只需要求出△AMC和△EMB相似,即可求出结论,根据圆周角定理可推出它们的对应角相等,即可得△AMC∽△EMB;(2)根据圆周角定理,结合勾股定理,可以推出EC的长度,根据已知条件推出AM、BM的长度,然后结合(1)的结论,很容易就可求出EM的长度;(3)过点E作EF⊥AB,垂足为点F,通过作辅助线,解直角三角形,结合已知条件和(1)(2)所求的值,可推出Rt△EOF各边的长度,根据锐角三角函数的定义,便可求得sin∠EOB的值.【解答】(1)证明:连接AC、EB,∵∠A=∠BEC,∠B=∠ACM,∴△AMC∽△EMB,∴,∴AM•BM=EM•CM;(2)解:∵DC是⊙O的直径,∴∠DEC=90°,∴DE2+EC2=DC2,∵DE=,CD=8,且EC为正数,∴EC=7,∵M为OB的中点,∴BM=2,AM=6,∵AM•BM=EM•CM=EM(EC﹣EM)=EM(7﹣EM)=12,且EM>MC,∴EM=4;(3)解:过点E作EF⊥AB,垂足为点F,∵OE=4,EM=4,∴OE=EM,∴OF=FM=1,∴EF=,∴sin∠EOB=.六、综合应用与探究(本大题2小题,共18分)27.夏季来临,商场准备购进甲、乙两种空调,已知甲种空调每台进价比乙种空调多500元,用40000元购进甲种空调的数量与用30000元购进乙种空调的数量相同.请解答下列问题:(1)求甲、乙两种空调每台的进价;(2)若甲种空调每台售价2500元,乙种空调每台售价1800元,商场计划用不超过36000元购进空调共20台,且全部售出,请写出所获利润y(元)与甲种空调x(台)之间的函数关系式,并求出所能获得的最大利润.【考点】二次函数的应用;分式方程的应用.【分析】(1)根据题意可以列出相应的方程,从而可以分别求得甲、乙两种空调每台的进价,注意分式方程要检验;(2)根据题意和(1)中的答案可以得到所获利润y(元)与甲种空调x(台)之间的函数关系式,然后根据商场计划用不超过36000元购进空调共20台,可以求得x的取值范围,从而可以求得所能获得的最大利润.【解答】解:(1)设乙种空调每台进价为x元,,解得,x=1500经检验x=1500是原分式方程的解,∴x+500=2000,答:甲种空调每台2000元,乙种空调每台1500元;(2)由题意可得,所获利润y(元)与甲种空调x(台)之间的函数关系式是:y=x+(20﹣x)=200x+6000,∵2000x+1500(20﹣x)≤36000,解得,x≤12,∴当x=12时,y取得最大值,此时y=200x+6000=8400,答:所获利润y(元)与甲种空调x(台)之间的函数关系式是y=200x+6000,所获的最大利润是8400元.28.已知抛物线y=﹣ax2+2ax+b与x轴的一个交点为A(﹣1,0),与y轴的正半轴交于点C.(1)直接写出抛物线的对称轴,及抛物线与x轴的另一个交点B的坐标;(2)当点C在以AB为直径的⊙P上时,求抛物线的解析式;(3)坐标平面内是否存在点M,使得以点M和(2)中抛物线上的三点A、B、C为顶点的四边形是平行四边形?若存在,请求出点M的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)抛物线y=﹣ax2+2ax+b的对称轴,可以根据公式直接求出,抛物线与x轴的另一交点与A关于对称轴对称,因而交点就可以求出.(2)AB的长度可以求出,连接PC,在直角三角形OCP中,根据勾股定理就可以求出C点的坐标,把这点的坐标代入抛物线的解析式,就可以求出解析式.(3)本题应分AC或BC为对角线和以AB为对角线三种情况进行讨论,当以AC或BC为对角线时,点M在x轴上方,此时CM∥AB,且CM=AB.就可以求出点M的坐标.当以AB为对角线时,点M在x轴下方易证△AOC≌△BNM,可以求出点M的坐标.【解答】解:(1)对称轴是直线:x=1,点B的坐标是(3,0).说明:每写对1个给,“直线”两字没写不扣分.(2)如图,连接PC,∵点A、B的坐标分别是A(﹣1,0)、B(3,0),∴AB=4.∴PC=AB=×4=2在Rt△POC中,∵OP=PA﹣OA=2﹣1=1,∴OC=,∴b=当x=﹣1,y=0时,﹣a﹣2a+=0∴a=∴y=﹣x2+x+.(3)存在.理由:如图,连接AC、BC.设点M的坐标为M(x,y).①当以AC或BC为对角线时,点M在x轴上方,此时CM∥AB,且CM=AB.由(2)知,AB=4,∴|x|=4,y=OC=.∴x=±4.∴点M的坐标为M(4,)或(﹣4,).说明:少求一个点的坐标扣.②当以AB为对角线时,点M在x轴下方.过M作MN⊥AB于N,则∠MNB=∠AOC=90度.∵四边形AMBC是平行四边形,∴AC=MB,且AC∥MB.∴∠CAO=∠MBN.∴△AOC≌△BNM.∴BN=AO=1,MN=CO=.∵OB=3,∴0N=3﹣1=2.∴点M的坐标为M(2,﹣).综上所述,坐标平面内存在点M,使得以点A、B、C、M为顶点的四边形是平行四边形.其坐标为M1(4,),M2(﹣4,),M3(2,﹣).说明:①综上所述不写不扣分;②如果开头“存在”二字没写,但最后解答全部正确,不扣分2017年4月17日。
2017年黑龙江省大庆市中考数学模拟试卷(一)

2017年黑龙江省大庆市中考数学模拟试卷(一)一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)数据显示,2015年全国新建、改扩建校舍约为51 660 000平方米,全面改善贫困地区义务教育薄弱学校基本办学条件工作取得明显成果.将数据51 660 000用科学记数法表示应为()A.5.166×107B.5.166×108C.51.66×106D.0.5166×1082.(3分)实数a,b在数轴上的对应点的位置如图所示,把﹣a,﹣b,0按照从小到大的顺序排列,正确的是()A.﹣a<0<﹣b B.0<﹣a<﹣b C.﹣b<0<﹣a D.0<﹣b<﹣a 3.(3分)下列说法正确的是()A.对角线相等的四边形是矩形B.一组对边相等一组对边平行的四边形是平行四边形C.对角线垂直且相等的四边形是正方形D.一组对边平行一组对角相等的四边形是平行四边形4.(3分)下列实数最小的是()A.B.C.﹣1 D.2﹣5.(3分)甲、乙两箱内分别装有除颜色外其他均相同的2个小球,甲箱球的颜色分别为红、黄;乙箱球的颜色分别为红、黑;小明同时从甲、乙两个箱子中各取出一个小球(同一箱中每球被取出的机会相等),则小明取出的两个小球颜色相同的概率为()A.B.C.D.6.(3分)由若干个相同的小正方体搭成的几何体的主视图、左视图如图所示,则搭成这个几何体的小正方体的个数最少有()A.4个 B.6个 C.8个 D.10个7.(3分)下列图形有4条对称轴的是()A.矩形B.菱形C.正三角形D.正方形8.(3分)如图,点P为正方形ABCD内一点,从①PA=PB;②∠PAB=15°;③∠ADP=30°三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,命题正确的个数为()A.0个 B.1个 C.2个 D.3个9.(3分)点(x1,y1)、(x2,y2)、(x3,y3)在反比例函数的图象上,且x1<0<x2<x3,则有()A.y1<y2<y3B.y2<y3<y1C.y1<y3<y2D.y3<y2<y110.(3分)设二次函数y1=a(x﹣x1)(x﹣x2)(a≠0,x1≠x2)的图象与一次函数y2=kx+b(k≠0)的图象交于点(x1,0),若函数y=y1+y2的图象与x轴仅有一个交点,则()A.a(x1﹣x2)=k B.a(x2﹣x1)=k C.a(x1﹣x2)2=k D.a(x1+x2)2=k二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)在函数中,自变量x的取值范围为.12.(3分)若x2+4x+m=(x﹣2)(x+n),则m+n=.13.(3分)将一副三角尺按如图所示的方式叠放(两条直角边重合),则∠α的度数是.14.(3分)若一组数据2,3,x的方差与另一组数据12,13,14的方差相等,则x的值为.15.(3分)下列图案是用长度相同的火柴棒按一定规律拼搭而成的,第1个图案需4根火柴棒,第2个图案需10根火柴棒,第3个图案需16根图案…按此规律,第n个图案需根火柴棒.16.(3分)如图,九年级某班数学兴趣小组利用数学活动课时间测量位于铁人纪念馆台阶顶部铁人雕像的高度,已知台阶坡面与水平面的夹角∠BDC=30°,台阶总高BC=5m,组员从台阶底部D处沿台阶前行8m到达E点,在点E处测得雕像顶端A的仰角为60°,则雕像AB的高度为m.17.(3分)如图,在Rt△ABC中,∠A=60°,AB=2,以点B为圆心,BC为半径的弧交AB于点D,以点A为圆心,AC为半径的弧交AB于点E,则图中阴影部分的面积为.18.(3分)二次函数y=ax2﹣2ax﹣1+a(a≠0)恒过一定点,该定点坐标为.三、解答题(本大题共10小题,共66分)19.(4分)计算:(﹣)﹣1﹣|1﹣|+(π﹣3.14)0+2sin45°.20.(4分)已知x﹣y=,z﹣y=﹣,求x2+y2+z2﹣xy﹣yz﹣xz的值.21.(5分)解不等式组,并求其最大整数解.22.(6分)王师傅检修一条长600米的自来水管道,计划用若干小时完成,在实际检修过程中,每小时检修管道长度是原计划的1.2倍,结果提前2小时完成任务,王师傅原计划每小时检修管道多少米?23.(7分)某中学为了解学生每天完成家庭作业所用时间的情况,从每班抽取相同数量的学生进行调查,并将所得数据进行整理,绘制成如下两幅尚不完整的统计图,请根据图中提供的信息,解答下列问题:(1)补全条形统计图;(2)求作业完成时间在1.5﹣2h的部分对应扇形的圆心角的度数;(3)若该中学有2000名学生,请估计其中有多少名学生能在1.5h内完成家庭作业?24.(7分)如图,在四边形ABCD中,∠B=90°,E为AB上一点,分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处,若AD=3,BC=5.(1)求证:AE=BE;(2)求EF的长.25.(7分)如图,矩形OABC的顶点A,C分别在x,y轴的正半轴上,D为对角线OB的中点,反比例函数y=在第一象限内的图象经过点D,且与AB、BC分别交于点E,F,点B的坐标为(2,2).(1)求反比例函数的解析式;(2)连接DE,求△BDE的面积;(3)直接写出在第一象限内当x满足什么条件时,直线FD的函数值大于反比例函数y=的函数值.26.(8分)甲、乙两车从A地出发匀速行驶至B地,在整个行驶过程中,甲、乙两车离开A地的距离y1(单位:km),y2(单位:km)关于甲车行驶的时间t (单位:h)的函数关系如图所示,根据图象解答下列问题:(1)求乙车的速度;(2)乙车出发多长时间追上甲车?(3)当甲、乙两车相距50km时,求t的值.27.(9分)如图,△ABC中,∠C=90°,AC=3,AB=5,点O在BC边的中线AD 上,⊙O与BC相切于点E,且∠OBA=∠OBC.(1)求证:AB为⊙O的切线;(2)求⊙O的半径;(3)求tan∠BAD.28.(9分)如图,已知一条直线过点(0,4),且与抛物线y=x2交于A,B两点,其中点A的横坐标是﹣2.(1)求这条直线的函数关系式及点B的坐标.(2)在x轴上是否存在点C,使得△ABC是直角三角形?若存在,求出点C的坐标,若不存在,请说明理由.(3)过线段AB上一点P,作PM∥x轴,交抛物线于点M,点M在第一象限,点N(0,1),当点M的横坐标为何值时,MN+3MP的长度最大?最大值是多少?2017年黑龙江省大庆市中考数学模拟试卷(一)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)数据显示,2015年全国新建、改扩建校舍约为51 660 000平方米,全面改善贫困地区义务教育薄弱学校基本办学条件工作取得明显成果.将数据51 660 000用科学记数法表示应为()A.5.166×107B.5.166×108C.51.66×106D.0.5166×108【解答】解:51 660 000用科学记数法表示应为5.166×107,故选A.2.(3分)实数a,b在数轴上的对应点的位置如图所示,把﹣a,﹣b,0按照从小到大的顺序排列,正确的是()A.﹣a<0<﹣b B.0<﹣a<﹣b C.﹣b<0<﹣a D.0<﹣b<﹣a 【解答】解:∵从数轴可知:a<0<b,∴﹣a>﹣b,﹣b<0,﹣a>0,∴﹣b<0<﹣a,故选C.3.(3分)下列说法正确的是()A.对角线相等的四边形是矩形B.一组对边相等一组对边平行的四边形是平行四边形C.对角线垂直且相等的四边形是正方形D.一组对边平行一组对角相等的四边形是平行四边形【解答】解:A、对角线相等的四边形不一定是平行四边形,故不一定是矩形,故A不正确;B、一组对边相等一组对边平行的四边形可能是等腰梯形,故B不正确;C、对角线垂直且相等的四边形不一定是正方形,也可能是等腰梯形,故C不正确;D、由条件一组对边平行,一组对角相等,则可求得另一组对角也相等,故可判断其为平行四边形,故D正确;故选D.4.(3分)下列实数最小的是()A.B.C.﹣1 D.2﹣【解答】解:∵≈1.414,∴≈0.707,﹣1≈0.414,2﹣≈0.586.最小的是﹣1.故选C.5.(3分)甲、乙两箱内分别装有除颜色外其他均相同的2个小球,甲箱球的颜色分别为红、黄;乙箱球的颜色分别为红、黑;小明同时从甲、乙两个箱子中各取出一个小球(同一箱中每球被取出的机会相等),则小明取出的两个小球颜色相同的概率为()A.B.C.D.【解答】解:画树状图得:∵共有4种等可能的结果,从两个袋子中各随机摸出1个小球,两球颜色恰好相同的只有1种情况,∴从两个袋子中各随机摸出1个小球,两球颜色恰好相同的概率为:.故选:C.6.(3分)由若干个相同的小正方体搭成的几何体的主视图、左视图如图所示,则搭成这个几何体的小正方体的个数最少有()A.4个 B.6个 C.8个 D.10个【解答】解:综合主视图和左视图,底层最少有2个小立方体,第二层最少有2个小立方体,俯视图可能为:或因此搭成这个几何体的小正方体的个数最少是4个.故选A.7.(3分)下列图形有4条对称轴的是()A.矩形B.菱形C.正三角形D.正方形【解答】解:A、矩形有2条对称轴,故此选项错误;B、菱形有2条对称轴,故此选项错误;C、正三角形有3条对称轴,故此选项错误;D、正方形有4条对称轴,故此选项正确;故选:D.8.(3分)如图,点P为正方形ABCD内一点,从①PA=PB;②∠PAB=15°;③∠ADP=30°三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,命题正确的个数为()A.0个 B.1个 C.2个 D.3个【解答】解:①②⇒③是真命题,理由:作PF⊥AB于F,PE⊥AD于E,当△PDC是等边三角形时,①②条件成立,易证PE=AF=AB=DC=PD,可得∠ADP=30°①③⇒②是真命题,理由:首先证明△PDC是等边三角形,推出DA=DP,推出∠DAP=75°,可得结论.②③⇒①是真命题,理由:首先证明:DA=DP,△PDC是等边三角形,即可推出结论.故选D.9.(3分)点(x1,y1)、(x2,y2)、(x3,y3)在反比例函数的图象上,且x1<0<x2<x3,则有()A.y1<y2<y3B.y2<y3<y1C.y1<y3<y2D.y3<y2<y1【解答】解:∵k<0,∴函数图象在二,四象限,由x1<0<x2<x3可知,横坐标为x1的点在第二象限,横坐标为x2,x3的点在第四象限.∵第四象限内点的纵坐标总小于第二象限内点的纵坐标,∴y1最大,在第二象限内,y随x的增大而增大,∴y2<y3<y1.故选B.10.(3分)设二次函数y1=a(x﹣x1)(x﹣x2)(a≠0,x1≠x2)的图象与一次函数y2=kx+b(k≠0)的图象交于点(x1,0),若函数y=y1+y2的图象与x轴仅有一个交点,则()A.a(x1﹣x2)=k B.a(x2﹣x1)=k C.a(x1﹣x2)2=k D.a(x1+x2)2=k 【解答】解:∵一次函数y2=kx+b(k≠0)的图象经过点(x1,0),∴kx1+b=0,b=﹣kx1,∴y2=k(x﹣x1),∴y=y1+y2=a(x﹣x1)(x﹣x2)+k(x﹣x1)=ax2﹣axx2﹣ax1x+ax1x2+kx﹣kx1=ax2+(k﹣ax2﹣ax1)x+ax1x2﹣kx1,∵当x=x1时,y1=0,y2=0,∴当x=x1时,y=y1+y2=0,∵y=ax2+(k﹣ax2﹣ax1)x+ax1x2﹣kx1与x轴仅有一个交点,∴y=y1+y2的图象与x轴的交点为(x1,0),∴﹣=x1,化简得:a(x2﹣x1)=k.故选:B.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)在函数中,自变量x的取值范围为x≥0且x≠2.