多足机器人行走机构设计(论文)
毕业设计(论文)机器人行走机构 文献综述

重庆理工大学毕业设计(论文)文献综述题目机器人行走机构设计二级学院重庆汽车学院专业机械设计制造及其自动化班级姓名学号指导教师系主任时间评阅老师签字:机器人行走机构吴俊摘要:行走机器人是机器人学中的一个重要分支。
行走机构可以是轮式的、履带式的和腿式的等,能适应地上、地下、水中、空中、宇宙等作业环境的各种移动机构。
本文从国内外的研究状况着手,介绍了行走机器人的发展历史,研究现状和发展趋势。
本文还介绍了国内最新的研究成果。
关键字:机器人行走机构发展现状应用Keyword:robot travelling mechanism developing current situation application一,前言行走机器人是机器人学中的一个重要分支。
关于行走机器人的研究涉及许多方面,首先,要考虑移动方式,可以是轮式的、履带式的和腿式的等;其次,必须考虑驱动器的控制,以使机器人达到期望的行为;第三,必须考虑导航或路径规划。
因此,行走机器人是一个集环境感知、动态决策与规划、行为控制与执行等多种功能于一体的综合系统。
机器人的机械结构形式的选型和设计,应该根据实际需要进行。
在机器人机构方面,应当结合机器人在各个领域及各种场合的应用,开展丰富而富有创造性的工作。
对于行走机器人,研究能适应地上、地下、水中、空中、宇宙等作业环境的各种移动机构。
当前,对足式步行机器人、履带式和特种机器人研究较多,但大多数仍处于实验阶段,而轮式移动机器人由于其控制简单,运动稳定和能源利用率高等特点,正在向实用化迅速发展,从阿波罗登月计划中的月球车到美国最近推出的NASA 行星漫游计划中的六轮采样车,从西方各国正在加紧研制的战场巡逻机器人、侦察车到新近研制的管道清洗检测机器人,都有力地显示出行走机器人正在以其使用价值和广阔的应用前景而成为智能机器人发展的方向之一。
二、课题国内外现状多足步行机器人是一种具有冗余驱动、多支链、时变拓扑运动机构, 是模仿多足动物运动形式的特种机器人, 是一种足式移动机构。
双足仿生机器人行走机构设计

双足仿生机器人行走机构设计
双足仿生机器人行走机构设计一般包括以下几个关键部分:
1. 足底结构:足底结构是机器人与地面接触的部分,需要具备良好的稳定性和抓地力。
一般采用橡胶材料制作,设计有凹凸纹路或者类似动物脚掌的结构,以增加摩擦力和抓地力。
2. 关节设计:双足仿生机器人的每个腿部都需要多个关节来实现自由运动。
关节设计需要考虑到机器人的稳定性和灵活性,一般采用电机驱动的旋转关节或者液压/气动驱动的线性关节。
3. 动力系统:机器人行走需要动力系统提供能量。
一般采用电池或者电源供电,驱动关节的电机需要具备足够的扭矩和速度来实现机器人的行走。
4. 传感器:为了实现机器人的平衡和姿态控制,需要配备各种传感器。
例如,陀螺仪和加速度计可以用来检测机器人的倾斜角度,力传感器可以用来感知地面反作用力,视觉传感器可以用来感知周围环境。
5. 控制系统:双足仿生机器人的行走需要一个高效的控制系统。
控制系统可以根据传感器的反馈信息,实时调整关节的运动,以保持机器人的平衡和稳定。
总体来说,双足仿生机器人行走机构设计需要考虑到稳定性、灵活性、能量效率和控制系统的要求。
具体的设计方案需要根据机器人的应用场景和需求来确定。
双足机器人系统平衡控制设计论文

目录摘要 (Ⅰ)Abstract.................................................................................................. (Ⅱ)1 绪论 (3)1.1课题的研究背景和意义 (3)1.2双足机器人的国内外研究状况 (4)1.2.1国外研究状况 (4)1.2.2国内研究状况 (8)1.2.3 欠驱动双足机器人 (9)1.3欠驱动双足机器人控制存在的问题 (11)1.4本文的研究工作 (12)1.5论文的构成 (12)2 双足机器人直立平衡控制的模型研究 (13)2.1.双足机器人的欠驱动姿态 (13)2.1.1 模型简化的提出 (13)2.1.2双足机器人欠驱动姿态分析 (13)2.2物理模型 (15)2.3数学模型 (16)2.4 Matlab仿真模型 (18)2.5小结 (18)3双足机器人系统的能控能观性分析 (19)3.1 平衡稳定控制目标分析 (19)3.2 能控制性与能观测性分析 (19)3.3小结 (20)4 平衡控制策略 (21)4.1 LQR控制器简介 (21)4.2线性二次型调节器(LQR)基本原理 (21)4.3 平衡控制的仿真实现 (22)4.4 小结 (23)5仿真实验 (24)5.1控制器仿真模型 (24)5.2仿真的结果曲线 (25)5.3小结 (27)6结论与展望 (28)致谢 (28)参考文献 (29)附录 (32)附录Ⅰ(数学模型推导): (32)附录Ⅱ(仿真模型): (35)附录Ⅲ(Matlab程序语言): (36)1 绪论1.1 课题的研究背景和意义随着机器人技术的发展和控制理论的逐步成熟,对双足机器人的稳定性问题、双足机器人步行移动及各种仿人动作的研究正受到国际学者们越来越多的普遍关注。
