九年级数学解直角三角形4

合集下载

湘教版数学九年级上册4.4《解直角三角形的应用》(第1课时)教学设计

湘教版数学九年级上册4.4《解直角三角形的应用》(第1课时)教学设计

湘教版数学九年级上册4.4《解直角三角形的应用》(第1课时)教学设计一. 教材分析湘教版数学九年级上册4.4《解直角三角形的应用》是本册教材中的一个重要内容。

在此之前,学生已经学习了直角三角形的性质、勾股定理等知识。

本节课主要让学生掌握解直角三角形的应用,即如何利用直角三角形的性质解决实际问题。

教材通过例题和练习题的形式,引导学生学会运用解直角三角形的方法解决生活中的问题,提高学生的数学应用能力。

二. 学情分析九年级的学生已经具备了一定的数学基础,对直角三角形的概念和性质有一定的了解。

但是,他们在解决实际问题时,往往不知道如何将数学知识运用到具体情境中。

因此,在教学过程中,教师需要引导学生将理论知识与实际问题相结合,提高学生的数学应用能力。

三. 教学目标1.知识与技能目标:使学生掌握解直角三角形的应用方法,能够运用所学知识解决实际问题。

2.过程与方法目标:通过观察、操作、思考、交流等过程,培养学生解决问题的能力。

3.情感、态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作精神。

四. 教学重难点1.重点:解直角三角形的应用方法。

2.难点:如何将实际问题转化为直角三角形问题,并运用解直角三角形的方法解决。

五. 教学方法1.情境教学法:通过生活实例,引导学生发现问题,提出解决方案。

2.启发式教学法:教师提问,引导学生思考,激发学生的求知欲。

3.合作学习法:学生分组讨论,共同解决问题,培养团队合作精神。

六. 教学准备1.教师准备:教材、课件、黑板、直角三角板等教学工具。

2.学生准备:课本、练习本、直角三角板等学习工具。

七. 教学过程1.导入(5分钟)教师通过展示一些生活中的实际问题,如测量旗杆高度、房屋面积等,引导学生发现这些问题都可以通过解直角三角形来解决。

从而激发学生的学习兴趣,引入新课。

2.呈现(10分钟)教师展示教材中的例题,引导学生观察题干,分析问题。

然后,教师通过讲解,展示解直角三角形的步骤和方法。

湘教版数学九年级上册4.3《解直角三角形》教学设计

湘教版数学九年级上册4.3《解直角三角形》教学设计

湘教版数学九年级上册4.3《解直角三角形》教学设计一. 教材分析湘教版数学九年级上册4.3《解直角三角形》是本册教材中关于直角三角形知识的重要内容。

本节内容是在学生已经掌握了锐角三角函数和直角三角形的性质的基础上进行学习的,主要让学生了解解直角三角形的意义和作用,学会使用解直角三角形的方法,提高解决实际问题的能力。

教材通过引入直角三角形中的边长和角度的关系,引导学生利用已学的锐角三角函数知识来解决直角三角形中的问题。

教材内容由浅入深,逐步引导学生掌握解直角三角形的方法,同时注重培养学生的空间想象能力和解决实际问题的能力。

二. 学情分析九年级的学生已经具备了一定的数学基础,对直角三角形和锐角三角函数有一定的了解。

但是,学生对解直角三角形的理解和应用能力参差不齐,部分学生可能对解直角三角形的实际应用还存在一定的困难。

因此,在教学过程中,教师需要关注学生的个体差异,针对不同层次的学生进行有针对性的教学,引导学生理解解直角三角形的意义,提高学生解决实际问题的能力。

三. 教学目标1.知识与技能:让学生掌握解直角三角形的方法,能够运用解直角三角形解决实际问题。

2.过程与方法:通过观察、分析、归纳等方法,引导学生自主探索解直角三角形的规律,提高学生的空间想象能力和解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的合作意识和勇于挑战的精神。