【解答】解:由题意,得x≥0且x﹣2≠0,解得x≥0且x≠2,故答案为:x≥0且x≠2.12.(3分)若x2+4x+m=(x﹣2)(x+n),则m+n=﹣6.【解答】解:已知等式整理得:x2+4x+m=x2+(n﹣2)x﹣2n,可得n﹣2=4,﹣2n=m,解得:m=﹣12,n=6,则m+n=﹣12+6=﹣6.故答案为:﹣613.(3分)将一副三角尺按如图所示的方式叠放(两条直角边重合),则∠α的度数是75°.【解答】解:∵∠DAC+∠ACB=180°,∴AD∥BC,∴∠B=∠DAE=30°,∴∠DEB=∠D+∠DAE=45°+30°=75°,即∠α的度数是75°.故答案为:75°.14.(3分)若一组数据2,3,x的方差与另一组数据12,13,14的方差相等,则x的值为1或4.【解答】解:∵一组数据2,3,x的方差与另一组数据12,13,14的方差相等,∴这组数据可能是2,3,4或1,2,3,∴x=1或4,故答案为1或4.15.(3分)下列图案是用长度相同的火柴棒按一定规律拼搭而成的,第1个图案需4根火柴棒,第2个图案需10根火柴棒,第3个图案需16根图案…按此规律,第n个图案需(6n﹣2)根火柴棒.【解答】解:第1个图形中,有4根火柴,4=1+3×1;第2个图形中,有10根火柴,10=1+3×3;第3个图形中,有16根火柴,16=1+3×5;…按此规律,第n个图形中,火柴的根数是1+3(2n﹣1)=6n﹣2.故答案为:(6n﹣2).16.(3分)如图,九年级某班数学兴趣小组利用数学活动课时间测量位于铁人纪念馆台阶顶部铁人雕像的高度,已知台阶坡面与水平面的夹角∠BDC=30°,台阶总高BC=5m,组员从台阶底部D处沿台阶前行8m到达E点,在点E处测得雕像顶端A的仰角为60°,则雕像AB的高度为2m.【解答】过点E作EF⊥AC,EG⊥CD,在Rt△DEG中,∵DE=1620,∠D=30°,∴EG=DEsin∠D=8×=4米,∵BC=5米,CF=EG,∴BF=BC﹣CF=1米,在Rt△BEF中,tan∠BEF=,∴EF=BF,在Rt△AEF中,∠AEF=60°,设AB=x,∵tan∠AEF=,∴AF=EF×tan∠AEF,∴x+1=3×1,∴x=2,故答案为2.17.(3分)如图,在Rt△ABC中,∠A=60°,AB=2,以点B为圆心,BC为半径的弧交AB于点D,以点A为圆心,AC为半径的弧交AB于点E,则图中阴影部分的面积为.【解答】解:S阴影部分=S扇形ACE+S扇形BCD﹣S△ABC,∵S扇形ACE==,S扇形BCD==,S△ABC=×1×=,∴S阴影部分=+﹣=.故答案为.18.(3分)二次函数y=ax2﹣2ax﹣1+a(a≠0)恒过一定点,该定点坐标为(1,﹣1).【解答】解:∵y=ax2﹣2ax﹣1+a=a(x﹣1)2﹣1,∴不论a取任何不为0的实数,当x=1时,y=﹣1,即二次函数恒过的定点为(1,﹣1),故答案为:(1,﹣1).三、解答题(本大题共10小题,共66分)19.(4分)计算:(﹣)﹣1﹣|1﹣|+(π﹣3.14)0+2sin45°.【解答】解:原式=﹣2﹣+1+1+=0.20.(4分)已知x﹣y=,z﹣y=﹣,求x2+y2+z2﹣xy﹣yz﹣xz的值.【解答】解:由x﹣y=,z﹣y=﹣得:(x+y)(z﹣y)=xz﹣xy﹣yz+y2=﹣2①;(x﹣y)﹣(z﹣y)=x﹣z=2,则x2﹣2xz+z2=8②,①+②得:x2+y2+z2﹣xy﹣yz﹣xz=﹣2+8=6.21.(5分)解不等式组,并求其最大整数解.【解答】解:由①得:x<1,由②得:x≥﹣3,则不等式组的解集为:﹣3≤x<1,则不等式组的最大整数解为0.22.(6分)王师傅检修一条长600米的自来水管道,计划用若干小时完成,在实际检修过程中,每小时检修管道长度是原计划的1.2倍,结果提前2小时完成任务,王师傅原计划每小时检修管道多少米?【解答】解:设原计划每小时检修管道x米.由题意,得﹣=2.解得x=50.经检验,x=50是原方程的解.且符合题意.答:原计划每小时检修管道50米.23.(7分)某中学为了解学生每天完成家庭作业所用时间的情况,从每班抽取相同数量的学生进行调查,并将所得数据进行整理,绘制成如下两幅尚不完整的统计图,请根据图中提供的信息,解答下列问题:(1)补全条形统计图;(2)求作业完成时间在1.5﹣2h的部分对应扇形的圆心角的度数;(3)若该中学有2000名学生,请估计其中有多少名学生能在1.5h内完成家庭作业?【解答】解:(1)∵10÷25%=40(名),∴B的人数为40﹣10﹣14﹣3﹣1=12(名),补全条形统计图:(2)∵1﹣25%﹣30%﹣35%﹣2.5%=7.5%,∴360°×7.5%=27°,∴作业完成时间在1.5~2h的部分对应扇形圆心角的度数为27°.(3)∵2000×(25%+30%+35%)=1800(名).24.(7分)如图,在四边形ABCD中,∠B=90°,E为AB上一点,分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处,若AD=3,BC=5.(1)求证:AE=BE;(2)求EF的长.【解答】解:∵分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处,∴EA=EF,BE=EF,∴AE=BE;(2)∵分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处,∴DF=AD=3,CF=CB=5,∴AB=2EF,DC=DF+CF=8,作DH⊥BC于H,∵AD∥BC,∠B=90°,∴四边形ABHD为矩形,∴DH=AB=2EF,HC=BC﹣BH=BC﹣AD=5﹣3=2,在Rt△DHC中,DH==2,∴EF=DH=.25.(7分)如图,矩形OABC的顶点A,C分别在x,y轴的正半轴上,D为对角线OB的中点,反比例函数y=在第一象限内的图象经过点D,且与AB、BC分别交于点E,F,点B的坐标为(2,2).(1)求反比例函数的解析式;(2)连接DE,求△BDE的面积;(3)直接写出在第一象限内当x满足什么条件时,直线FD的函数值大于反比例函数y=的函数值.【解答】解:(1)∵B(2,2),点D为对角线OB的中点,∴D(,1),∵点D在反比例函数y=(k≠0)的图象上,∴k=×1=,∴反比例函数的关系式为:y=;(2)设点E的坐标为(2,m),代入y=,可得m=,∴BE=2﹣=,如图,过点D作DH⊥AB于H,则DH=AO=,=BE×DH=××=;∴S△BDE(3)设点F的坐标为(n,2),代入y=,可得n=,∴F(,2),又∵D(,1),∴在第一象限内,当一次函数值大于反比例函数y=的函数值时,x的取值范围为:<x<.26.(8分)甲、乙两车从A地出发匀速行驶至B地,在整个行驶过程中,甲、乙两车离开A地的距离y1(单位:km),y2(单位:km)关于甲车行驶的时间t (单位:h)的函数关系如图所示,根据图象解答下列问题:(1)求乙车的速度;(2)乙车出发多长时间追上甲车?(3)当甲、乙两车相距50km时,求t的值.【解答】解:(1)由图象可知乙车比甲车晚出发1个小时,乙车3小时行驶300千米,所以乙车的速度是:300÷3=100(千米/时);(2)设甲车离开A地的距离y1关于甲车行驶的时间t的函数解析式为y1=kt,把点(5,300)代入,得5k=300,解得k=60,所以y1=60t(0≤t≤5).设乙车离开A地的距离y2关于甲车行驶的时间t的函数解析式为y2=mt+n,把点(1,0)和点(4,300)代入,得,解得,所以y2=100t﹣100(1≤t≤4).令y1=y2,得60t=100t﹣100,解得t=2.5.2.5﹣1=1.5(小时).故此时乙车出发时间为1.5小时,即乙车出发1.5小时后追上甲车;(3)当甲、乙两车相距50km时,分三种情况:①当乙车没有出发即0≤t≤1时,y1=50,解得t=;②当1<t≤4时,由题意,得:|y1﹣y2|=50,即60t﹣(100t﹣100)=50或100t﹣100﹣60t=50,解得t=或;③当乙车到达B地即4<t≤5时,时,y1=250,解得t=.综上,当甲、乙两车相距50km时,t的值为h或h或h或h.27.(9分)如图,△ABC中,∠C=90°,AC=3,AB=5,点O在BC边的中线AD 上,⊙O与BC相切于点E,且∠OBA=∠OBC.(1)求证:AB为⊙O的切线;(2)求⊙O的半径;(3)求tan∠BAD.【解答】(1)证明:如图,作OF垂直AB于点F,∵⊙O与BC相切于点E,∴OE⊥BC又∠OBA=∠OBC,∴OE=OF,∴AB 为⊙O 的切线(2)解:∵∠C=90°,AC=3,AB=5,∴BC==4,又D 为BC 的中点,∴CD=DB=2,∵S △ACD +S △COB +S △AOB =S △ABC设⊙O 的半径为r ,即AC•CD +BD•r +∴6+2r +5r=12∴r=∴⊙O 的半径为(3)解:∵∠C=90°,OE ⊥BC ,∴OE ∥AC ,∴Rt △ODE ∽Rt △ADC , ∴,∴DE=,∴BF=BE=,∴AF=AB ﹣BF=,∴tan ∠BAD==.28.(9分)如图,已知一条直线过点(0,4),且与抛物线y=x 2交于A ,B两点,其中点A的横坐标是﹣2.(1)求这条直线的函数关系式及点B的坐标.(2)在x轴上是否存在点C,使得△ABC是直角三角形?若存在,求出点C的坐标,若不存在,请说明理由.(3)过线段AB上一点P,作PM∥x轴,交抛物线于点M,点M在第一象限,点N(0,1),当点M的横坐标为何值时,MN+3MP的长度最大?最大值是多少?【解答】解:(1)∵点A是直线与抛物线的交点,且横坐标为﹣2,∴y=×(﹣2)2=1,A点的坐标为(﹣2,1),设直线的函数关系式为y=kx+b,将(0,4),(﹣2,1)代入得,解得,∴直线y=x+4,∵直线与抛物线相交,∴x+4=x2,解得:x=﹣2或x=8,当x=8时,y=16,∴点B的坐标为(8,16);(2)如图1,连接AC,BC,∵由A(﹣2,1),B(8,16)可求得AB2=325.设点C(m,0),同理可得AC2=(m+2)2+12=m2+4m+5,BC2=(m﹣8)2+162=m2﹣16m+320,①若∠BAC=90°,则AB2+AC2=BC2,即325+m2+4m+5=m2﹣16m+320,解得:m=﹣;②若∠ACB=90°,则AB2=AC2+BC2,即325=m2+4m+5+m2﹣16m+320,解得:m=0或m=6;③若∠ABC=90°,则AB2+BC2=AC2,即m2+4m+5=m2﹣16m+320+325,解得:m=32;∴点C的坐标为(﹣,0),(0,0),(6,0),(32,0)(3)设M(a,a2),如图2,设MP与y轴交于点Q,在Rt△MQN中,由勾股定理得MN==a2+1,又∵点P与点M纵坐标相同,∴+4=a2,∴x=,∴点P的横坐标为,∴MP=a﹣,∴MN+3PM=+1+3(a﹣)=﹣a2+3a+9,∴当a=﹣=6,又∵2≤6≤8,∴取到最大值18,∴当M的横坐标为6时,MN+3PM的长度的最大值是18.。
2017年黑龙江省大庆市中考数学试题及解析

2017年黑龙江省大庆市中考数学试卷一、选择题(共10小题,每小题3分,满分30分) B25.(3分)(2017•大庆)某品牌自行车1月份销售量为100辆,每辆车售价相同.2月份的销售量比1月份增加10%,每辆车的售价比1月份降低了80元.2月份与1月份的销售总6.(3分)(2017•大庆)在⊙O 中,圆心O 到弦AB 的距离为AB 长度的一半,则弦AB 所..D8.(3分)(2017•大庆)某射击小组有20人,教练根据他们某次射击的数据绘制如图所示的统计图,则这组数据的众数和中位数分别是( )9.(3分)(2017•大庆)已知二次函数y=a(x﹣2)2+c,当x=x1时,函数值为y1;当x=x210.(3分)(2017•大庆)已知点A(﹣2,0),B为直线x=﹣1上一个动点,P为直线AB与双曲线y=的交点,且AP=2AB,则满足条件的点P的个数是()二、填空题(共8小题,每小题3分,满分24分)11.(3分)(2017•大庆)函数y=的自变量x的取值范围是.12.(3分)(2017•大庆)已知=,则的值为.13.(3分)(2017•大庆)底面直径和高都是1的圆柱侧面积为.14.(3分)(2017•大庆)边长为1的正三角形的内切圆半径为.15.(3分)(2017•大庆)用一个平面去截一个几何体,截面形状为三角形,则这个几何体可能为:①正方体;②圆柱;③圆锥;④正三棱柱(写出所有正确结果的序号).16.(3分)(2017•大庆)方程3(x﹣5)2=2(x﹣5)的根是.17.(3分)(2017•大庆)若a2n=5,b2n=16,则(ab)n=.18.(3分)(2017•大庆)在Rt△ABC中,∠C=90°,AC=BC=1,将其放入平面直角坐标系,使A点与原点重合,AB在x轴上,△ABC沿x轴顺时针无滑动的滚动,点A再次落在x 轴时停止滚动,则点A经过的路线与x轴围成图形的面积为.三、解答题(共10小题,满分66分)19.(4分)(2017•大庆)求值:+()2+(﹣1)2017.20.(4分)(2017•大庆)解关于x的不等式:ax﹣x﹣2>0.21.(5分)(2017•大庆)已知实数a,b是方程x2﹣x﹣1=0的两根,求+的值.22.(6分)(2017•大庆)已知一组数据x1,x2,…x6的平均数为1,方差为(1)求:x12+x22+ (x62)(2)若在这组数据中加入另一个数据x7,重新计算,平均数无变化,求这7个数据的方差(结果用分数表示)23.(7分)(2017•大庆)某商场举行开业酬宾活动,设立了两个可以自由转动的转盘(如图所示,两个转盘均被等分),并规定:顾客购买满188元的商品,即可任选一个转盘转动一次,转盘停止后,指针所指区域内容即为优惠方式;若指针所指区域空白,则无优惠.已知小张在该商场消费300元(1)若他选择转动转盘1,则他能得到优惠的概率为多少?(2)选择转动转盘1和转盘2,哪种方式对于小张更合算,请通过计算加以说明.24.(7分)(2017•大庆)小敏同学测量一建筑物CD的高度,她站在B处仰望楼顶C,测得仰角为30°,再往建筑物方向走30m,到达点F处测得楼顶C的仰角为45°(BFD在同一直线上).已知小敏的眼睛与地面距离为1.5m,求这栋建筑物CD的高度(参考数据:≈1.732,≈1.414.结果保留整数)25.(7分)(2017•大庆)如图,△ABC中,∠ACB=90°,D、E分别是BC、BA的中点,联结DE,F在DE延长线上,且AF=AE.(1)求证:四边形ACEF是平行四边形;(2)若四边形ACEF是菱形,求∠B的度数.26.(8分)(2017•大庆)如图,一次函数y=kx+b的图象与反比例函数y=﹣的图象交于A(﹣1,m)、B(n,﹣1)两点(1)求一次函数的解析式;(2)求△AOB的面积.27.(9分)(2017•大庆)如图,四边形ABCD内接于⊙O,AD∥BC,P为BD上一点,∠APB=∠BAD.(1)证明:AB=CD;(2)证明:DP•BD=AD•BC;(2)证明:BD2=AB2+AD•BC.28.(9分)(2017•大庆)已知二次函数y=x2+bx﹣4的图象与y轴的交点为C,与x轴正半轴的交点为A,且tan∠ACO=(1)求二次函数的解析式;(2)P为二次函数图象的顶点,Q为其对称轴上的一点,QC平分∠PQO,求Q点坐标;(3)是否存在实数x1、x2(x1<x2),当x1≤x≤x2时,y的取值范围为≤y≤?若存在,直接写在x1,x2的值;若不存在,说明理由.2017年黑龙江省大庆市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)B2=|a|=55.(3分)(2017•大庆)某品牌自行车1月份销售量为100辆,每辆车售价相同.2月份的销售量比1月份增加10%,每辆车的售价比1月份降低了80元.2月份与1月份的销售总6.(3分)(2017•大庆)在⊙O中,圆心O到弦AB的距离为AB长度的一半,则弦AB所..D8.(3分)(2017•大庆)某射击小组有20人,教练根据他们某次射击的数据绘制如图所示的统计图,则这组数据的众数和中位数分别是( )=7.59.(3分)(2017•大庆)已知二次函数y=a(x﹣2)2+c,当x=x1时,函数值为y1;当x=x210.(3分)(2017•大庆)已知点A(﹣2,0),B为直线x=﹣1上一个动点,P为直线AB与双曲线y=的交点,且AP=2AB,则满足条件的点P的个数是()),于是得到这样的点,﹣,=,=)二、填空题(共8小题,每小题3分,满分24分)11.(3分)(2017•大庆)函数y=的自变量x的取值范围是x>0.12.(3分)(2017•大庆)已知=,则的值为﹣.=,=﹣.13.(3分)(2017•大庆)底面直径和高都是1的圆柱侧面积为π.14.(3分)(2017•大庆)边长为1的正三角形的内切圆半径为.,BOD==OD=故答案为:15.