基于控制理论、动力学原理及仿生学原理,人们通过对动物和人类的运动行为、控制技巧的研究,提出和发展了一系列复杂运动控制模态及相关算法。
六足机器人的设计,毕业论文

摘要随着人类探索自然界步伐的不断加速,各应用领域对具有复杂环境自主移动能力机器人的需求,日趋广泛而深入。
理论上,足式机器人具有比轮式机器人更加卓越的应对复杂地形的能力,因而被给予了巨大的关注,但到目前为止,由于自适应步行控制算法匮乏等原因,足式移动方式在许多实际应用中还无法付诸实践。
另一方面,作为地球上最成功的运动生物,多足昆虫则以其复杂精妙的肢体结构和简易灵巧的运动控制策略,轻易地穿越了各种复杂的自然地形,甚至能在光滑的表面上倒立行走。
因此,将多足昆虫的行为学研究成果,融入到步行机器人的结构设计与控制中,开发具有卓越移动能力的六足仿生机器人,对于足式移动机器人技术的研究与应用具有重要的理论和现实意义。
六足仿生机器人地形适应能力强,具有冗余肢体,可以在失去若干肢体的情况下继续执行一定的工作,适合担当野外侦查、水下搜寻以及太空探测等对自主性、可靠性要求比较高的工作。
关键词:六足机器人,适应能力强,结构设计AbstractWith the increasingly rapid step of human exploration of nature, the demand for robots with autonomous mobility under complex environment has been getting broader and deeper in more and more application areas. Theoretically, legged robot offers more superior performance of dealing with complicated terrain conditions than that provided by wheeled robot and therefore has been given great concern, however up to now,for the reason of absence of adaptive walk control algorithm,legged locomotion means still could not be put into practice in many practical applications yet。
毕业论文(设计)基于matlab的双足步行机器人腿部运动模型的建立与运动仿真

诚信声明本人郑重声明:本论文及其研究工作是本人在指导教师的指导下独立完成的,在完成论文时所利用的一切资料均已在参考文献中列出。
本人签名:年月日毕业设计任务书设计题目:基于MATLAB的双足步行机器人腿部运动模型的建立与运动仿真系部:机械工程系专业:机械电子工程学号:112012337学生:指导教师(含职称):(讲师)专业负责人:1.设计的主要任务及目标1)通过查阅有关资料,了解双足型机器人主要技术参数;2)双足型机器人的腿部模型建立及运动部件设计3)利用Pro/E完成动作的仿真2.设计的基本要求和内容1)双足型机器人的腿部功能选择;2)模型的建立;3)运动的仿真4)完成毕业设计说明书的撰写3.主要参考文献[1] 孙增圻.机器人系统仿真及应[ J ].系统仿真报,1995 ,7( 3 ):23-29.[2] 蒋新松,主编.机器人学导论[ M ].沈阳:辽宁:辽宁科学技术出版社,1994.[3] 蔡自兴.机器人学[ M ].北京:清华大学出版社,2000.[4] 薛定宇,陈阳泉.基于MATLAB/Simulink的系统仿真技术与应用[ M ].北京:清华大学出版社,20024.进度安排设计各阶段名称起止日期1 发放毕业设计题目及选题2015.03.03—2015.03.232 查阅文献,了解研究意义,完成开题报告2015.03.24—2015.04.133 编写说明书,已完成工作,完成中期答辩2015.04.14—2015.05.044 继续编写毕业设计说明书2015.05.01—2015.06.015 提交设计说明书,完成毕业答辩2015.06.02—2015.06.22审核人:年月日基于Matlab的双足步行机器人腿部运动模型的建立与运动仿真摘要:最近几年,双足仿人步行机器人发展很快,有很高的科学研究价值。