四. 教学重难点1.重点:让学生掌握解直角三角形的方法,能够运用解直角三角形解决实际问题。

2.难点:引导学生理解解直角三角形的实际应用,提高学生解决实际问题的能力。

五. 教学方法1.情境教学法:通过生活实例引入解直角三角形的概念,激发学生的学习兴趣。

2.引导发现法:引导学生观察、分析、归纳解直角三角形的规律,培养学生的自主学习能力。

3.合作学习法:学生进行小组讨论,培养学生的合作意识和团队精神。

4.实践操作法:让学生通过动手操作,加深对解直角三角形的理解和应用。

人教版九年级数学下册课件《解直角三角形》PPT4公开课获奖课件百校联赛一等奖课件

人教版九年级数学下册课件《解直角三角形》PPT4公开课获奖课件百校联赛一等奖课件

b c
tan
A
A的对边 A的邻边
a b
例1 如图,在Rt△ABC中,∠C=90°, AC 2, BC 6
解这个直角三角形
A
解: tan A BC 6 3 AC 2
A 60
2
C
6
B
B 90 A 90 60 30
AB 2AC 2 2
例2 如图,在Rt△ABC中,∠B=35°,b=20,解这个直角三角形 (精确到0.1)
解:∠A=90°-∠B=90°-35°=55°
tan B b a
a
b tan B
20 tan 35
20 0.70
28.6
sin B b c
A
c
b
35°
20
B
a
C
你还有其他 措施求出c吗?
c
b sin B
20 sin 35
20 0.57
35.1
尽量选择原 始数据,防止
累积错误
练习
在Rt△ABC中,∠C=90°,根据下列条件解直角三角形;
(1)a = 30 , b = 20 ;
(2) ∠B=72°,c = 14.
B
A
c a=30
A b=20 C
c=14 b
72°
B aC
处理有关比萨斜塔倾斜旳问题.
设塔顶中心点为B,塔身中心线与垂直中心线旳夹角为A, 过B点向垂直中心线引垂线,垂足为点C(如图),在Rt△ABC 中,∠C=90°,BC=5.2m,AB=54.5m
b
c
(3)边角之间旳关系:
sin
A
A的对边 斜边
a c
Ca
B
cos

湘教版数学九年级上册《4.3 解直角三角形》教学设计2

湘教版数学九年级上册《4.3 解直角三角形》教学设计2

湘教版数学九年级上册《4.3 解直角三角形》教学设计2一. 教材分析湘教版数学九年级上册《4.3 解直角三角形》是学生在学习了三角形的性质、勾股定理的基础上进行学习的。