(3分)(2017•大庆)用一个平面去截一个几何体,截面形状为三角形,则这个几何体可能为:①正方体;②圆柱;③圆锥;④正三棱柱①③④(写出所有正确结果的序号).16.(3分)(2017•大庆)方程3(x﹣5)2=2(x﹣5)的根是x1=5,x2=..17.(3分)(2017•大庆)若a2n=5,b2n=16,则(ab)n=.故答案为:18.(3分)(2017•大庆)在Rt△ABC中,∠C=90°,AC=BC=1,将其放入平面直角坐标系,使A点与原点重合,AB在x轴上,△ABC沿x轴顺时针无滑动的滚动,点A再次落在x轴时停止滚动,则点A经过的路线与x轴围成图形的面积为π+.的扇形,加上=;△,半径为+=;.三、解答题(共10小题,满分66分)19.(4分)(2017•大庆)求值:+()2+(﹣1)2017.+.20.(4分)(2017•大庆)解关于x的不等式:ax﹣x﹣2>0.><21.(5分)(2017•大庆)已知实数a,b是方程x2﹣x﹣1=0的两根,求+的值.+=+=﹣22.(6分)(2017•大庆)已知一组数据x1,x2,…x6的平均数为1,方差为(1)求:x12+x22+ (x62)(2)若在这组数据中加入另一个数据x7,重新计算,平均数无变化,求这7个数据的方差(结果用分数表示)再根据方差为,利用完全平方公式求出,进而求解即可;;再根据[又∵方差为,[[x((,[=[[10+.=﹣))23.(7分)(2017•大庆)某商场举行开业酬宾活动,设立了两个可以自由转动的转盘(如图所示,两个转盘均被等分),并规定:顾客购买满188元的商品,即可任选一个转盘转动一次,转盘停止后,指针所指区域内容即为优惠方式;若指针所指区域空白,则无优惠.已知小张在该商场消费300元(1)若他选择转动转盘1,则他能得到优惠的概率为多少?(2)选择转动转盘1和转盘2,哪种方式对于小张更合算,请通过计算加以说明.=能获得的优惠为:=25×=2024.(7分)(2017•大庆)小敏同学测量一建筑物CD的高度,她站在B处仰望楼顶C,测得仰角为30°,再往建筑物方向走30m,到达点F处测得楼顶C的仰角为45°(BFD在同一直线上).已知小敏的眼睛与地面距离为1.5m,求这栋建筑物CD的高度(参考数据:≈1.732,≈1.414.结果保留整数)AG=xm+125.(7分)(2017•大庆)如图,△ABC中,∠ACB=90°,D、E分别是BC、BA的中点,联结DE,F在DE延长线上,且AF=AE.(1)求证:四边形ACEF是平行四边形;(2)若四边形ACEF是菱形,求∠B的度数.26.(8分)(2017•大庆)如图,一次函数y=kx+b的图象与反比例函数y=﹣的图象交于A(﹣1,m)、B(n,﹣1)两点(1)求一次函数的解析式;(2)求△AOB的面积.,得:坐标代入一次函数解析式得:=8d==3AB27.(9分)(2017•大庆)如图,四边形ABCD内接于⊙O,AD∥BC,P为BD上一点,∠APB=∠BAD.(1)证明:AB=CD;(2)证明:DP•BD=AD•BC;(2)证明:BD2=AB2+AD•BC.)利用平行线的性质结合圆周角定理得出====28.(9分)(2017•大庆)已知二次函数y=x2+bx﹣4的图象与y轴的交点为C,与x轴正半轴的交点为A,且tan∠ACO=(1)求二次函数的解析式;(2)P为二次函数图象的顶点,Q为其对称轴上的一点,QC平分∠PQO,求Q点坐标;(3)是否存在实数x1、x2(x1<x2),当x1≤x≤x2时,y的取值范围为≤y≤?若存在,直接写在x1,x2的值;若不存在,说明理由.ACO=,求出的坐标为(﹣,﹣≤当﹣≤即可.,ACO=,﹣的坐标为(﹣,±,)或(﹣,﹣﹣的取值范围为4=4=,﹣Ⅰ、当﹣的取值范围为,可得<,Ⅱ、当﹣的取值范围为=<的取值范围为,,≤.。
黑龙江省大庆市中考数学试卷及答案解析

2020年黑龙江省大庆市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的序号填涂在答题卡上)1.在﹣1,0,π,√3这四个数中,最大的数是()A.﹣1B.0C.πD.√32.天王星围绕太阳公转的轨道半径长约为2900000000km,数字2900000000用科学记数法表示为()A.2.9×108B.2.9×109C.29×108D.0.29×1010 3.若|x+2|+(y﹣3)2=0,则x﹣y的值为()A.﹣5B.5C.1D.﹣14.函数y=√2x的自变量x的取值范围是()A.x≤0B.x≠0C.x≥0D.x≥1 25.已知正比例函数y=k1x和反比例函数y=k2x,在同一直角坐标系下的图象如图所示,其中符合k1•k2>0的是()A.①②B.①④C.②③D.③④6.将正方体的表面沿某些棱剪开,展成如图所示的平面图形,则原正方体中与数字5所在的面相对的面上标的数字为()A.1B.2C.3D.47.在一次青年歌手比赛中,七位评委为某位歌手打出的分数如下:9.5,9.4,9.6,9.9,9.3,9.7,9.0(单位:分).若去掉一个最高分和一个最低分.则去掉前与去掉后没有改变的一个统计量是()A.平均分B.方差C.中位数D.极差8.底面半径相等的圆锥与圆柱的高的比为1:3,则圆锥与圆柱的体积的比为( )A .1:1B .1:3C .1:6D .1:99.已知两个直角三角形的三边长分别为3,4,m 和6,8,n ,且这两个直角三角形不相似,则m +n 的值为( )A .10+√7或5+2√7B .15C .10+√7D .15+3√710.如图,在边长为2的正方形EFGH 中,M ,N 分别为EF 与GH 的中点,一个三角形ABC沿竖直方向向上平移,在运动的过程中,点A 恒在直线MN 上,当点A 运动到线段MN 的中点时,点E ,F 恰与AB ,AC 两边的中点重合,设点A 到EF 的距离为x ,三角形ABC 与正方形EFGH 的公共部分的面积为y .则当y =52时,x 的值为( )A .74或2+√22B .√102或2−√22C .2±√22D .74或√102二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.点P (2,3)关于y 轴的对称点Q 的坐标为 .12.分解因式:a 3﹣4a = .13.一个周长为16cm 的三角形,由它的三条中位线构成的三角形的周长为 cm .14.将两个三角尺的直角顶点重合为如图所示的位置,若∠AOD =108°,则∠COB= .15.两个人做游戏:每个人都从﹣1,0,1这三个整数中随机选择一个写在纸上,则两人所写整数的绝对值相等的概率为 .16.如图,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第20个图需要黑色棋子的个数为 .17.已知关于x 的一元二次方程:x 2﹣2x ﹣a =0,有下列结论:①当a >﹣1时,方程有两个不相等的实根;②当a >0时,方程不可能有两个异号的实根;③当a >﹣1时,方程的两个实根不可能都小于1;④当a >3时,方程的两个实根一个大于3,另一个小于3.以上4个结论中,正确的个数为 .18.如图,等边△ABC 中,AB =3,点D ,点E 分别是边BC ,CA 上的动点,且BD =CE ,连接AD 、BE 交于点F ,当点D 从点B 运动到点C 时,则点F 的运动路径的长度为 .三、解答题(本大题共10小题,共66分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(4分)计算:|﹣5|﹣(1﹣π)0+(13)﹣1. 20.(4分)先化简,再求值:(x +5)(x ﹣1)+(x ﹣2)2,其中x =√3.21.(5分)解方程:2x x−1−1=4x−1. 22.(6分)如图,AB ,CD 为两个建筑物,两建筑物底部之间的水平地面上有一点M ,从建筑物AB 的顶点A 测得M 点的俯角为45°,从建筑物CD 的顶点C 测得M 点的俯角为75°,测得建筑物AB 的顶点A 的俯角为30°.若已知建筑物AB 的高度为20米,求两建筑物顶点A 、C 之间的距离(结果精确到1m ,参考数据:√2≈1.414,√3≈1.732).23.(7分)为了了解某校某年级1000名学生一分钟的跳绳次数,从中随机抽取了40名学生的一分钟跳绳次数(次数为整数,且最高次数不超过150次),整理后绘制成如图的频数直方图,图中的a,b满足关系式2a=3b.后由于保存不当,部分原始数据模糊不清,但已知缺失数据都大于120.请结合所给条件,回答下列问题.(1)求问题中的总体和样本容量;(2)求a,b的值(请写出必要的计算过程);(3)如果一分钟跳绳次数在125次以上(不含125次)为跳绳成绩优秀,那么估计该校该年级学生跳绳成绩优秀的人数大约是多少人?(注:该年级共1000名学生)24.(7分)如图,在矩形ABCD中,O为对角线AC的中点,过点O作直线分别与矩形的边AD,BC交于M,N两点,连接CM,AN.(1)求证:四边形ANCM为平行四边形;(2)若AD=4,AB=2,且MN⊥AC,求DM的长.25.(7分)期中考试后,某班班主任对在期中考试中取得优异成绩的同学进行表彰.她到商场购买了甲、乙两种笔记本作为奖品,购买甲种笔记本15个,乙种笔记本20个,共花费250元.已知购买一个甲种笔记本比购买一个乙种笔记本多花费5元.(1)求购买一个甲种、一个乙种笔记本各需多少元?(2)两种笔记本均受到了获奖同学的喜爱,班主任决定在期末考试后再次购买两种笔记本共35个,正好赶上商场对商品价格进行调整,甲种笔记本售价比上一次购买时减价2元,乙种笔记本按上一次购买时售价的8折出售.如果班主任此次购买甲、乙两种笔记本的总费用不超过上一次总费用的90%,求至多需要购买多少个甲种笔记本?并求购买两种笔记本总费用的最大值.26.(8分)如图,反比例函数y=kx与一次函数y=﹣x﹣(k+1)的图象在第二象限的交点为A,在第四象限的交点为C,直线AO(O为坐标原点)与函数y=kx的图象交于另一点B.过点A作y轴的平行线,过点B作x轴的平行线,两直线相交于点E,△AEB的面积为6.(1)求反比例函数y=kx的表达式;(2)求点A,C的坐标和△AOC的面积.27.(9分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,连接AD,过点D作DM⊥AC,垂足为M,AB、MD的延长线交于点N.(1)求证:MN是⊙O的切线;(2)求证:DN2=BN•(BN+AC);(3)若BC=6,cos C=35,求DN的长.28.(9分)如图,抛物线y=ax2+bx+12与x轴交于A,B两点(B在A的右侧),且经过点C(﹣1,7)和点D(5,7).(1)求抛物线的函数表达式;(2)连接AD,经过点B的直线l与线段AD交于点E,与抛物线交于另一点F.连接CA,CE,CD,△CED的面积与△CAD的面积之比为1:7,点P为直线l上方抛物线上的一个动点,设点P的横坐标为t.当t为何值时,△PFB的面积最大?并求出最大值;(3)在抛物线y=ax2+bx+12上,当m≤x≤n时,y的取值范围是12≤y≤16,求m﹣n 的取值范围.(直接写出结果即可)。
2017年黑龙江省大庆市中考数学模拟试卷3月含答案解析

2017年黑龙江省大庆市中考数学模拟试卷(3月份)一、选择题(本题共10个小题,每小题3分,共30分) 1.5的倒数为( )A .B .5C .D .﹣52.下列各式运算正确的是( )A .2﹣1=﹣2B .23=6C .22•23=26D .(23)2=263.如图,C ,D 是线段AB 上两点.若CB=4cm ,DB=7cm ,且D 是AC 的中点,则AC 的长等于( )A .3cmB .6cmC .11cmD .14cm4.如图,在△ABC 中,AC=DC=DB ,∠ACD=100°,则∠B 等于( )A .50°B .40°C .25°D .20°5.甲、乙两名学生10次立定跳远成绩的平均数相同,若甲10次立定跳远成绩的方差S 甲2=0.006,乙10次立定跳远成绩的方差S 乙2=0.035,则( ) A .甲的成绩比乙的成绩稳定 B .乙的成绩比甲的成绩稳定 C .甲、乙两人的成绩一样稳定 D .甲、乙两人成绩的稳定性不能比较6.经过某十字路口的汽车,它可以继续直行,也可以向左转或向右转.如果这三种可能性大小相同,则两辆汽车经过这个十字路口全部继续直行的概率是( )A .B .C .D .7.如图,桌上放着一摞书和一个茶杯,从左边看到的图形是( )A.B.C.D.8.如图,点E在AD的延长线上,下列条件中能判断BC∥AD的是()A.∠3=∠4 B.∠A+∠ADC=180°C.∠1=∠2 D.∠A=∠59.如图,将△PQR向右平移2个单位长度,再向下平移3个单位长度,则顶点P平移后的坐标是()A.(﹣2,﹣4)B.(﹣2,4)C.(2,﹣3)D.(﹣1,﹣3)10.反比例函数y=(k>0)的部分图象如图所示,A,B是图象上两点,AC⊥x轴于点C,BD ⊥x轴于点D,若△AOC的面积为S1,△BOD的面积为S2,则S1和S2的大小关系为()A.S1>S2B.S1=S2C.S1<S2D.无法确定二、填空题(本题共8小题,每小题3分,共24分)11.2008年5月18日晚,中央电视台举办了“爱的奉献”大型募捐活动.据了解,本次活动社会各界共向四川灾区捐款大约1510000000元人民币,这个数字用科学记数法可表示为元人民币.12.已知|x|=5,y=3,则x﹣y=.13.计算:=.14.函数y=中自变量x的取值范围是.15.如图,直线AB、CD相交于点O,OE⊥AB,垂足为O,如果∠EOD=42°,则∠AOC=度.16.如图,已知矩形ABCD,P、R分别是BC和DC上的点,E、F分别是PA,PR的中点.如果DR=3,AD=4,则EF的长为.17.观察下面两行数:2,4,8,16,32,64,…①5,7,11,19,35,67,…②根据你发现的规律,取每行数的第10个数,求得它们的和是(要求写出最后的计算结果).18.如图,菱形AB1C1D1的边长为1,∠B1=60°;作AD2⊥B1C1于点D2,以AD2为一边,做第二个菱形AB2C2D2,使∠B2=60°;作AD3⊥B2C2于点D3,以AD3为一边做第三个菱形AB3C3D3,使∠B3=60°…依此类推,这样做的第n个菱形AB n C n D n的边AD n的长是.三、解答题(本题共3小题,每小题5分,共15分)19.计算:(﹣1)﹣2+2sin245°﹣(1﹣)020.先化简,再求值:÷x,其中x=.21.解方程组:.四、应用题(本大题2小题,共12分)22.在同一条件下,对同一型号的汽车进行耗油1升所行驶路程的实验,将收集到的数据作为一个样本进行分析,绘制出部分频数分布直方图和部分扇形统计图.如下图所示(路程单位:km)结合统计图完成下列问题:(1)扇形统计图中,表示12.5≤x<13部分的百分数是;(2)请把频数分布直方图补充完整,这个样本数据的中位数落在第组;(3)哪一个图能更好地说明一半以上的汽车行驶的路程在13≤x<14之间?哪一个图能更好地说明行驶路程在12.5≤x<13的汽车多于在14≤x<14.5的汽车?23.海中有一个小岛P,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A测得小岛P在北偏东60°方向上,航行12海里到达B点,这时测得小岛P在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由.五、推理与计算(本大题3小题,共21分)24.已知反比例函数y=的图象的一支位于第一象限.(1)判断该函数图象的另一支所在的象限,并求m的取值范围;(2)如图,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点B与点A关于x 轴对称,若△OAB的面积为6,求m的值.25.如图,把一张矩形的纸ABCD沿对角线BD折叠,使点C落在点E处,BE与AD交于点F.(1)求证:△ABF≌△EDF;(2)若将折叠的图形恢复原状,点F与BC边上的点M正好重合,连接DM,试判断四边形BMDF 的形状,并说明理由.26.已知:如图,在半径为4的⊙O中,AB、CD是两条直径,M为OB的中点,CM的延长线交⊙O于点E,且EM>MC.连接DE,DE=.(1)求证:AM•MB=EM•MC;(2)求EM的长;(3)求sin∠EOB的值.六、综合应用与探究(本大题2小题,共18分)27.夏季来临,商场准备购进甲、乙两种空调,已知甲种空调每台进价比乙种空调多500元,用40000元购进甲种空调的数量与用30000元购进乙种空调的数量相同.请解答下列问题:(1)求甲、乙两种空调每台的进价;(2)若甲种空调每台售价2500元,乙种空调每台售价1800元,商场计划用不超过36000元购进空调共20台,且全部售出,请写出所获利润y(元)与甲种空调x(台)之间的函数关系式,并求出所能获得的最大利润.28.已知抛物线y=﹣ax2+2ax+b与x轴的一个交点为A(﹣1,0),与y轴的正半轴交于点C.