步行机器人的运动是模仿人的步行运动的形式,相比其它机器人有更好的灵活性,所以可以完成各种生活中的难度更大的任务,实用价值远高于其它机器人,当然研究难度和控制也相当复杂。
双足步行机器人论文

双足步行机器人目录第一章摘要 (3)第二章系统简介 (4)2.1系统方案 (4)2.2功能与指标 (4)2.3实现原理 (4)2.3.1机器人动作的实现 (4)2.3.2无线操控的实现 (5)2.3.3液晶屏实时显示机器人状态原理 (6)2.3.4自适应跌倒爬起原理 (6)2.4软件流程图 (8)第三章特色列举 (9)第四章技术说明 (9)第五章系统适用范围 (9)第一章摘要以ATMEGA12单片机为核心研制的双足步行机器人。
集无线远程操控,自适应站立,状态实时无线传输于一体。
本设计以创新为起点,以实用为目的,以方便服务人类生活为宗旨,符合社会发展需要。
关键字:ATMEGA128无线操控状态实时无线传输自适应跌倒爬起第二章系统简介2.1系统方案该机器人采用加藤伊朗架构,用舵机作为关节驱动,此机器人共有17个自由度,主要包含1个头部、1个躯干、2个手臂、2条腿。
以ATMEGA12单片机为核心控制模块,采用24路舵机驱动模块,通过核心板来控制驱动模块使每个舵机转动,从而实现机器人的一系列动作。
采用XL24L01无线传输模块,从而实现无线远程操控机器人和机器人的状态参数实时传输显示在液晶屏上。
采用MPU-6050三轴陀螺仪加速度传感器,用它来检测机器人跌倒时,实现自适应跌倒爬起。
2.2功能与指标(1)能够模拟人类的动作,站立,下蹲,行走等基本动作,还能实现跳舞,倒立,翻跟头等高难度动作。
(2)能够通过无线操作平台控制机器人做出相应的动作。
(3)能够将机器人状态通过无线传输实时显示在液晶屏上。
(4)机器人跌倒时,实现自适应跌倒爬起2.3实现原理2.3.1机器人动作的实现机器人采用加藤一郎架构,用舵机作为关节驱动,此机器人共有17个自由度。
舵机是一种位置伺服的驱动器。
它接收一定的控制信号,输出一定的角度,适用于那些需要角度不断变化并可以保持的控制系统。
在微机电系统和航模中,它是一个基本的输出执行机构。
其工作原理是:控制信号由接收机的通道进入信号调制芯片,获得直流偏置电压它内部有一个基准电路,产生周期一般为10ms,宽度为0.75ms的基准信号,将获得的直流偏置电压与电位器的电压比较,获得电压差输出。
毕业设计(论文)四足步行机器人设计说明书

毕业设计(论文)四足步行机器人设计说明书武汉理工大学毕业论文(设计)————————————————————————————————————————————摘要 ...................................... 4 1 绪论. (6)1.1综述 (6)1.2发展概况 (6)1.2.1国内发展概况 (7)1.2.2国外发展概况 (7)1.3课题背景 (8)1.4目的及意义 (8)1.5本文主要的研究工作 ................... 9 2 设计内容 (10)2.1理论依据 (10)2.2方案实施 (10)2.2.1方案比较: (12)2.2.2方案的选定 ..................... 12 3四杆机构的设计 (13)3.1基础理论知识 (13)3.1.1曲柄存在条件 (13)3.1.2急回运动特性和行程速比K (13)3.1.3压力角和传动角 (14)3.2轨迹设计 (15)3.3方案四杆机构的设计与计算 (16)3.3.1四杆尺寸 (16)武汉理工大学毕业论文(设计)————————————————————————————————————————————3.3.2最小传动角计算 (17)3.3.3步态分析 ....................... 18 4传动机构设计 (19)4.1传动方案及电机选择 (19)4.2同步带传动设计 (19)4.2.1确定计算功率 (19)4.2.2选择同步带型号 (20)4.2.3确定带轮齿数、和带轮节圆直径、 . 204.2.4验算带速 (20)4.2.5确定中心距和同步带节线长度及齿数 204.2.6作用在轴上的压力 ............... 