本节内容主要让学生掌握直角三角形的性质,学会用勾股定理解决实际问题,进一步培养学生的观察能力、思考能力和解决问题的能力。

二. 学情分析学生在学习本节内容前,已经掌握了三角形的性质、勾股定理等相关知识,具备一定的观察、思考和解决问题的能力。

但部分学生对直角三角形的性质和勾股定理的理解不够深入,解决实际问题的能力有待提高。

三. 教学目标1.理解直角三角形的性质,掌握用勾股定理解决实际问题的方法。

2.培养学生的观察能力、思考能力和解决问题的能力。

3.提高学生的数学素养,使学生在实际生活中能运用数学知识解决问题。

四. 教学重难点1.重点:直角三角形的性质,用勾股定理解决实际问题。

2.难点:如何引导学生发现直角三角形的性质,以及如何将实际问题转化为数学问题。

五. 教学方法1.情境教学法:通过生活实例引入直角三角形,激发学生的学习兴趣。

2.启发式教学法:引导学生发现直角三角形的性质,培养学生独立思考的能力。

3.实践教学法:让学生通过动手操作、解决实际问题,加深对知识的理解。

六. 教学准备1.教学课件:制作直角三角形的相关课件,包括图片、动画等。

2.教学素材:准备一些实际问题,用于引导学生运用勾股定理解决问题。

3.学生活动材料:为学生提供一些卡片,上面写有直角三角形的性质和勾股定理。

七. 教学过程1.导入(5分钟)利用课件展示一些生活中的直角三角形图片,如建筑物的角落、三角板等,引导学生关注直角三角形。

提问:“你们知道直角三角形的性质吗?”让学生回顾已学知识,为新课的学习做好铺垫。

2.呈现(10分钟)讲解直角三角形的性质,引导学生发现并总结直角三角形的特征。

通过课件展示直角三角形的特点,如直角边的平方和等于斜边的平方。

同时,给出勾股定理的公式。

湘教版数学九年级上册4.3《解直角三角形》教学设计

湘教版数学九年级上册4.3《解直角三角形》教学设计

湘教版数学九年级上册4.3《解直角三角形》教学设计一. 教材分析《解直角三角形》是湘教版数学九年级上册4.3的内容,这部分内容是在学生已经掌握了锐角三角函数和直角三角形的性质的基础上进行学习的。