(1)直接写出抛物线的对称轴,及抛物线与x轴的另一个交点B的坐标;(2)当点C在以AB为直径的⊙P上时,求抛物线的解析式;(3)坐标平面内是否存在点M,使得以点M和(2)中抛物线上的三点A、B、C为顶点的四边形是平行四边形?若存在,请求出点M的坐标;若不存在,请说明理由.2017年黑龙江省大庆市中考数学模拟试卷(3月份)参考答案与试题解析一、选择题(本题共10个小题,每小题3分,共30分)1.5的倒数为()A.B.5 C.D.﹣5【考点】倒数.【分析】根据乘积为1的两个数互为倒数,可得一个数的倒数.【解答】解:5的倒数是,故选:A.2.下列各式运算正确的是()A.2﹣1=﹣2 B.23=6 C.22•23=26 D.(23)2=26【考点】负整数指数幂;有理数的乘方;同底数幂的乘法;幂的乘方与积的乘方.【分析】分别根据负整数指数幂、有理数的乘方、同底数幂的乘法、幂的乘方与积的乘方的法则计算即可.【解答】解:A、错误,应等于;B、错误,应等于8;C、错误,应等于25;D、正确.故选D.3.如图,C,D是线段AB上两点.若CB=4cm,DB=7cm,且D是AC的中点,则AC的长等于()A.3cm B.6cm C.11cm D.14cm【考点】两点间的距离.【分析】先根据CB=4cm,DB=7cm求出CD的长,再根据D是AC的中点求出AC的长即可.【解答】解:∵C,D是线段AB上两点,CB=4cm,DB=7cm,∴CD=DB﹣BC=7﹣4=3cm,∵D是AC的中点,∴AC=2CD=2×3=6cm.故选B.4.如图,在△ABC中,AC=DC=DB,∠ACD=100°,则∠B等于()A.50°B.40°C.25°D.20°【考点】三角形的外角性质;三角形内角和定理.【分析】根据等边对等角和三角形的内角和定理,可先求得∠CAD的度数;再根据外角的性质,求∠B的度数.【解答】解:∵AC=DC=DB,∠ACD=100°,∴∠CAD==40°,∵∠CDB是△ACD的外角,∴∠CDB=∠A+∠ACD=100°=40°+100°=140°,∵DC=DB,∴∠B==20°.故选D.5.甲、乙两名学生10次立定跳远成绩的平均数相同,若甲10次立定跳远成绩的方差S甲2=0.006,2=0.035,则()乙10次立定跳远成绩的方差S乙A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.甲、乙两人成绩的稳定性不能比较【考点】方差;算术平均数.【分析】本题考查了如何判定一组数据的稳定性,数据的方差越小,数据就越稳定.【解答】解:因为甲乙平均数相同,而S甲2=0.006,S乙2=0.035,很显然S甲2<S乙2,所以甲的成绩更稳定一些.故选A.6.经过某十字路口的汽车,它可以继续直行,也可以向左转或向右转.如果这三种可能性大小相同,则两辆汽车经过这个十字路口全部继续直行的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】列举出所有情况,看两辆汽车经过这个十字路口全部继续直行的情况占总情况的多少即可.【解答】解:列表得:∴一共有9种情况,两辆汽车经过这个十字路口全部继续直行的有一种,∴两辆汽车经过这个十字路口全部继续直行的概率是,故选A.7.如图,桌上放着一摞书和一个茶杯,从左边看到的图形是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从左面看所得到的图形即可.【解答】解:从左面可看到几个上下相邻的长方形上面有一个小长方形.故选D.8.如图,点E在AD的延长线上,下列条件中能判断BC∥AD的是()A.∠3=∠4 B.∠A+∠ADC=180°C.∠1=∠2 D.∠A=∠5【考点】平行线的判定.【分析】结合图形分析两角的位置关系,根据平行线的判定方法判断.【解答】解:∵∠1=∠2,∴BC∥AD(内错角相等,两直线平行).故选C.9.如图,将△PQR向右平移2个单位长度,再向下平移3个单位长度,则顶点P平移后的坐标是()A.(﹣2,﹣4)B.(﹣2,4)C.(2,﹣3)D.(﹣1,﹣3)【考点】坐标与图形变化﹣平移.【分析】直接利用平移中点的变化规律求解即可.【解答】解:由题意可知此题规律是(x+2,y﹣3),照此规律计算可知顶点P(﹣4,﹣1)平移后的坐标是(﹣2,﹣4).故选A.10.反比例函数y=(k>0)的部分图象如图所示,A,B是图象上两点,AC⊥x轴于点C,BD ⊥x轴于点D,若△AOC的面积为S1,△BOD的面积为S2,则S1和S2的大小关系为()A.S1>S2B.S1=S2C.S1<S2D.无法确定【考点】反比例函数系数k的几何意义.【分析】根据反比例函数的性质可以得到△AOC和△DBO的面积等于|k|的一半,由此可以得到它们的关系.【解答】解:依据比例系数k的几何意义可得两个三角形的面积都等于|k|,故S1=S2.故选B.二、填空题(本题共8小题,每小题3分,共24分)11.2008年5月18日晚,中央电视台举办了“爱的奉献”大型募捐活动.据了解,本次活动社会各界共向四川灾区捐款大约1510000000元人民币,这个数字用科学记数法可表示为 1.51×109元人民币.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1510000000元人民币,这个数字用科学记数法可表示为 1.51×109元人民币,故答案为:1.51×109.12.已知|x|=5,y=3,则x﹣y=2或﹣8.【考点】有理数的减法;绝对值.【分析】绝对值等于一个正数的数有两个,且它们互为相反数.熟练运用有理数的运算法则.【解答】解:∵|x|=5,∴x=±5,又y=3,则x﹣y=2或﹣8.13.计算:=.【考点】分式的加减法.【分析】本题考查了分式的加减运算.解决本题首先应通分,最后要注意将结果化为最简分式.【解答】解:原式=.故答案为.14.函数y=中自变量x的取值范围是x≥﹣且x≠1.【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0,分母不等于0列式求解即可.【解答】解:根据题意得,2x+1≥0且x﹣1≠0,解得x≥﹣且x≠1.故答案为:x≥﹣且x≠1.15.如图,直线AB、CD相交于点O,OE⊥AB,垂足为O,如果∠EOD=42°,则∠AOC=48度.【考点】垂线;对顶角、邻补角.【分析】由OE⊥AB,∠EOD=42°,利用互余关系求∠BOD,再利用对顶角相等求∠AOC.【解答】解:∵OE⊥AB,∠EOD=42°,∴∠BOD=90°﹣∠EOD90°﹣42°=48°,∵∠BOD与∠AOC是对顶角,∴∠BOD=∠AOC=48°.16.如图,已知矩形ABCD,P、R分别是BC和DC上的点,E、F分别是PA,PR的中点.如果DR=3,AD=4,则EF的长为 2.5.【考点】三角形中位线定理;矩形的性质.【分析】根据勾股定理求AR;再运用中位线定理求EF.【解答】解:∵四边形ABCD是矩形,∴△ADR是直角三角形,∵DR=3,AD=4,∴AR===5,∵E、F分别是PA,PR的中点,∴EF=AR=×5=2.5.故答案为:2.5.17.观察下面两行数:2,4,8,16,32,64,…①5,7,11,19,35,67,…②根据你发现的规律,取每行数的第10个数,求得它们的和是2051(要求写出最后的计算结果).【考点】规律型:数字的变化类.【分析】观察①中各数都符合2n的形式,②中各数比①中对应数字大3,按此规律即可求得①、②中第10个数的值,从而求和.【解答】解:根据题意可知,①中第10个数为210=1024;②第10个数为210+3=1027,故它们的和为1024+1027=2051.18.如图,菱形AB1C1D1的边长为1,∠B1=60°;作AD2⊥B1C1于点D2,以AD2为一边,做第二个菱形AB2C2D2,使∠B2=60°;作AD3⊥B2C2于点D3,以AD3为一边做第三个菱形AB3C3D3,使∠B3=60°…依此类推,这样做的第n个菱形AB n C n D n的边AD n的长是.【考点】菱形的性质.【分析】本题要找出规律方能解答.第一个菱形边长为1,∠B1=60°,可求出AD2,即第二个菱形的边长…按照此规律解答即可.【解答】解:第1个菱形的边长是1,易得第2个菱形的边长是;第3个菱形的边长是()2;…每作一次,其边长为上一次边长的;故第n个菱形的边长是()n﹣1.故答案为:()n﹣1.三、解答题(本题共3小题,每小题5分,共15分)19.计算:(﹣1)﹣2+2sin245°﹣(1﹣)0【考点】特殊角的三角函数值;零指数幂;负整数指数幂.【分析】本题涉及零指数幂、负整数指数幂、特殊角的三角函数值.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式==1.20.先化简,再求值:÷x,其中x=.【考点】分式的化简求值.【分析】本题的关键是正确进行分式的通分、约分,并准确代值计算.【解答】解:原式==+1=,当x=时,原式==﹣4.21.解方程组:.【考点】解二元一次方程组.【分析】此题先采用加减消元法再用代入消元法最简单,将(1)+(2)即可达到消元的目的.【解答】解:①+②,得3x=9,∴x=3.把x=3代入②,得3﹣y=5,∴y=﹣2.∴原方程组的解是.四、应用题(本大题2小题,共12分)22.在同一条件下,对同一型号的汽车进行耗油1升所行驶路程的实验,将收集到的数据作为一个样本进行分析,绘制出部分频数分布直方图和部分扇形统计图.如下图所示(路程单位:km)结合统计图完成下列问题:(1)扇形统计图中,表示12.5≤x<13部分的百分数是;(2)请把频数分布直方图补充完整,这个样本数据的中位数落在第组;(3)哪一个图能更好地说明一半以上的汽车行驶的路程在13≤x<14之间?哪一个图能更好地说明行驶路程在12.5≤x<13的汽车多于在14≤x<14.5的汽车?【考点】频数(率)分布直方图;扇形统计图;中位数.【分析】(1)用单位1减去其他所占的百分比即可;(2)以第3组为基准算出总数:9÷0.3=30,那么中位数应是第15个和第16个的平均数,前两个小组的人数之和为:2+30×0.3=11,那么中位数就落在第3小组;(3)直方图能反映数据集中的趋势,扇形统计图能更好的显示出相应的百分比.【解答】解:(1)1﹣13.3%﹣6.7%﹣30%﹣30%=20%;(2)第2组的频数=30×20%=6,如图:样本数据的中位数落在第3组;(3)扇形统计图能很好地说明一半以上的汽车行驶的路程在13≤x<14之间;条形统计图(或直方统计图)能更好地说明行驶路程在12.5≤x<13的汽车多于在14≤x<14.5的汽车.23.海中有一个小岛P,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A测得小岛P在北偏东60°方向上,航行12海里到达B点,这时测得小岛P在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由.【考点】解直角三角形的应用﹣方向角问题.【分析】过点P作PD⊥AC于D,在Rt△PBD和Rt△PAD中,根据三角函数AD,BD就可以PD 表示出来,根据AB=12海里,就得到一个关于PD的方程,求得PD.从而可以判断如果渔船不改变航线继续向东航行,有没有触礁危险.【解答】解:有触礁危险.理由:过点P作PD⊥AC于D.设PD为x,在Rt△PBD中,∠PBD=90°﹣45°=45度.∴BD=PD=x.在Rt△PAD中,∵∠PAD=90°﹣60°=30°∴AD=x∵AD=AB+BD∴x=12+x∴x=∵6(+1)<18∴渔船不改变航线继续向东航行,有触礁危险.五、推理与计算(本大题3小题,共21分)24.已知反比例函数y=的图象的一支位于第一象限.(1)判断该函数图象的另一支所在的象限,并求m的取值范围;(2)如图,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点B与点A关于x 轴对称,若△OAB的面积为6,求m的值.【考点】反比例函数的性质;反比例函数的图象;反比例函数图象上点的坐标特征;关于x轴、y轴对称的点的坐标.【分析】(1)根据反比例函数的图象是双曲线.当k>0时,则图象在一、三象限,且双曲线是关于原点对称的;(2)由对称性得到△OAC的面积为3.设A(x、),则利用三角形的面积公式得到关于m 的方程,借助于方程来求m的值.【解答】解:(1)根据反比例函数的图象关于原点对称知,该函数图象的另一支在第三象限,且m﹣7>0,则m>7;(2)∵点B与点A关于x轴对称,若△OAB的面积为6,∴△OAC的面积为3.设A(x,),则x•=3,解得m=13.25.如图,把一张矩形的纸ABCD沿对角线BD折叠,使点C落在点E处,BE与AD交于点F.(1)求证:△ABF≌△EDF;(2)若将折叠的图形恢复原状,点F与BC边上的点M正好重合,连接DM,试判断四边形BMDF 的形状,并说明理由.【考点】翻折变换(折叠问题);全等三角形的判定;菱形的判定.【分析】(1)因为△BCD关于BD折叠得到△BED,显然△BCD≌△BED,得出CD=DE=AB,∠E=∠C=∠A=90°.再加上一对对顶角相等,可证出△ABF≌△EDF;(2)利用折叠知识及菱形的判定可得出四边形BMDF是菱形.【解答】(1)证明:由折叠可知,CD=ED,∠E=∠C.在矩形ABCD中,AB=CD,∠A=∠C.∴AB=ED,∠A=∠E.∵∠AFB=∠EFD,∴△AFB≌△EFD.(2)解:四边形BMDF是菱形.理由:由折叠可知:BF=BM,DF=DM.由(1)知△AFB≌△EFD,∴BF=DF.∴BM=BF=DF=DM.∴四边形BMDF是菱形.26.已知:如图,在半径为4的⊙O中,AB、CD是两条直径,M为OB的中点,CM的延长线交⊙O于点E,且EM>MC.连接DE,DE=.(1)求证:AM•MB=EM•MC;(2)求EM的长;(3)求sin∠EOB的值.【考点】相似三角形的判定与性质;勾股定理;圆周角定理;锐角三角函数的定义.【分析】(1)连接A、C,E、B点,那么只需要求出△AMC和△EMB相似,即可求出结论,根据圆周角定理可推出它们的对应角相等,即可得△AMC∽△EMB;(2)根据圆周角定理,结合勾股定理,可以推出EC的长度,根据已知条件推出AM、BM的长度,然后结合(1)的结论,很容易就可求出EM的长度;(3)过点E作EF⊥AB,垂足为点F,通过作辅助线,解直角三角形,结合已知条件和(1)(2)所求的值,可推出Rt△EOF各边的长度,根据锐角三角函数的定义,便可求得sin∠EOB的值.【解答】(1)证明:连接AC、EB,∵∠A=∠BEC,∠B=∠ACM,∴△AMC∽△EMB,∴,∴AM•BM=EM•CM;(2)解:∵DC是⊙O的直径,∴∠DEC=90°,∴DE2+EC2=DC2,∵DE=,CD=8,且EC为正数,∴EC=7,∵M为OB的中点,∴BM=2,AM=6,∵AM•BM=EM•CM=EM(EC﹣EM)=EM(7﹣EM)=12,且EM>MC,∴EM=4;(3)解:过点E作EF⊥AB,垂足为点F,∵OE=4,EM=4,∴OE=EM,∴OF=FM=1,∴EF=,∴sin∠EOB=.六、综合应用与探究(本大题2小题,共18分)27.夏季来临,商场准备购进甲、乙两种空调,已知甲种空调每台进价比乙种空调多500元,用40000元购进甲种空调的数量与用30000元购进乙种空调的数量相同.请解答下列问题:(1)求甲、乙两种空调每台的进价;(2)若甲种空调每台售价2500元,乙种空调每台售价1800元,商场计划用不超过36000元购进空调共20台,且全部售出,请写出所获利润y(元)与甲种空调x(台)之间的函数关系式,并求出所能获得的最大利润.【考点】二次函数的应用;分式方程的应用.【分析】(1)根据题意可以列出相应的方程,从而可以分别求得甲、乙两种空调每台的进价,注意分式方程要检验;(2)根据题意和(1)中的答案可以得到所获利润y(元)与甲种空调x(台)之间的函数关系式,然后根据商场计划用不超过36000元购进空调共20台,可以求得x的取值范围,从而可以求得所能获得的最大利润.【解答】解:(1)设乙种空调每台进价为x元,,解得,x=1500经检验x=1500是原分式方程的解,∴x+500=2000,答:甲种空调每台2000元,乙种空调每台1500元;(2)由题意可得,所获利润y(元)与甲种空调x(台)之间的函数关系式是:y=x+(20﹣x)=200x+6000,∵2000x+1500(20﹣x)≤36000,解得,x≤12,∴当x=12时,y取得最大值,此时y=200x+6000=8400,答:所获利润y(元)与甲种空调x(台)之间的函数关系式是y=200x+6000,所获的最大利润是8400元.28.已知抛物线y=﹣ax2+2ax+b与x轴的一个交点为A(﹣1,0),与y轴的正半轴交于点C.(1)直接写出抛物线的对称轴,及抛物线与x轴的另一个交点B的坐标;(2)当点C在以AB为直径的⊙P上时,求抛物线的解析式;(3)坐标平面内是否存在点M,使得以点M和(2)中抛物线上的三点A、B、C为顶点的四边形是平行四边形?若存在,请求出点M的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)抛物线y=﹣ax2+2ax+b的对称轴,可以根据公式直接求出,抛物线与x轴的另一交点与A关于对称轴对称,因而交点就可以求出.(2)AB的长度可以求出,连接PC,在直角三角形OCP中,根据勾股定理就可以求出C点的坐标,把这点的坐标代入抛物线的解析式,就可以求出解析式.(3)本题应分AC或BC为对角线和以AB为对角线三种情况进行讨论,当以AC或BC为对角线时,点M在x轴上方,此时CM∥AB,且CM=AB.就可以求出点M的坐标.当以AB为对角线时,点M在x轴下方易证△AOC≌△BNM,可以求出点M的坐标.【解答】解:(1)对称轴是直线:x=1,点B的坐标是(3,0).说明:每写对1个给,“直线”两字没写不扣分.(2)如图,连接PC,∵点A、B的坐标分别是A(﹣1,0)、B(3,0),∴AB=4.∴PC=AB=×4=2在Rt△POC中,∵OP=PA﹣OA=2﹣1=1,∴OC=,∴b=当x=﹣1,y=0时,﹣a﹣2a+=0∴a=∴y=﹣x2+x+.(3)存在.理由:如图,连接AC、BC.设点M的坐标为M(x,y).①当以AC或BC为对角线时,点M在x轴上方,此时CM∥AB,且CM=AB.由(2)知,AB=4,∴|x|=4,y=OC=.∴x=±4.∴点M的坐标为M(4,)或(﹣4,).说明:少求一个点的坐标扣.②当以AB为对角线时,点M在x轴下方.过M作MN⊥AB于N,则∠MNB=∠AOC=90度.∵四边形AMBC是平行四边形,∴AC=MB,且AC∥MB.∴∠CAO=∠MBN.∴△AOC≌△BNM.∴BN=AO=1,MN=CO=.∵OB=3,∴0N=3﹣1=2.∴点M的坐标为M(2,﹣).综上所述,坐标平面内存在点M,使得以点A、B、C、M为顶点的四边形是平行四边形.其坐标为M1(4,),M2(﹣4,),M3(2,﹣).说明:①综上所述不写不扣分;②如果开头“存在”二字没写,但最后解答全部正确,不扣分2017年4月17日。