21 5主轴组件设计 (22)5.1主轴组件的总体布置 (22)5.2主轴的结构设计 (22)5.2.1主轴的材料和热处理 (23)5.2.2初估轴径 (23)5.2.3轴的结构设计 (23)5.2.4轴的强度验算 ................... 25 6箱体设计 (27)6.1箱体材料的选择 (27)6.3箱体的加工 ......................... 28 7杆件布层 (30)武汉理工大学毕业论文(设计)————————————————————————————————————————————8操作与安装 .............................. 31 小结 ..................................... 32 致谢.................................... 34 参考文献 (35)武汉理工大学毕业论文(设计)————————————————————————————————————————————摘要在自然界或人类社会中,存在人类无法到达的地方和可能危及人类生命的特殊场合,如工地、防灾救援等许多领域,对这些复杂环境不断的探索和研究往往需要有机器人的介入。
四足仿生机器人毕业设计

摘要:本毕业设计旨在设计一款具有高度仿生特性的四足仿生机器人。
通过对动物运动机理的研究和分析,结合先进的机器人技术,构建出具备灵活运动、稳定行走以及适应复杂环境能力的机器人系统。
本文详细阐述了机器人的设计理念、结构设计、运动控制算法以及实验验证等方面的内容,旨在为四足仿生机器人的研究和应用提供有益的参考和借鉴。
一、概述随着机器人技术的不断发展,仿生机器人因其能够模拟生物的运动方式和行为特征而受到广泛关注。
四足仿生机器人作为仿生机器人的重要研究领域之一,具有广阔的应用前景,如军事侦察、灾害救援、科学探索等。
设计一款高性能的四足仿生机器人,对于推动机器人技术的发展和应用具有重要意义。
二、机器人设计理念(一)仿生目标本机器人的设计理念是以动物的四足运动方式为蓝本,力求实现机器人在行走、奔跑、攀爬等方面具有与动物相似的运动性能和灵活性。
(二)功能需求机器人具备稳定的行走能力,能够在不同地形上行走自如;具有快速的运动速度和敏捷的动作响应能力,能够适应复杂的环境变化;具备一定的负载能力,能够携带相关设备进行作业。
(三)结构设计原则结构设计遵循轻量化、紧凑化和可扩展性的原则,确保机器人具有良好的机动性和稳定性。
考虑到机器人的可维护性和可更换性,采用模块化的设计结构。
三、机器人结构设计(一)机械结构机器人的机械结构主要包括机身、腿部机构和驱动系统。
机身采用轻质材料制作,具有良好的强度和刚度,能够承受机器人的自重和外部载荷。
腿部机构采用模仿动物腿部的结构设计,包括髋关节、膝关节和踝关节等关节,通过电机驱动实现腿部的运动。
驱动系统包括电机、减速器、编码器等部件,为腿部机构提供动力和精确的运动控制。
(二)传感器系统为了实现机器人的自主运动和环境感知,机器人配备了多种传感器,包括编码器、陀螺仪、加速度计、压力传感器等。
编码器用于测量电机的转角和转速,陀螺仪和加速度计用于检测机器人的姿态和运动状态,压力传感器用于测量机器人腿部与地面的接触力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高职学生毕业设计题目:多足机器人行走机构设计学院: 机械自动化学院专业:学号:学生姓名:指导教师:日期:摘要本文旨在设计一种能够实现灵活、全方位运动的机器人的行走机构。
本文设计的多足步行机器人具有冗余驱动、运动拓扑的特点。
为实现其步行全方位机动性及作业多功能性,需要解决一系列的技术问题,而结构设计是其中的关键。
首先,对于国内外机器人的发展现状进行阐述和比较,并分析了多足机器人的研究趋势;接着,从机构自由度入手,明确设计思路,确定行走机构结构,对主要零件、构件进行设计,分析机构的受力情况,找出较危险的零件,并对其强度进行校核。
最后,初步研究了机器人的行动方式,拟定了简单的步态规划方案,规划了机器人直线行走步态、定点转弯步态。