2017年大庆市中考数学仿真试卷(一)

2017年大庆市中考数学仿真试卷(一)一.选择题(共10小题)1.﹣5的相反数是()A.5 B.﹣5 C.D.2.数轴上点A、B表示的数分别是a,b,则点A,B之间的距离为()A.a+b B.a﹣b C.|a+b|D.|a﹣b|3.用科学记数法表示0.0000210,结果是()A.2.10×10﹣4B.2.10×10﹣5C.2.1×10﹣4D.2.1×10﹣54.把式子m中根号外的m移到根号内,得()A.﹣B. C.﹣D.﹣5.下列图形:等边三角形、平行四边形、菱形、矩形、圆,其中既是轴对称图形又是中心对称图形的个数是()A.1 B.2 C.3 D.46.如图是农村常搭建横截面为半圆形的全封闭塑料薄膜蔬菜大棚.如果不考虑塑料薄膜埋在土里的部分,那么搭建一个这样的蔬菜大棚需用塑料薄膜的面积是()A.64π m2B.72π m2C.78π m2D.80π m27.化简﹣(a+1)的结果是()A. B.﹣C.D.﹣8.下列命题中,真命题是()A.垂直于同一条直线的两条直线互相平行B.平分弦的直径垂直弦C.有两边及一角对应相等的两个三角形全等D.八边形的内角和是外角和的3倍9.一只盒子中有红球m个,白球8个,黑球n个,每个球除颜色外都相同,从中任取一个球,取得是白球的概率与不是白球的概率相同,那么m与n的关系是()A.m+n=4 B.m+n=8 C.m=n=4 D.m=3,n=510.已知M、N两点关于y轴对称,且点M在双曲线y=上,点N在直线y=x+3上,设点M的坐标为(a,b),则二次函数y=﹣abx2+(a+b)x()A.有最大值﹣4.5 B.有最大值4.5 C.有最小值4.5 D.有最小值﹣4.5二.填空题(共9小题)11.函数中自变量x的取值范围是.12.不等式组:的解集是.13.分解因式:y2﹣4﹣2xy+x2=.14.桌上摆着一个由若干个相同正方体组成的几何体,从正面看和从左面看如图所示,这个几何体最多由个这样的正方体组成.15.如图,一根5m长的绳子,一端拴在围墙墙角的柱子上,另一端拴着一只小羊A(羊只能在草地上活动),那么小羊A在草地上的最大活动区域面积是平方米.16.设m,n分别为一元二次方程x2+2x﹣2018=0的两个实数根,则m2+3m+n=.17.如图,有一颗棋子放在图中的1号位置上,现按顺时针方向,第一次跳一步到2号位置上第二次跳两步跳到4号位置上,第三次跳三步又跳到了1号位置上,第四次跳四步…一直进行下去,那么第2017次跳2017步就跳到了号位置上.18.如图,点A在双曲线y=的第一象限的那一支上,AB⊥y轴于点B,点C在x轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE的面积为,则k的值为.三.解答题(共9小题)19.计算:(﹣1.414)0+()﹣1﹣+2cos30°20.在不透明的布袋中装有1个白球,2个红球,它们除颜色外其余完全相同.(1)从袋中任意摸出两个球,试用树状图或表格列出所有等可能的结果,并求摸出的球恰好是两个红球的概率;(2)若在布袋中再添加x个白球,充分搅匀,从中摸出一个球,使摸到白球的概率为,求添加的白球个数x.21.如图,在▱ABCD中,F是AD的中点,延长BC到点E,使CE=BC,连接DE,CF.(1)求证:DE=CF;(2)若AB=4,AD=6,∠B=60°,求DE的长.22.小明想利用所学数学知识测量学校旗杆高度,如图,旗杆的顶端垂下一绳子,将绳子拉直钉在地上,末端恰好在C处且与地面成60°角,小明拿起绳子末端,后退至E处,并拉直绳子,此时绳子末端D距离地面1.6m且绳子与水平方向成45°角.求旗杆AB的高度和小明后退的距离EC.(参考数据:≈1.41,≈1.73,结果精确到0.1m)23.某校为了了解九年级学生的体能情况,抽调了一部分学生进行一分钟跳绳测试,将测试成绩整理后作出如下统计图(注:每组含最小值,不含最大值).甲同学计算出第二组的频率是0.06,乙同学计算出从左至右第一、二、三、四组的频数比为2:4:17:15.结合统计图回答下列问题:(1)这次共抽调了多少人?(2)若跳绳次数不少于130次为优秀,则这次测试成绩的优秀率是多少?(3)若该校九年级有800名学生,请估计该校九年级达到优秀的人数是多少.24.如图,反比例函数y=的图象与一次函数y=kx+b的图象交于A,B两点,点A的坐标为(2,6),点B的坐标为(n,1).(1)求反比例函数与一次函数的表达式;=10,求点E的坐标.(2)点E为y轴上一个动点,若S△AEB25.某酒厂生产A、B两种品牌的酒,每天两种酒共生产600瓶,每种酒每瓶的成本和利润如下表所示.设每天共获利y元,每天生产A种品牌的酒x瓶.(1)请写出y关于x的函数关系式;(2)如果该厂每天至少投入成本25000元,且生产B种品牌的酒不少于全天产量的55%,那么共有几种生产方案?并求出每天至少获利多少元?26.如图,平面直角坐标系中,已知点A(﹣3,3),B(﹣5,1),C(﹣2,0),P(a,b)是△ABC的边AC上任意一点,△ABC经过平移后得到△A1B1C1,点P 的对应点为P1(a+6,b﹣2 ).(1)直接写出点A1,B1,C1的坐标.(2)在图中画出△A1B1C1.(3)连接A A1,求△AOA1的面积.27.如图,⊙O是等边△ABC的外接圆,M是BC延长线上一点,连接AM交⊙O 于点D,延长BD至点N,使得BN=AM,连接CN,MN.(1)判断△CMN的形状,并证明你的结论;(2)求证:CN是⊙O的切线;(3)若等边△ABC的边长是2,求AD•AM的值.28.如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1.tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c 经过点A、B、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其横坐标为t,①设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求出当△CEF与△COD相似时,点P的坐标;②是否存在一点P,使△PCD得面积最大?若存在,求出△PCD的面积的最大值;若不存在,请说明理由.2017年大庆市中考数学仿真试卷(一)参考答案与试题解析一.选择题(共10小题)1.(2017•钦州一模)﹣5的相反数是()A.5 B.﹣5 C.D.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣5的相反数是5,故选:A.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(2017•邯郸一模)数轴上点A、B表示的数分别是a,b,则点A,B之间的距离为()A.a+b B.a﹣b C.|a+b|D.|a﹣b|【分析】根据数轴上两点间的距离是大数减小数,可得答案.【解答】解:∵点A、B在数轴上分别表示有理数a、b,∴A、B两点之间的距离可以表示为:|a﹣b|.故选:D.【点评】本题考查了数轴,熟记数轴上两点间的距离公式是解题关键.3.(2017•磴口县一模)用科学记数法表示0.0000210,结果是()A.2.10×10﹣4B.2.10×10﹣5C.2.1×10﹣4D.2.1×10﹣5【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000210=2.10×10﹣5,故选:B.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.(2017春•黄冈期中)把式子m中根号外的m移到根号内,得()A.﹣B. C.﹣D.﹣【分析】直接利用二次根式的性质化简求出答案.【解答】解:∵有意义,∴m<0,∴m=﹣=﹣.故选:C.【点评】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.5.(2016•无棣县模拟)下列图形:等边三角形、平行四边形、菱形、矩形、圆,其中既是轴对称图形又是中心对称图形的个数是()A.1 B.2 C.3 D.4【分析】根据轴对称图形与中心对称图形的概念进行判断即可.【解答】解:等边三角形是轴对称图形不是中心对称图形,平行四边形不是轴对称图形是中心对称图形,菱形既是轴对称图形又是中心对称图形,矩形既是轴对称图形又是中心对称图形,圆既是轴对称图形又是中心对称图形,故选:C.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.(2014•商南县模拟)如图是农村常搭建横截面为半圆形的全封闭塑料薄膜蔬菜大棚.如果不考虑塑料薄膜埋在土里的部分,那么搭建一个这样的蔬菜大棚需用塑料薄膜的面积是()A.64π m2B.72π m2C.78π m2D.80π m2【分析】由图可知,需要的塑料膜的面积应该是以大棚长为长,以半圆形截面的弧长为宽的矩形的面积,半圆形截面弧长为:2π,进而得出塑料膜的面积.【解答】解:塑料膜的面积=2π×32=64π(平方米).故选:A.【点评】此题主要考查了圆柱的有关计算,本题中半圆形截面的弧长就是塑料薄膜的一边,弄清了这点,计算薄膜的面积就容易多了.7.(2016•绥化)化简﹣(a+1)的结果是()A. B.﹣C.D.﹣【分析】先根据通分法则把原式变形,再根据平方差公式、合并同类项法则计算即可.【解答】解:原式=﹣=,故选:A.【点评】本题考查的是分式的加减法,掌握分式的加减法法则、平方差公式是解题的关键.8.(2017•杭州一模)下列命题中,真命题是()A.垂直于同一条直线的两条直线互相平行B.平分弦的直径垂直弦C.有两边及一角对应相等的两个三角形全等D.八边形的内角和是外角和的3倍【分析】根据平行线的判定,垂径定理,全等三角形的判定以及多边形的内角与外角和对各选项分析判断即可得解.【解答】解:A、垂直于同一条直线的两条直线互相平行是假命题,应为在同一平面内,垂直于同一条直线的两条直线互相平行,故本选项错误;B、平分弦的直径垂直弦是假命题,被平分的弦是直径不一定成立,故本选项错误;C、有两边及一角对应相等的两个三角形全等是假命题,一角必须是两边的夹角,故本选项错误;D、八边形的内角和是外角和的3倍是真命题,内角和是1080°,外角和是360°,故本选项正确.故选D.【点评】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.9.(2017•涿州市一模)一只盒子中有红球m个,白球8个,黑球n个,每个球除颜色外都相同,从中任取一个球,取得是白球的概率与不是白球的概率相同,那么m与n的关系是()A.m+n=4 B.m+n=8 C.m=n=4 D.m=3,n=5【分析】由于每个球都有被摸到的可能性,故可利用概率公式求出摸到白球的概率与摸到的球不是白球的概率,列出等式,求出m、n的关系.【解答】解:根据概率公式,摸出白球的概率为:,摸出不是白球的概率为:,由于二者相同,故有=,整理得,m+n=8.故选:B.【点评】此题考查概率公式,掌握概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=是解题的关键.10.(2016•滕州市校级模拟)已知M、N两点关于y轴对称,且点M在双曲线y=上,点N在直线y=x+3上,设点M的坐标为(a,b),则二次函数y=﹣abx2+(a+b)x()A.有最大值﹣4.5 B.有最大值4.5 C.有最小值4.5 D.有最小值﹣4.5【分析】可先求得N点坐标,再把M和N的坐标分别代入所满足的函数解析式,整理可求得ab和a+b的值,代入可求得二次函数解析式,可求得其最值.【解答】解:∵M、N两点关于y轴对称,点M的坐标为(a,b),∴N点坐标为(﹣a,b),∵点M在双曲线y=上,∴2ab=1,解得ab=,∵点N在直线y=x+3上,∴b=﹣a+3,解得a+b=3,∴二次函数解析式为y=﹣x2+3x,∴当x=﹣=3时,函数有最大值,y max=﹣×9+9=4.5.故选B.【点评】本题主要考查二次函数的最值,根据点的对称及点的坐标与函数解析式的关系求得ab和a+b的值是解题的关键.二.填空题(共9小题)11.(2017•东明县一模)函数中自变量x的取值范围是x≤且x≠﹣1.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,1﹣2x≥0且x+1≠0,解得x≤且x≠﹣1.故答案为:x≤且x≠﹣1.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.(2017•绍兴模拟)不等式组:的解集是x>5.【分析】分别解两个不等式得到x>1和x>5,然后根据同大取大确定不等式组的解集.【解答】解:,解①得x>1,解②得x>5,所以不等式组的解集为x>5.故答案为x>5.【点评】本题考查了解一元一次不等式组:分别求出不等式组各不等式的解集,然后根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集.13.(2016•黄冈模拟)分解因式:y2﹣4﹣2xy+x2=(x﹣y+2)(x﹣y﹣2).【分析】原式结合后,分解即可得到结果.【解答】解:原式=(y2﹣2xy+x2)﹣4=(x﹣y)2﹣4=(x﹣y+2)(x﹣y﹣2),故答案为:(x﹣y+2)(x﹣y﹣2).【点评】此题考查了因式分解﹣分组分解法,熟练掌握因式分解的方法是解本题的关键.14.(2016秋•简阳市期末)桌上摆着一个由若干个相同正方体组成的几何体,从正面看和从左面看如图所示,这个几何体最多由8个这样的正方体组成.【分析】由主视图可得组合几何体有3列,由左视图可得组合几何体有2行,可得最底层几何体最多正方体的个数;由主视图和左视图可得第二层2个角各有一个正方体,相加可得所求.【解答】解:∵由主视图可得组合几何体有3列,由左视图可得组合几何体有2行,∴最底层几何体最多正方体的个数为:3×2=6,∵由主视图和左视图可得第二层2个角各有一个正方体,∴第二层共有2个正方体,∴该组合几何体最多共有6+2=8个正方体.故答案为:8.【点评】此题考查由视图判断几何体;得到最底层正方体的最多的个数是解决本题的突破点;用到的知识点为:最底层正方体的最多的个数=行数×列数.15.(2017•市北区一模)如图,一根5m长的绳子,一端拴在围墙墙角的柱子上,另一端拴着一只小羊A(羊只能在草地上活动),那么小羊A在草地上的最大活动区域面积是π平方米.【分析】小羊的最大活动区域是一个半径为5、圆心角为90°和一个半径为1、圆心角为60°的小扇形的面积和.所以根据扇形的面积公式即可求得小羊的最大活动范围.【解答】解:如图.小羊的活动范围是:S=+=π(平方米).【点评】本题结合实际问题考查了扇形面积的计算方法,解题关键是弄清小羊活动的范围是哪些图形.16.(2016•达州)设m,n分别为一元二次方程x2+2x﹣2018=0的两个实数根,则m2+3m+n=2016.【分析】先利用一元二次方程根的定义得到m2=﹣2m+2018,则m2+3m+n可化简为2018+m+n,再根据根与系数的关系得到m+n=﹣2,然后利用整体代入的方法计算.【解答】解:∵m为一元二次方程x2+2x﹣2018=0的实数根,∴m2+2m﹣2018=0,即m2=﹣2m+2018,∴m2+3m+n=﹣2m+2018+3m+n=2018+m+n,∵m,n分别为一元二次方程x2+2x﹣2018=0的两个实数根,∴m+n=﹣2,∴m2+3m+n=2018﹣2=2016.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a ≠0)的两根时,x1+x2=﹣,x1x2=.也考查了一元二次方程根的定义.17.(2017•岱岳区模拟)如图,有一颗棋子放在图中的1号位置上,现按顺时针方向,第一次跳一步到2号位置上第二次跳两步跳到4号位置上,第三次跳三步又跳到了1号位置上,第四次跳四步…一直进行下去,那么第2017次跳2017步就跳到了2号位置上.【分析】棋子的跳法是有规律的,第一次跳1,第二次跳2,第三次跳3,…第N次跳N,则跳第N次后,棋子跳过的路程公式为:S=,棋子一个周期为6,设K=,用K即可知道最后棋子的落位,若K为整数,则棋子落在1位;若K 余1,则落2位,余2则落3位,余3则落4位,余4则落5位,余5则落6位.【解答】解:∵第一次跳一步,第二次跳两步,第三次跳三步,第四次跳四步…第2014次跳2014步,∴2014次总共跳:1+2+3+4+…+2017=×2017×(2017+1)=2035153,2035153÷6=339192…1,∵1步所对应的位置是2号位置,∴第2017次跳2017步,所跳到的位置号是2号,故答案为:2.【点评】此题考查图形的变化规律,找出数字之间的循环规律,利用规律解决问题.18.(2017•章丘市二模)如图,点A在双曲线y=的第一象限的那一支上,AB ⊥y轴于点B,点C在x轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE的面积为,则k的值为.【分析】连接CD,由AE=3EC,△ADE的面积为,得到△CDE的面积为,则△ADC的面积为2,设A点坐标为(a,b),则k=ab,AB=a,OC=2AB=2a,BD=OD=b,=S△ABD+S△ADC+S△ODC即可得出ab的值进而得出结论.利用S梯形OBAC【解答】解:连CD,如图,∵AE=3EC,△ADE的面积为,∴△CDE的面积为,∴△ADC的面积为2,设A点坐标为(a,b),则AB=a,OC=2AB=2a,∵点D为OB的中点,∴BD=OD=b,=S△ABD+S△ADC+S△ODC,∵S梯形OBAC∴(a+2a)×b=a×b+2+×2a×b,∴ab=,把A(a,b)代入双曲线y=得,∴k=ab=.故答案为:.【点评】本题考查了反比例函数综合题,熟知若点在反比例函数图象上,则点的横纵坐标满足其解析式;利用三角形的面积公式和梯形的面积公式建立等量关系等知识是解答此题的关键.19.(2017•本溪二模)(﹣1.414)0+()﹣1﹣+2cos30°=4﹣2.【分析】原式零指数幂、负整数指数幂法则,算术平方根性质,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=1+3﹣3+2×=4﹣2,故答案为:4﹣2【点评】此题考查了整式的混合运算,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.三.解答题(共9小题)20.(2017•石家庄模拟)在不透明的布袋中装有1个白球,2个红球,它们除颜色外其余完全相同.(1)从袋中任意摸出两个球,试用树状图或表格列出所有等可能的结果,并求摸出的球恰好是两个红球的概率;(2)若在布袋中再添加x个白球,充分搅匀,从中摸出一个球,使摸到白球的概率为,求添加的白球个数x.【分析】(1)列表得出所有等可能的情况数,找出恰好是两个红球的情况数,即可求出所求的概率;(2)根据概率公式列出关于x的方程,求出方程的解即可得到结果.【解答】解:(1)列表如下:所有等可能的情况有6种,其中恰好为两个红球的情况有2种,则P(两个红球)=;(2)根据题意得:=,解得:x=2,经检验是分式方程的解,则添加白球的个数x=2.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.21.(2017•赤壁市一模)如图,在▱ABCD中,F是AD的中点,延长BC到点E,使CE=BC,连接DE,CF.(1)求证:DE=CF;(2)若AB=4,AD=6,∠B=60°,求DE的长.【分析】(1)由“平行四边形的对边平行且相等”的性质推知AD∥BC,且AD=BC;然后根据中点的定义、结合已知条件推知四边形CEDF的对边平行且相等(DF=CE,且DF∥CE),得出四边形CEDF是平行四边形,即可得出结论;(2)如图,过点D作DH⊥BE于点H,构造含30度角的直角△DCH和直角△DHE.通过解直角△DCH和在直角△DHE中运用勾股定理来求线段ED的长度.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC.又∵F是AD的中点,∴FD=AD.∵CE=BC,∴FD=CE.又∵FD∥CE,∴四边形CEDF是平行四边形.∴DE=CF.(2)解:过D作DG⊥CE于点G.如图所示:∵四边形ABCD是平行四边形,∴AB∥CD,CD=AB=4,BC=AD=6.∴∠DCE=∠B=60°.在Rt△CDG中,∠DGC=90°,∴∠CDG=30°,∴CG=CD=2.由勾股定理,得DG==2.∵CE=BC=3,∴GE=1.在Rt△DEG中,∠DGE=90°,∴DE==.【点评】本题考查了平行四边形的判定与性质、勾股定理、直角三角形的性质.熟练掌握平行四边形的判定与性质是解决问题的关键.22.(2017•潮阳区模拟)小明想利用所学数学知识测量学校旗杆高度,如图,旗杆的顶端垂下一绳子,将绳子拉直钉在地上,末端恰好在C处且与地面成60°角,小明拿起绳子末端,后退至E处,并拉直绳子,此时绳子末端D距离地面1.6m 且绳子与水平方向成45°角.求旗杆AB的高度和小明后退的距离EC.(参考数据:≈1.41,≈1.73,结果精确到0.1m)【分析】设绳子AC的长为x米;由三角函数得出AB,过D作DF⊥AB于F,根据△ADF是等腰直角三角形,得出方程,解方程即可.【解答】解:设绳子AC的长为x米;在△ABC中,AB=AC•sin60°,过D作DF⊥AB于F,如图:∵∠ADF=45°,∴△ADF是等腰直角三角形,∴AF=DF=x•sin45°,∵AB﹣AF=BF=1.6,则x•sin60°﹣x•sin45°=1.6,解得:x=10,∴AB=10×sin60°≈8.7(m),EC=EB﹣CB=x•cos45°﹣x•cos60°=10×﹣10×≈2.1(m)答:旗杆AB的高度为8.7m,小明后退的距离为2.1m.【点评】本题考查了解直角三角形的应用﹣仰角、等腰直角三角形的判定与性质;熟练掌握三角函数,根据题意得出方程是解决问题的关键,本题难度适中.23.(2017•江阴市一模)某校为了了解九年级学生的体能情况,抽调了一部分学生进行一分钟跳绳测试,将测试成绩整理后作出如下统计图(注:每组含最小值,不含最大值).甲同学计算出第二组的频率是0.06,乙同学计算出从左至右第一、二、三、四组的频数比为2:4:17:15.结合统计图回答下列问题:(1)这次共抽调了多少人?(2)若跳绳次数不少于130次为优秀,则这次测试成绩的优秀率是多少?(3)若该校九年级有800名学生,请估计该校九年级达到优秀的人数是多少.【分析】(1)利用频数=总数×频率可得抽调的总人数;(2)首先计算出前四个小组的人数,再用总数减去前四个小组的人数可得后两个小组的人数和,再计算出优秀率即可;(3)利用样本估计总体的方法即可算出答案.【解答】解:(1)12÷0.06=200(人);(2)第一、二、三、四组的总人数为:12÷4×(2+4+17+15)=114(人);∴这次测试成绩的优秀率为:×100%%=43%;(3)800×43%=344(人).【点评】此题主要考查了读频数分布直方图的能力和利用统计图获取信息的能力,以及样本估计总体,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.各小组频数之和等于数据总和,各小组频率之和等于1.24.(2017•铁西区模拟)如图,反比例函数y=的图象与一次函数y=kx+b的图象交于A,B两点,点A的坐标为(2,6),点B的坐标为(n,1).(1)求反比例函数与一次函数的表达式;(2)点E为y轴上一个动点,若S=10,求点E的坐标.△AEB【分析】(1)把点A的坐标代入反比例函数解析式,求出反比例函数的解析式,把点B的坐标代入已求出的反比例函数解析式,得出n的值,得出点B的坐标,再把A、B的坐标代入直线y=kx+b,求出k、b的值,从而得出一次函数的解析式;(2)设点E的坐标为(0,m),连接AE,BE,先求出点P的坐标(0,7),得出PE=|m﹣7|,根据S△AEB=S△BEP﹣S△AEP=10,求出m的值,从而得出点E的坐标.【解答】解:(1)把点A(2,6)代入y=,得m=12,则y=.把点B(n,1)代入y=,得n=12,则点B的坐标为(12,1).由直线y=kx+b过点A(2,6),点B(12,1)得,解得,则所求一次函数的表达式为y=﹣x+7.(2)如图,直线AB与y轴的交点为P,设点E的坐标为(0,m),连接AE,BE,则点P的坐标为(0,7).∴PE=|m﹣7|.=S△BEP﹣S△AEP=10,∵S△AEB∴×|m﹣7|×(12﹣2)=10.∴|m﹣7|=2.∴m1=5,m2=9.∴点E的坐标为(0,5)或(0,9).【点评】此题考查了反比例函数和一次函数的交点问题,用待定系数法求一次函数和反比例函数的解析式,三角形的面积,解一元一次方程,解二元一次方程组等知识点的理解和掌握,综合运用这些性质进行计算是解此题的关键.25.(2017•无锡一模)某酒厂生产A、B两种品牌的酒,每天两种酒共生产600瓶,每种酒每瓶的成本和利润如下表所示.设每天共获利y元,每天生产A种品牌的酒x瓶.(1)请写出y关于x的函数关系式;(2)如果该厂每天至少投入成本25000元,且生产B种品牌的酒不少于全天产量的55%,那么共有几种生产方案?并求出每天至少获利多少元?【分析】(1)根据获利y=A种品牌的酒的获利+B种品牌的酒的获利,即可解答.(2)根据生产B种品牌的酒不少于全天产量的55%,A种品牌的酒的成本+B种品牌的酒的成本≥25000,列出方程组,求出x的取值范围,根据x为正整数,即可得到生产方案;再根据一次函数的性质,即可求出每天至少获利多少元.【解答】解:(1)由题意,每天生产A种品牌的酒x瓶,则每天生产B种品牌的酒(600﹣x)瓶,∴y=20x+15(600﹣x)=9000+5x.(2)根据题意得:,解得:266≤x≤270,∵x为整数,∴x=267、268、269、270,该酒厂共有4种生产方案:①生产A种品牌的酒267瓶,B种品牌的酒333瓶;②生产A种品牌的酒268瓶,B种品牌的酒332瓶;③生产A种品牌的酒269瓶,B种品牌的酒331瓶;④生产A种品牌的酒270瓶,B种品牌的酒330瓶;∵每天获利y=9000+5x,y是关于x的一次函数,且随x的增大而增大,=9000+5×267=10335元.∴当x=267时,y有最小值,y最小【点评】本题考查了一次函数的应用,关键从表格种获得成本价和利润,然后根据利润这个等量关系列解析式,根据第二问中的利润和成本做为不等量关系列不等式组分别求出解,然后根据一次函数的性质求出哪种方案获利最小.26.(2017春•滨州期中)如图,平面直角坐标系中,已知点A(﹣3,3),B(﹣5,1),C(﹣2,0),P(a,b)是△ABC的边AC上任意一点,△ABC经过平移后得到△A1B1C1,点P的对应点为P1(a+6,b﹣2 ).(1)直接写出点A1,B1,C1的坐标.(2)在图中画出△A1B1C1.(3)连接A A1,求△AOA1的面积.【分析】(1)根据点P、P1的坐标确定出平移规律,再求出C1的坐标即可;(2)根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可;(3)利用△AOA1所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解.【解答】解:(1)∵点P(a,b)的对应点为P1(a+6,b﹣2),∴平移规律为向右6个单位,向下2个单位,∴A(﹣3,3),B(﹣5,1),C(﹣2,0)的对应点的坐标为A1(3,1),B1(1,﹣1),C1(4,﹣2);(2)△A1B1C1如图所示;(3)△AOA1的面积=6×3﹣×3×3﹣×3×1﹣×6×2,=18﹣﹣﹣6,=18﹣12,=6.【点评】本题考查了利用平移变换作图,三角形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键.27.(2017春•梁子湖区期中)如图,⊙O是等边△ABC的外接圆,M是BC延长线上一点,连接AM交⊙O于点D,延长BD至点N,使得BN=AM,连接CN,MN.(1)判断△CMN的形状,并证明你的结论;(2)求证:CN是⊙O的切线;(3)若等边△ABC的边长是2,求AD•AM的值.【分析】(1)利用等边三角形的性质得到CB=CA,∠ABC=∠ACB=60°,再证明△BCN≌△ACM得到CN=CM,∠BCN=∠ACM,则∠MCN=∠ACB=60°,于是可判断△CMN为等边三角形;(2)连接OC,如图,利用CA=CB得到=,则根据垂径定理的推论得到OC ⊥AB,再证明AB∥CN,则OC⊥CN,然后根据切线的判定方法可判断CN是⊙O 的切线;。
2017年大庆市中考数学试卷

2017年大庆市初中升学统一考试数学试题一、选择题:1.若a的相反数是-3,则a的值为()A.1B.2C.3D.42.数字150000用科学记数法表示为()A.1.5⨯104B.0.15⨯106C.15⨯104D.1.5⨯105 3.下列说法中,正确的是()A.若a≠b,则a2≠b2B.若a>|b|,则a>bC.若|a|=|b|,则a=b D.若|a|>|b|,则a>b4.对于函数y=2x-1,下列说法正确的是()A.它的图象过点(1,0)B.y值随着x值增大而减小C.它的图象经过第二象限D.当x>1时,y>05.在∆ABC中,∠A,∠B,∠C的度数之比为2:3:4,则∠B的度数为()A.1200B.800C.600D.4006.将一枚质地均匀的硬币先后抛掷两次,则至少出现一次正面向上的概率为()A.1132B. C.D.42437.由若干个相同的正方体组成的几何体,如图(1)所示,其左视图如图(2)所示,则这个几何体的俯视图为()8.如图,∆ABD是以BD为斜边的等腰直角三角形,∆BCD中,∠DBC=900,∠BCD=600,DC中A.2点为E,AD与BE的延长线交于点F,则∠AFB的度数为()A.300B.150C.450D.2509.若实数3是不等式2x-a-2<0的一个解,则a可取的最小正整数为()A.2B.3 C.4D.510.如图,AD//BC,AD⊥AB,点A,B在y轴上,CD与x轴交于点E(2,0),且AD=DE,BC=2CE,则BD与x轴交点F的横坐标为()345B. C.D.3456二、填空题11.2sin600=.12.分解因式:x3-4x=.13.已知一组数据:3,5,x,7,9的平均数为6,则x=.14.∆ABC中,∠C为直角,AB=2,则这个三角形的外接圆半径为.15.若点M(3,a-2),N(b,a)关于原点对称,则a+b=.16.如图,点M,N在半圆的直径AB上,点P,Q在AB上,四边形MNPQ为正方形,若半圆的半径为5,则正方形的边长为.17.圆锥的底面半径为1,它的侧面展开图的圆心角为1800,则这个圆锥的侧面积为.18.如图,已知一条东西走向的河流,在河流对岸有一点A,小明在岸边点B处测得点A在点B的北偏东300方向上,小明沿河岸向东走80m后到达点C,测得点A在点C的北偏西600方向上,则点A到河岸BC 的距离为.三、解答题19.计算:(-1)2017+tan450+327+|3-π|.20.解方程:x1+=1x+2x21.已知非零实数a,b满足a+b=3,113+=,求代数式a2b+ab2的值.a b222.某快递公司的每位“快递小哥”日收入与每日的派送量成一次函数关系,如图所示.