关键词:多足机器人;机构自由度;行走机构;机构设计AbstractThis paper aims to design a travelling mechanism of a flexible and omnibearing motorial robot. The multiped walking robot referred to this paper has the characteristics of redandant drive and topological motion. In order to achieve its omnibearing walking mobility and working polyfunctionality, a series of technique questions need to resolved, of which the structural design is the key point.Firstly, the paper states the current situation of the robots development and compares the differences of the robots both domestic and overseas. Moreover ,it analyses the research trend of multiped robots. Secondly, it make clear of the designing ideas and confirm the travelling mechanism in terms of the structural variance,as well as designing the major parts and constuctional elements. Besides ,it analyses the stress state of the mechanism,trying to find out the rather dangerous parts and checking their intensity. Finally, it initially research the walking patterns of the robots and make out a simple tread program, which plans out the robot tread of linear walking and fixed point swerving.Keyword:Multiped robot;Degree of freedom;travelling mechanism;Mechanical design目录第一章绪论 (1)1.1 引言 (1)1.2国内外多足机器人发展概况 (1)1.3 多足机器人研究发展趋势 (3)第二章多足机器人行走机构的设计及校核 (5)2.1 多足机器人行走机构结构的拟定 (5)2.2 重要组件的设计及校核 (6)2.2.1 重要组件的选定 (6)2.2.2 圆柱凸轮的设计 (7)2.2.3 凸轮滚子轴的强度校核 (7)第三章其它部分设计 (9)3.1 电机和减速器的选用 (9)3.2 机器人步态初步规划 (9)设计总结 (11)参考文献 (12)致谢 (13)第一章绪论1.1 引言步行机器人是模仿动物的运动形式,采用腿式结构来完成多种移动功能的一类特种机起人。
参照工业机器人的标准定义,可以把步行机器人理解为“一种由计算机控制的用足机构推进的地面移动装置”以区别于行走式机械玩具及固定行走模式的机械装置。
通常足数多于或等于四的步行机器人称为多足步行机器人,该类机器人能够在不平的路面上稳定地行走,可以取代轮式车完成在一些复杂环境中的运输作业,因此多足步行机器人在军事运输及探测、矿山开采、水下建筑、核工业、星球探测、农业及森林采伐、教育、艺术及娱乐等许多行业有着非常广阔的应用前景。
长期以来,多足步行机器人技术一直是国内外机器人领域研究的热点之一。
为了探索多足步行机器人技术的研究前沿,给我国多足步行机器人工程实用化开发提供关键技术的支持,开展多足步行机器人相关理论和技术的研究具有十分重要的科学意义和应用价值。
1.2 国内外多足机器人发展概况多足步行车最早可以追溯到中国古代的“木牛流马”。
Muybridge在1899年用连续摄影的方法研究动物的行走,则是人们研究多足机器人步态的开端。
二十世纪六十年代,机器人技术的研究进入了以机械和液压控制实现运动的发展阶段。
美国的Shigley( 1960年)和Baldwin(1966年)就使用凸轮连杆机构设计出比轮式车或履带车更为灵活的步行机。
这一阶段比较典型的是美国的Mosher于1968年设计的四足车"Walking Truck"(如图1所示)[1],步行车的四条腿由液压伺服马达系统驱动,安装在驾驶员手臂和脚上的位置传感器完成位置检测功能。
虽然整机操作比较费力,但实现了步行及爬越障碍的功能,被视为是现代步行机发展史上的一个里程碑。