(1)求每位“快递小哥”的日收入y(元)与日派送量x(件)之间的函数关系式;(2)已知某“快递小哥”的日收入不少于110元,则他至少要派送多少件?23.某校为了解学生平均每天课外阅读的时间,随机调查了该校部分学生一周内平均每天课外阅读的时间(以分钟为单位,并取整数),将有关数据统计整理并绘制成尚未完成的频率分布表和频数分布直方图.请你根据图表中所提供的信息,解答下列问题.注:这里的15~25表示大于等于15同时小于25.(1)求被调查的学生人数;(2)直接写出频率分布表中的a和b的值,并补全频数分布直方图;(3)若该校共有学生500名,则平均每天课外阅读的时间不少于35分钟的学生大约有多少名?24.如图,以BC为底边的等腰∆ABC,点D,E,G分别在BC,AB,AC上,且EG//BC,DE//AC,延长GE至点F,使得BE=BF.AE GB D C(1)求证:四边形BDEF为平行四边形;(2)当∠C=450,BD=2时,求D,F两点间的距离.25.如图,反比例函数y=k的图象与一次函数y=x+b的图象交于A,B两点,点A和点B的横坐标分别x为1和-2,这两点的纵坐标之和为1.(1)求反比例函数的表达式与一次函数的表达式;(2)当点C的坐标为(0,-1)时,求∆ABC的面积.26.已知二次函数的表达式为y=x2+mx+n.(1)若这个二次函数的图象与x轴交于点A(1,0),点B(3,0),求实数m,n的值;(2)若∆ABC是有一个内角为300的直角三角形,∠C为直角,s in A,cos B是方程x2+mx+n=0的两个根,求实数m,n的值.27.如图,四边形ABCD内接于圆O,∠BAD=900,AC为直径,过点A作圆O的切线交CB的延长线于点E,过AC的三等分点F(靠近点C)作CE的平行线交AB于点G,连结CG.(1)求证:AB=CD;(2)求证:C D2=BE⋅BC;(3)当C G=3,BE=92时,求CD的长.28.如图,直角∆ABC中,∠A为直角,AB=6,AC=8.点P,Q,R分别在AB,BC,C A边上同时开始作匀速运动,2秒后三个点同时停止运动,点P由点A出发以每秒3个单位的速度向点B运动,点Q由点B出发以每秒5个单位的速度向点C运动,点R由点C出发以每秒4个单位的速度向点A运动,在运动过程中:(1)求证:∆APR,∆BPQ,∆CQR的面积相等;(2)求∆PQR面积的最小值;(3)用t(秒)(0≤t≤2)表示运动时间,是否存在t,使∠PQR=900,若存在,请直接写出t的值;若不存在,请说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年大庆市初中升学统一考试一、选择题:1.若a 的相反数是-3,则a 的值为( )A .1 B .2 C .3 D .42.数字150000用科学记数法表示为( )A .1.5×104B .0.15×106C .15×104D .1.5×1053.下列说法中,正确的是( )A .若a ≠b ,则a2≠b2B .若a >|b|,则a >bC .若|a|=|b|,则a=bD .若|a|>|b|,则a >b4.对于函数y=2x-1,下列说法正确的是( )A .它的图象过点(1,0)B .y 值随着x 值增大而减小C .它的图象经过第二象限D .当x >1时,y >05.在△ABC 中,∠A ,∠B ,∠C 的度数之比为2:3:4,则∠B 的度数为( )A .120OB .80OC .60OD .40O6.将一枚质地均匀的硬币先后抛掷两次,则至少出现一次正面向上的概率为( )A .41B .21 C. 43 D .32 7.由若干个相同的正方体组成的几何体,如图(1)所示,其左视图如图(2)所示,则这个几何体的俯视图为( )A .B .C .D .8.如图,△ABD 是以BD 为斜边的等腰直角三角形,△BCD 中,∠DBC=90O ,∠BCD=60O ,DC 中点为E ,AD 与BE 的延长线交于点F ,则∠AFB 的度数为( )A .30OB .15OC .45OD .25O 9.若实数3是不等式2x-a-2<0的一个解,则a 可取的最小正整数为( )A .2B .3 C.4 D .510.如图,AD ∥BC ,AD ⊥AB ,点A,B 在y 轴上,CD 与x 轴交于点E(2,0),且AD=DE ,BC=2CE ,则BD 与x 轴交点F 的横坐标为( )A .32B .43 C.54 D .65 二、填空题11.2sin60o= .12.分解因式:x3-4x= .13.已知一组数据:3,5,x ,7,9的平均数为6,则x= .14. △ABC 中,∠C 为直角,AB=2,则这个三角形的外接圆半径为 .15.若点M(3,a-2),N(b,a)关于原点对称,则a+b= .16.如图,点M,N 在半圆的直径AB 上,点P,Q 在AB 上,四边形MNPQ 为正方形,若半圆的半径为5,则正方形的边长为 .17.圆锥的底面半径为1,它的侧面展开图的圆心角为180O ,则这个圆锥的侧面积为 .18.如图,已知一条东西走向的河流,在河流对岸有一点A ,小明在岸边点B 处测得点A 在点B 的北偏东30O 方向上,小明沿河岸向东走80m 后到达点C ,测得点A 在点C 的北偏西60O 方向上,则点A 到河岸BC 的距离为 .三、解答题19.计算:|3|2745tan )1(302017π-+++-. 20.解方程:112=++xx x 21.已知非零实数a,b 满足3=+b a ,2311=+b a ,求代数式22ab b a +的值. 22.某快递公司的每位“快递小哥”日收入与每日的派送量成一次函数关系,如图所示.(1)求每位“快递小哥”的日收入y (元)与日派送量x (件)之间的函数关系式;(2)已知某“快递小哥”的日收入不少于110元,则他至少要派送多少件?23.某校为了解学生平均每天课外阅读的时间,随机调查了该校部分学生一周内平均每天课外阅读的时间(以分钟为单位,并取整数),将有关数据统计整理并绘制成尚未完成的频率分布表和频数分布直方图.请你根据图表中所提供的信息,解答下列问题.注:这里的15~25表示大于等于15同时小于25.(1)求被调查的学生人数;(2)直接写出频率分布表中的a 和b 的值,并补全频数分布直方图;(3)若该校共有学生500名,则平均每天课外阅读的时间不少于35分钟的学生大约有多少名?组别 分组 频数 频率1 15~25 7 0142 25~35 a 0243 35~45 20 0404 45~556 b 5 55~65 5 01024.如图,以BC 为底边的等腰△ABC ,点D,E,G 分别在BC,AB,AC 上,且EG ∥BC ,DE ∥AC ,延长GE 至点F ,使得BE=BF.(1)求证:四边形BDEF 为平行四边形;(2)当∠C=45O ,BD=2时,求D,F 两点间的距离.25.如图,反比例函数x k y =的图象与一次函数b x y +=的图象交于A,B 两点,点A 和点B 的横坐标分别为1和-2,这两点的纵坐标之和为1.(1)求反比例函数的表达式与一次函数的表达式;(2)当点C 的坐标为(0,-1)时,求△ABC 的面积.26.已知二次函数的表达式为y=x2+mx+n.(1)若这个二次函数的图象与x 轴交于点A(1,0),点B(3,0),求实数m,n 的值;(2)若△ABC 是有一个内角为30O 的直角三角形,∠C 为直角,sinA,cosB 是方程x2+mx+n=0的两个根,求实数m,n 的值.27.如图,四边形ABCD 内接于圆O ,∠BAD=90O ,AC 为直径,过点A 作圆O 的切线交CB 的延长线于点E ,过AC 的三等分点F (靠近点C )作CE 的平行线交AB 于点G ,连结CG .(1)求证:AB=CD ;(2)求证:CD2=BE ·BC ;(3)当3=CG ,29=BE 时,求CD 的长.28.如图,直角△ABC 中,∠A 为直角,AB=6,AC=8.点P,Q,R 分别在AB,BC,CA 边上同时开始作匀速运动,2秒后三个点同时停止运动,点P 由点A 出发以每秒3个单位的速度向点B 运动,点Q 由点B 出发以每秒5个单位的速度向点C 运动,点R 由点C 出发以每秒4个单位的速度向点A 运动,在运动过程中:(1)求证:△APR ,△BPQ ,△CQR 的面积相等;(2)求△PQR 面积的最小值;(3)用t (秒)(0≤t ≤2)表示运动时间,是否存在t ,使∠PQR=90o ,若存在,请直接写出t 的值;若不存在,请说明理由.2017年大庆市初中升学统一考试数学试题解析一、选择题:1.若a的相反数是-3,则a的值为()A.1 B.2 C.3 D.4【考点】相反数.【分析】根据一个数的相反数就是在这个数前面添上“-”号,求解即可.【解答】解:a的相反数是-3,则a的值为3,故选:C.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.数字150000用科学记数法表示为()A.1.5×104 B.0.15×106 C.15×104 D.1.5×105【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:数字150000用科学记数法表示为1.5×105.故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列说法中,正确的是()A.若a≠b,则a2≠b2 B.若a>|b|,则a>bC.若|a|=|b|,则a=b D.若|a|>|b|,则a>b【考点】有理数的乘方;绝对值.【分析】根据有理数的乘方和绝对值的性质对各选项分析判断即可得解.【解答】解:A、若a=2,b=-2,a≠b,但a2=b2,故本选项错误;B、若a>|b|,则a>b,故本选项正确;C、若|a|=|b|,则a=b或a=-b,故本选项错误;D、若a=-2,b=1,|a|>|b|,但a<b,故本选项错误.故选B.【点评】本题考查了有理数的乘方,绝对值的性质,理解有理数乘方的意义是解题的关键.4.对于函数y=2x-1,下列说法正确的是()A.它的图象过点(1,0) B.y值随着x值增大而减小C.它的图象经过第二象限D.当x>1时,y>0【考点】有理数的乘方;绝对值.【分析】根据有理数的乘方和绝对值的性质对各选项分析判断即可得解.【解答】解:A、若a=2,b=-2,a≠b,但a2=b2,故本选项错误;B、若a>|b|,则a>b,故本选项正确;C、若|a|=|b|,则a=b或a=-b,故本选项错误;D、若a=-2,b=1,|a|>|b|,但a<b,故本选项错误.故选B .【点评】本题考查了有理数的乘方,绝对值的性质,理解有理数乘方的意义是解题的关键.5.在△ABC 中,∠A ,∠B ,∠C 的度数之比为2:3:4,则∠B 的度数为( )A .120OB .80OC .60OD .40O【考点】三角形内角和定理.【分析】直接用一个未知数表示出∠A ,∠B ,∠C 的度数,再利用三角形内角和定理得出答案.【解答】解:∵∠A :∠B :∠C=2:3:4,∴设∠A=2x ,∠B=3x ,∠C=4x ,∵∠A+∠B+∠C=180°,∴2x+3x+4x=180°,解得:x=20°,∴∠B 的度数为:60°.故选C . 【点评】此题主要考查了三角形内角和定理,正确表示出各角度数是解题关键. 6.将一枚质地均匀的硬币先后抛掷两次,则至少出现一次正面向上的概率为( )A .41B .21 C. 43 D .32 【考点】列表法与树状图法.【分析】根据题意可以写出所有的可能性,从而可以得到至少出现一次正面向上的概率.【解答】解:由题意可得,出现的所有可能性是:(正,正)、(正,反)、(反,正)、(反,反),∴至少一次正面向上的概率为:43, 故选C .【点评】本题考查列表法与树状图法,解答本题的关键是明确题意,写出所有的可能性.7.由若干个相同的正方体组成的几何体,如图(1)所示,其左视图如图(2)所示,则这个几何体的俯视图为( )A .B .C .D .【考点】由三视图判断几何体.【分析】根据题目中的几何体,可以得到它的俯视图,从而可以解答本题.【解答】解:由图可得,这个几何体的俯视图是:故选A .【点评】本题考查由三视图判断几何体,解答本题的关键是明确题意,画出几何体的俯视图.8.如图,△ABD 是以BD 为斜边的等腰直角三角形,△BCD 中,∠DBC=90O ,∠BCD=60O ,DC 中点为E ,AD 与BE 的延长线交于点F ,则∠AFB 的度数为( )A .30OB .15OC .45OD .25O【考点】直角三角形斜边上的中线;等腰直角三角形.【分析】根据直角三角形的性质得到BE=CE ,求得∠CBE=60°,得到∠DBF=30°,根据等腰直角三角形的性质得到∠ABD=45°,求得∠ABF=75°,根据三角形的内角和即可得到结论.【解答】解:∵∠DBC=90°,E 为DC 中点,∴BE=CE=21CD , ∵∠BCD=60°,∴∠CBE=60°,∴∠DBF=30°,∵△ABD 是等腰直角三角形,∴∠ABD=45°,∴∠ABF=75°,∴∠AFB=180°-90°-75°=15°,故选B .【点评】本题考查了直角三角形的性质,等腰直角三角形的性质,熟练掌握直角三角形的性质是解题的关键.9.若实数3是不等式2x-a-2<0的一个解,则a 可取的最小正整数为( )A .2B .3 C.4 D .5【考点】一元一次不等式的整数解.【分析】将x=3代入不等式得到关于a 的不等式,解之求得a 的范围即可.【解答】解:根据题意,x=3是不等式的一个解,∴将x=3代入不等式,得:6-a-2<0,解得:a >4,则a 可取的最小正整数为5,故选:D .【点评】本题主要考查不等式的整数解,熟练掌握不等式解得定义及解不等式的能力是解题的关键.10.如图,AD ∥BC ,AD ⊥AB ,点A,B 在y 轴上,CD 与x 轴交于点E(2,0),且AD=DE ,BC=2CE ,则BD 与x 轴交点F 的横坐标为( )A .32B .43 C.54 D 65 【考点】平行线分线段成比例性质.【分析】设AO=xOB ,合理利用题中所提供的条件,根据平行线分线段成比例性质可得出答案.【解答】解:由AD ∥BC ,AD ⊥AB ,CD 与x 轴交于点E , AD ∥OE ∥BC,设AO=xOB ,则AD=DE=xEC ,BC=2EC ,EC x x AD OF 11x 1+=+=OF EC x x BC x EF 2121x =+=+= 所以3231==OE OF 所以F 的横坐标为32 ,答案选A 故选:A .【点评】本题主要考查平行线分线段成比例性质,熟练掌握平行线分线段成比例性质并会灵活运用是解题的关键.二、填空题11.2sin60o= .【考点】特殊角的三角函数值.【分析】直接根据特殊角的三角函数值进行计算即可.【解答】解:2sin60°=232⨯=3. 故答案为:3.【点评】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.12.分解因式:x3-4x= .【考点】提公因式法与公式法的综合运用.【专题】计算题.【分析】原式提取x,再利用平方差公式分解即可.【解答】解:原式=x(x2-4)=x(x+2)(x-2).故答案为:(1)ab(1+b);(2)x(x+2)(x-2).【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.已知一组数据:3,5,x,7,9的平均数为6,则x= .【考点】算术平均数.【分析】根据算术平均数的定义列式计算即可得解.【解答】解:由题意知,(3+5+x+7+9)÷5=6,解得:x=6.故答案为6.【点评】本题考查的是算术平均数的求法.熟记公式是解决本题的关键.14. △ABC中,∠C为直角,AB=2,则这个三角形的外接圆半径为.【考点】三角形的外接圆与外心.【分析】这个直角三角形的外接圆直径是斜边长,把斜边长除以2可求这个三角形的外接圆半径.【解答】解:∵△ABC中,∠C为直角,AB=2,∴这个三角形的外接圆半径为2÷2=1.故答案为:1.【点评】本题考查的是直角三角形的外接圆半径,重点在于理解直角三角形的外接圆是以斜边中点为圆心,斜边长的一半为半径的圆.15.若点M(3,a-2),N(b,a)关于原点对称,则a+b= .【考点】关于原点对称的点的坐标.【分析】根据关于原点对称的点,横坐标与纵坐标都互为相反数,可得答案.【解答】解:由题意,得b=-3,a-2+a=0,解得a=1,a+b=-3+1=-2,故答案为:-2.【点评】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.16.如图,点M,N在半圆的直径AB上,点P,Q在AB上,四边形MNPQ为正方形,若半圆的半径为5,则正方形的边长为.【考点】正方形的性质;勾股定理;圆的认识.【分析】连接OP ,设正方形的边长为a ,则ON=2a ,PN=a ,再由勾股定理求出a 的值即可. 【解答】解:连接OP ,设正方形的边长为a ,则ON=2a ,PN=a , 在Rt △OPN 中, ON2+PN2=OP2,即(2a )2+a2=(5)2,解得a=2. 故答案为:2.【点评】本题考查的是正方形的性质,根据题意作出辅助线,构造出直角三角形是解答此题的关键.17.圆锥的底面半径为1,它的侧面展开图的圆心角为180O ,则这个圆锥的侧面积为 .【考点】圆锥的计算.【专题】计算题.【分析】设圆锥的母线长为R ,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到2π•1=180180R ••π,解得R=2,然后利用扇形的面积公式计算圆锥的侧面积.【解答】解:设圆锥的母线长为R , 根据题意得2π•1=180180R ••π,解得R=2, 所以圆锥的侧面积=21•2π•1•2=2π. 故答案为2π.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.18.如图,已知一条东西走向的河流,在河流对岸有一点A ,小明在岸边点B 处测得点A 在点B 的北偏东30O 方向上,小明沿河岸向东走80m 后到达点C ,测得点A 在点C 的北偏西60O 方向上,则点A 到河岸BC 的距离为 .【考点】解直角三角形的应用-方向角问题;勾股定理的应用.【分析】方法1、作AD ⊥BC 于点D ,设出AD=x 米,在Rt △ACD 中,得出CD=3x ,在Rt △ABD 中,得出BD=33x ,最后用CD+BD=80建立方程即可得出结论; 方法2、先判断出△ABC 是直角三角形,利用含30°的直角三角形的性质得出AB ,AC ,再利用同一个直角三角形,两直角边的积的一半和斜边乘以斜边上的高的一半建立方程求解即可.【解答】解:方法1、过点A 作AD ⊥BC 于点D .根据题意,∠ABC=90°-30°=60°,∠ACD=30°,设AD=x 米,在Rt △ACD 中,tan ∠ACD=CD AC , ∴CD=ACD AD ∠tan =030tan x =3x , 在Rt △ABD 中,tan ∠ABC=BDAD , ∴BD=3360tan tan 0x x ABC AD ==∠, ∴BC=CD+BD=333x x +x=80 ∴x=203答:该河段的宽度为203米.故答案是:203米.方法2、过点A 作AD ⊥BC 于点D .根据题意,∠ABC=90°-30°=60°,∠ACD=30°,∴∠BAC=180°-∠ABC-∠ACB=90°,在Rt △ABC 中,BC=80m ,∠ACB=30°,∴AB=40m ,AC=403m ,∴S △ABC=21AB ×AC=21×40×403=8003, ∵S △ABC=21BC ×AD=21×80×AD=40AD=8003, ∴AD=203米答:该河段的宽度为203米.故答案是:203米.【点评】此题考查了解直角三角形及勾股定理的应用,用到的知识点是方向角,关键是根据题意画出图形,作出辅助线,构造直角三角形,“化斜为直”是解三角形的基本思路,常需作垂线(高),原则上不破坏特殊角.三、解答题 19.计算:|3|2745tan )1(302017π-+++-.【考点】实数的运算;特殊角的三角函数值.【分析】直接利用特殊角的三角函数值以及立方根的性质和绝对值的性质分别化简求出答案. 【解答】解:原式=-1+1+3+π-3 =π.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.解方程:112=++xx x 【考点】解分式方程.【分析】按照解分式方程的步骤,即可解答.【解答】解: 在方程两边同乘x(x+2)得:x2+(x+2)=x(x+2) 解得:x=2,当x=2时,x(x+2)≠0, 故分式方程的解为:x=2.【点评】本题考查了解分式方程,解决本题的关键是熟记解分式方程的步骤.21.已知非零实数a,b 满足3=+b a ,2311=+b a ,求代数式22ab b a +的值. 【考点】因式分解的应用;分式的加减法. 【分析】将a+b=3代入2311=+=+ab b a b a 求得ab 的值,然后将其代入所求的代数式进行求值. 【解答】解:∵2311=+=+ab b a b a ,a+b=3, ∴ab=2,∴a2b+ab2=ab (a+b )=2×3=6.【点评】本题考查了因式分解的应用,分式的加减运算,熟练掌握因式分解的方法是解题的关键.22.某快递公司的每位“快递小哥”日收入与每日的派送量成一次函数关系,如图所示.(1)求每位“快递小哥”的日收入y (元)与日派送量x (件)之间的函数关系式; (2)已知某“快递小哥”的日收入不少于110元,则他至少要派送多少件?【考点】一次函数的应用;一元一次不等式的应用. 【分析】(1)观察函数图象,找出点的坐标,再利用待定系数法求出y 与x 之间的函数关系式; (2)由日收入不少于110元,可得出关于x 的一元一次不等式,解之即可得出结论. 【解答】解:(1)设每位“快递小哥”的日收入y (元)与日派送量x (件)之间的函数关系式为y=kx+b , 将(0,70)、(30,100)代入y=kx+b ,⎩⎨⎧=+=1003070b k b ,解得:⎩⎨⎧==701b k , ∴每位“快递小哥”的日收入y (元)与日派送量x (件)之间的函数关系式为y=x+70. (2)根据题意得:x+70≥110, 解得:x ≥40.答:某“快递小哥”的日收入不少于110元,则他至少要派送40件.【点评】本题考查了一次函数的应用、待定系数法求一次函数解析式以及一元一次不等式的应用,解题的关键是:(1)根据点的坐标,利用待定系数法求出y 与x 之间的函数关系式;(2)根据日收入不少于110元,列出关于x 的一元一次不等式.23.某校为了解学生平均每天课外阅读的时间,随机调查了该校部分学生一周内平均每天课外阅读的时间(以分钟为单位,并取整数),将有关数据统计整理并绘制成尚未完成的频率分布表和频数分布直方图.请你根据图表中所提供的信息,解答下列问题. 组别 分组 频数 频率 1 15~25 7 014 2 25~35 a 024 3 35~45 20 040 4 45~55 6 b 5 55~655010注:这里的15~25表示大于等于15同时小于25. (1)求被调查的学生人数;(2)直接写出频率分布表中的a 和b 的值,并补全频数分布直方图;(3)若该校共有学生500名,则平均每天课外阅读的时间不少于35分钟的学生大约有多少名?【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表. 【分析】(1)根据第一组频数是7,频率是0.14即可求得被调查的人数; (2)利用频率公式即可求得a 和b 的值;(3)利用总人数500乘以对应的频率即可求解. 【解答】解:(1)被调查的人数是7÷0.14=50; (2)a=50×0.24=12,b=506=0.12; (3)平均每天课外阅读的时间不少于35分钟的学生大约有500×(0.40+0.12+0.10)=310(人). 【点评】本题考查了频率分布直方图的知识,解题的关键是弄清频数、频率及样本容量的关系.24.如图,以BC 为底边的等腰△ABC ,点D,E,G 分别在BC,AB,AC 上,且EG ∥BC ,DE ∥AC ,延长GE 至点F ,使得BE=BF.(1)求证:四边形BDEF 为平行四边形;(2)当∠C=45O ,BD=2时,求D,F 两点间的距离.【考点】平行四边形的判定与性质;等腰三角形的性质. 【分析】(1)由等腰三角形的性质得出∠ABC=∠C ,证出∠AEG=∠ABC=∠C ,四边形CDEG 是平行四边形,得出∠DEG=∠C ,证出∠F=∠DEG ,得出BF ∥DE ,即可得出结论; (2)证出△BDE 、△BEF 是等腰直角三角形,由勾股定理得出BF=BE=22BD=2,作FM ⊥BD 于M ,连接DF ,则△BFM 是等腰直角三角形,由勾股定理得出FM=BM=22BF=1,得出DM=3,在Rt △DFM 中,由勾股定理求出DF 即可. 【解答】(1)证明:∵△ABC 是等腰三角形, ∴∠ABC=∠C ,∵EG ∥BC ,DE ∥AC ,∴∠AEG=∠ABC=∠C ,四边形CDEG 是平行四边形, ∴∠DEG=∠C , ∵BE=BF ,∴∠BFE=∠BEF=∠AEG=∠ABC , ∴∠F=∠DEG , ∴BF ∥DE ,∴四边形BDEF 为平行四边形; (2)解:∵∠C=45°,∴∠ABC=∠BFE=∠BEF=45°,∴△BDE 、△BEF 是等腰直角三角形,∴BF=BE=22 BD=2,作FM ⊥BD 于M ,连接DF ,如图所示: 则△BFM 是等腰直角三角形, ∴FM=BM=22BF=1, ∴DM=3,在Rt △DFM 中,由勾股定理得:DF=103122=+, 即D ,F 两点间的距离为10.【点评】本题考查了平行四边形的判定与性质、等腰三角形的性质、等腰直角三角形的判定与性质、勾股定理等知识;熟练掌握平行四边形的判定与性质和勾股定理是解决问题的关键. 25.如图,反比例函数xky =的图象与一次函数b x y +=的图象交于A,B 两点,点A 和点B 的横坐标分别为1和-2,这两点的纵坐标之和为1.(1)求反比例函数的表达式与一次函数的表达式; (2)当点C 的坐标为(0,-1)时,求△ABC 的面积. 【考点】反比例函数与一次函数的交点问题. 【分析】(1)根据两点纵坐标的和,可得b 的值,根据自变量与函数的值得对关系,可得A 点坐标,根据待定系数法,可得反比例函数的解析式;(2)根据自变量与函数值的对应关系,可得B 点坐标,根据三角形的面积公式,可得答案. 【解答】解:(1)由题意,得 1+b+(-2)+b=1, 解得b=1,一次函数的解析式为y=x+1,当x=1时,y=x+1=2,即A (1,2), 将A 点坐标代入,得1k=2,即k=2,反比例函数的解析式为y=x2; (2)当x=-2时,y=-1,即B (-2,-1). BC=2, S △ABC=21BC •(yA-yC )=21×2×[2-(-1)]=3. 【点评】本题考查了反比例函数与一次函数的交点问题,利用纵坐标的和得出b 的值是解(1)题关键;利用三角形的面积公式是解(2)的关键.26.已知二次函数的表达式为y=x2+mx+n.(1)若这个二次函数的图象与x 轴交于点A(1,0),点B(3,0),求实数m,n 的值;(2)若△ABC 是有一个内角为30O 的直角三角形,∠C 为直角,sinA,cosB 是方程x2+mx+n=0的两个根,求实数m,n 的值.【考点】抛物线与x 轴的交点;解直角三角形. 【分析】(1)根据点A 、B 的坐标,利用待定系数法即可求出m 、n 的值;(2)分∠A=30°或∠B=30°两种情况考虑:当∠A=30°时,求出sinA 、cosB 的值,利用根与系数的关系即可求出m 、n 的值;当∠B=30°时,求出sinA 、cosB 的值,利用根与系数的关系即可求出m 、n 的值. 【解答】解:(1)将A (1,0)、B (3,0)代入y=x2+mx+n 中,⎩⎨⎧=++=++03901n m n m ,解得:⎩⎨⎧=-=34n m , ∴实数m=-4、n=3.(2∴-m=∴当∠∴-m=∴m=-3,n=43. 综上所述:m=-1、n=41或m=-3、n=43. 【点评】本题考查了抛物线与x 轴的交点、待定系数法求二次函数解析式、解直角三角形以及根与系数的关系,解题的关键是:(1)根据点的坐标,利用待定系数法求出m 、n 的值;(2)分∠A=30°或∠B=30°两种情况,求出m 、n 的值.27.如图,四边形ABCD 内接于圆O ,∠BAD=90O ,AC 为直径,过点A 作圆O 的切线交CB 的延长线于点E ,过AC 的三等分点F (靠近点C )作CE 的平行线交AB 于点G ,连结CG.(1)求证:AB=CD ;(2)求证:CD2=BE ·BC ; (3)当3=CG ,29=BE 时,求CD 的长. 【考点】圆的综合题. 【分析】(1)根据三个角是直角的四边形是矩形证明四边形ABCD 是矩形,可得结论; (2)证明△ABE ∽△CBA ,列比例式可得结论;(3)根据F 是AC 的三等分点得:AG=2BG ,设BG=x ,则AG=2x ,代入(2)的结论解出x 的值,可得CD 的长.【解答】证明:(1)∵AC 为⊙O 的直径, ∴∠ABC=∠ADC=90°, ∵∠BAD=90°,∴四边形ABCD 是矩形, ∴AB=CD ;(2)∵AE 为⊙O 的切线, ∴AE ⊥AC ,∴∠EAB+∠BAC=90°, ∵∠BAC+∠ACB=90°, ∴∠EAB=∠ACB , ∵∠ABC=90°, ∴△ABE ∽△CBA , ∴ABBEBC AB =, ∴AB2=BE •BC ,由(1)知:AB=CD , ∴CD2=BE •BC ;(3)∵F 是AC 的三等分点, ∴AF=2FC , ∵FG ∥BE ,∴△AFG ∽△ACB ,∴BGAGFC AF ==2, 设BG=x ,则AG=2x , ∴AB=3x ,在Rt △BCG 中,CG=3, ∴BC2=(3)2-x2, BC=23x -,由(2)得:AB2=BE •BC , (3x )2=2329x -, 4x4+x2-3=0, (x2+1)(4x2-3)=0, x=±23, ∵x >0, ∴x=23,∴2和3问都应用了上一问的结论,与方程28.点P,Q,R 分别在AB,BC,CA 边上同时开始作匀速运动,23个单位的速度向点B 运动,点Q 由点B 出发以每秒54个单位的速度向点A 运动,在运动过程中: (1)求证:△APR ,△BPQ ,△CQR 的面积相等; (2)求△PQR 面积的最小值; (3)用t (秒)(0≤t ≤2)表示运动时间,是否存在t ,使∠PQR=90o ,若存在,请直接写出t 的值;若不存在,请说明理由.【考点】三角形综合题. 【分析】(1)先利用锐角三角函数表示出QE=4t ,QD=3(2-t ),再由运动得出AP=3t ,CR=4t ,BP=3(2-t ),AR=4(2-t ),最后用三角形的面积公式即可得出结论;(2)借助(1)得出的结论,利用面积差得出S △PQR=18(t-1)2+6,即可得出结论; (3)先判断出∠DQR=∠EQP ,用此两角的正切值建立方程求解即可.【解答】解:(1)如图,在Rt △ABC 中,AB=6,AC=8,根据勾股定理得,BC=10,sin ∠B=54108==AB AC ,sin ∠C=43, 过点Q 作QE ⊥AB 于E , 在Rt △BQE 中,BQ=5t , ∴sin ∠B=54=BQ QE ∴QE=4t ,过点Q 作QD ⊥AC 于D ,在Rt △CDQ 中,CQ=BC-BQ=10-5t , ∴QD=CQ •sin ∠C=53 (10-5t )=3(2-t ),由运动知,AP=3t ,CR=4t , ∴BP=AB-AP=6-3t=3(2-t ),AR=AC-CR=8-4t=4(2-t ),∴S △APR=21AP •AR=21×3t ×4(2-t )=6t (2-t ), S △BPQ=21BP •QE=21×3(2-t )×4t=6t (2-t ),S △CQR=21CR •QD=21×4t ×3(2-t )=6t (2-t ),∴S △APR=S △BPQ=S △CQR ,∴△APR ,△BPQ ,△CQR 的面积相等;(2)由(1)知,S △APR=S △BPQ=S △CQR=6t (2-t ), ∵AB=6,AC=8,∴S △PQR=S △ABC-(S △APR+S △BPQ+S △CQR )=21×6×8-3×6t (2-t )=24-18(2t-t2)=18(t-1)2+6, ∵0≤t ≤2,∴当t=1时,S △PQR 最小=6;(3)存在,由(1)知,QE=4t ,QD=3(2-t ),AP=3t ,CR=4t ,AR=4(2-t ), ∴BP=AB-AP=6-3t=3(2-t ),AR=AC-CR=8-4t=4(2-t ), 过点Q 作QD ⊥AC 于D ,作QE ⊥AB 于E ,∵∠A=90°, ∴四边形APQD 是矩形, ∴AE=DQ=3(2-t ),AD=QE=4t ,∴DR=|AD-AR|=|4t-4(2-t )|=|4(2t-2)|,PE=|AP-AE|=|3t-3(2-t )|=|3(2t-2)| ∵∠DQE=90°,∠PQR=90°, ∴∠DQR=∠EQP ,∴tan ∠DQR=tan ∠EQP , 在Rt △DQR 中,tan ∠DQR=)2(3|22|4t t DQ DR --=, 在Rt △EQP 中,tan ∠EQP=tt QE PE 4|22|3-=, ∴)2(3|22|4t t --=tt 4|22|3-,∴16t=9(2-t ), ∴t=2518. 【点评】此题是三角形综合题,主要考查了勾股定理,锐角三角函数,矩形的判定和性质,三角形的面积公式,解(1)的关键是求出QD ,QE ,解(2)的关键是建立函数关系式,解(3)的关键是用tan ∠DQR=tan ∠EQP 建立方程,是一道中等难度的题目.。