从步态规划及控制的角度来说,这种要人跟随操纵的步行机并没有体现步行机器人的实质性意义,只能算作是人操作的机械移动装置。
图1 四足车"Walking Truck"第二阶段,由于计算机大计算量的复杂数据处理能力的提高,机器人技术进入了全面发展的阶段。
1987年,K. J. Waldron等研制成功了ASV六足步行机器人;1989年,W.Whittake等成功研制了用于外星探测的六足机器人AMBLER;1993年1月,八足步行机器人DANTE用于对南极的埃里伯斯火山的考察,而后,其改进型DANTE-II也在实际中得到使用。
在航空领域,美国NASA研制了爬行机器人“spider-bot”;英国在1993研制了六足步行机器人“MARV”(如图2所示)[2];印度也于2002年研制了六足行走式机器人“舞王”,(如图3所示)[2]。
图2 六足步行机器人“MARV”图3 六足行走式机器人“舞王”第三阶段,多功能性和自主性的要求使得机器人技术进入新的发展阶段。
由于许多危险工作可以由机器人来完成,这就要求机器人不但要具备完成各种任务的功能,还必须有自适应的运动规划和控制性能。
所以,多足步行机器人的研究也进入了融合感知、规划和行动与交互的自主或与人共存的新一代机器人研究阶段。
在国内,中科院沈阳自动化研究所、清华大学、上海交通大学、哈尔滨工业大学、国防科技大学等单位和院校都先后开展了机器人技术的研究,并在多足步行机器人技术的发展上也取得了较大的成果。
但与工业机器人相比,三十多年来步行机器人的研究进展缓慢,除很少几台投入实际试用外,大多数研究开发工作基本上没有走出实验室。
制约多足步行机器人技术进一步发展的基础理论问题并没有得到根本的解决。
1.3 多足机器人研究发展趋势随着对多足步行机器人的研究的日益深入和发展,多足步行机器人在速度、稳定性、机动性和对地面的适应能力等方面的性能都将不断提高,自主化和智能化也将逐步的实现,从而使其能够在更多特殊环境和场合中使用,因而具有广阔的应用前景。
[1]纵览当前多足步行机器人的发展,多足步行机器人有以下几个值得关注的趋势:(1)多足步行机器人群体协作多个多足步行机器人协调合作共同完成某项任务。
与单个多足步行机器人相比,多个多足步行机器人的总负荷更大,可以携带的仪器和工具更多,功能性更强。
它们之间通过通信进行协调,也可以按照某种规则指定主机器人和从机器人,从而按照一定的队形和顺序对目标进行不同的测量和操作。
而当其中某一多足步行机器人出现故障时,其它机器人还可以照常工作,大大提高了工作效率和可靠性。
(2)多足步行机器人的智能化传统步态规划的方法是在机器人逆运动学的基础上,并且己知步行环境,来计算机器人各驱动关节转角的。
这就提出了在机器人对未知环境的识别后,具有普遍实用意义的智能化的自主步态规划生成及控制的研究,以及对机器人实现步行空间精度定位问题的研究。
(3)多足步行机器人的模块化和可重组针对不同的工作环境,机器人需要根据环境的变化对自己的姿态进行调整。
而模块化设计的多足步行机器人则可以根据环境的不同进行自重构。
自重构多足步行机器人比起固定结构的多足步行机器人对地形的适应性更强,可应用的场合更多。
因此,自重构机器人是多足步行机器人的发展方向之一。
第二章 多足机器人行走机构的设计及校核2.1 多足机器人行走机构结构的拟定步行机器人的机械部分是机器人所有控制及运动的载体,其结构特点直接决定了机器人的运动学特征,其性能的好坏也直接决定了功能可行性[4]。
多足步行机器人的机构系统主要包括机器人腿部件的布局、腿部件的结构形式、腿的数量等,而其中腿部件的结构形式是多足步行机器人机构的重要组成部分,是机械设计的关键之一。
因此,从某种意义上说,对多足步行机器人机构的分析主要集中在对其腿机构的分析。
一般地,从机器人结构设计要求看,腿机构不能过于复杂,杆件过多的腿机构形式会引起结构和传动的实现产生困难。
因此对多足步行机器人腿机构的基本要求可以归纳为:(1)实现运动的要求;(2)承载能力的要求;(3)结构实现和方便控制的要求。
为了设计行走机构的结构,我们首先引入空间自由的的概念:一个杆件(刚体),在空间上完全没有约束,那么它可以在3个正交方向上平动,还可以有三个正交方向的转动,那么就有6个自由度。
若在二维空间中有n 个完全不受约束的物体,选其中的一个为固定参照物,因每个物体相对参照物都有6个运动自由度,则n 个物体相对参照物共有6(n-1)个运动自由度,若在所有的物体之间用运动副联接起来,设第1个运动副的约束为u i 如果所有n 个物体之间的运动副数目为g ,这时的运动自由度应减去所有的约束数的总和。