本节课的主要内容有:了解解直角三角形的概念,学会用锐角三角函数解直角三角形,能运用解直角三角形的知识解决实际问题。

本节课的内容在数学学科中占有重要的地位,它不仅巩固了锐角三角函数的知识,而且为后续学习三角函数的图像和性质奠定了基础。

二. 学情分析九年级的学生已经具备了一定的数学基础,对锐角三角函数和直角三角形的性质有一定的了解。

但是,对于解直角三角形的概念和运用可能还不够熟练。

因此,在教学过程中,需要引导学生通过实际问题来理解和掌握解直角三角形的方法,提高他们运用数学知识解决实际问题的能力。

三. 教学目标1.了解解直角三角形的概念,掌握用锐角三角函数解直角三角形的方法。

2.能够运用解直角三角形的知识解决实际问题。

3.提高学生运用数学知识解决实际问题的能力,培养学生的逻辑思维能力。

四. 教学重难点1.重点:解直角三角形的概念,用锐角三角函数解直角三角形的方法。

2.难点:如何引导学生从实际问题中发现解直角三角形的规律,运用解直角三角形的知识解决实际问题。

五. 教学方法1.情境教学法:通过设计实际问题,引导学生理解和掌握解直角三角形的方法。

2.小组合作学习:学生在小组内讨论和分享解直角三角形的方法,培养学生的合作意识和团队精神。

3.案例教学法:通过分析具体的案例,让学生理解解直角三角形的应用。

六. 教学准备1.准备相关的实际问题,用于引导学生理解和掌握解直角三角形的方法。

2.准备解直角三角形的案例,用于分析和讲解。

3.准备黑板和粉笔,用于板书。

七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考如何求解直角三角形的边长。

例如,一个直角三角形的两个锐角分别是30度和60度,求这个三角形的斜边长。

2.呈现(10分钟)呈现相关的实际问题,让学生独立思考和解决问题。

初三数学利用三角函数解直角三角形含答案

初三数学利用三角函数解直角三角形含答案

解直角三角形中考要求知识要点模块一 解直角三角形一、解直角三角形的概念根据直角三角形中已知的量(边、角)来求解未知的量(边、角)的过程就是解直角三角形. 二、直角三角形的边角关系如图,直角三角形的边角关系可以从以下几个方面加以归纳: (1)三边之间的关系:222a b c += (勾股定理) (2)锐角之间的关系:90A B ∠+∠=︒(3)边角之间的关系:sin cos ,cos sin ,tan a b aA B A B A c c b=====三、解直角三角形的四种基本类型(1)已知斜边和一直角边(如斜边c ,直角边a ),由sin aA c=求出A ∠,则90B A ∠=︒-∠,b =; (2)已知斜边和一锐角(如斜边c ,锐角A ),求出90B A ∠=︒-∠,sin a c A =,cos b c A =; (3)已知一直角边和一锐角(如a 和锐角A ),求出90B A ∠=︒-∠,tan b a B =,sin ac A=; (4)已知两直角边(如a 和b ),求出c =tan aA b=,得90B A ∠=︒-∠. 具体解题时要善于选用公式及其变式,如sin a A c =可写成sin a c A =,sin a c A=等. 四、解直角三角形的方法解直角三角形的方法可概括为:“有斜(斜边)用弦(正弦,余弦),无斜用切(正切,余切),宁乘毋除,取原避中”.这几句话的意思是:当已知或求解中有斜边时,就用正弦或余弦;无斜边时,就用正切或余切;当所求的元素既可用乘法又可用除法时,则用乘法,不用除法;既可由已知数据又可用中间数据求得时,则用原始数据,尽量避免用中间数据. 五、解直角三角形的技巧及注意点在Rt ABC ∆中,90A B ∠+∠=︒,故sin cos(90)cos A A B =︒-=,cos sin A B =.利用这些关系式,可在解题时进行等量代换,以方便解题.cb CBA六、如何解直角三角形的非基本类型的题型对解直角三角形的非基本类型的题型,通常是已知一边长及一锐角三角函数值,可通过解方程(组)来转化为四种基本类型求解;(1)如果有些问题一时难以确定解答方式,可以依据题意画图帮助分析;(2)对有些比较复杂的问题,往往要通过作辅助线构造直角三角形,作辅助线的一般思路是:①作垂线构成直角三角形;②利用图形本身的性质,如等腰三角形顶角平分线垂直于底边等.例题精讲【例2】 如图所示,O 的直径4AB =,点P 是AB 延长线上的一点,过P 点作O 的切线,切点为C ,连接AC .(1)若30CPA ∠=︒,那么PC 的长为 .为O 的切线,tan303=︒的大小没有变化七、直角三角形中其他重要概念(1)仰角与俯角:在视线与水平线所成的角中,视线在水平线上方的叫做仰角,在水平线下方的叫做俯角.如图⑴.(2)坡角与坡度:坡面的垂直高度h 和水平宽度l 的比叫做坡度(或叫做坡比),用字母表示为h i l=,坡面与水平面的夹角记作α,叫做坡角,则tan hi lα==.坡度越大,坡面就越陡.如图⑵. (3)方向角(或方位角):方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达为北(南)偏东(西)××度.如图⑶.八、解直角三角形应用题的解题步骤及应注意的问题:(1)分析题意,根据已知条件画出它的平面或截面示意图,分清仰角、俯角、坡角、坡度、水平距离、垂直距离等概念的意义;(2)找出要求解的直角三角形.有些图形虽然不是直角三角形,但可添加适当的辅助线,把它们分割成一些直角三角形和矩形(包括正方形);(3)根据已知条件,选择合适的边角关系式解直角三角形;(4)按照题目中已知数据的精确度进行近似计算,检验是否符合实际,并按题目要求的精确度取近似值,注明单位. (一)仰角与俯角图(3)北图(2)图(1)俯角仰角视线视线水平线铅垂线30,400DCB CD ∠=︒=米),测得A 的仰角为60︒,求山的高度AB .【答案】作DE AB ⊥于E ,作DF BC ⊥于F ,在Rt CDF ∆中30400DCF CD ∠=︒=,米,1sin304002002DF CD =⋅︒=⨯=(米)cos30400CF CD =⋅︒=米) 在Rt ADE ∆中,60ADE ∠=︒,设DE x =米, ∴tan 60AE x =︒⋅(米)在矩形DEBF 中,200BE DF ==米,在Rt 45ACB ACB ∆∠=︒中,,∴AB BC =, 200x +=,解得200x =,∴200AB AE BE =+=()米【巩固】如图,某电信部门计划架设一条连结B C ,两地的电缆,测量人员在山脚A 地测得B C , 两地在同一方向,且两地的仰角分别为3045︒︒,,在B 地测得C 地的仰角为60︒,已知C 地比A 地高200米,且由于电缆的重力导致下坠,实际长度是两地距离的1.2倍,求电缆的长(精确到0.1米)【解析】过点C 作CH AD ⊥于H ,过B 作BE AH ⊥于E ,BF CH ⊥于F ,由题意得604530CBF CAH BAH ∠=︒∠=︒∠=︒,,200CH m =, 设BC x =米,在Rt BFC ∆中,由cos BF CBF BC ∠=,sin CFCBF BC∠=1cos sin 2BF BC CBF x CF BC CBF =∠==∠=,,易得 FE D BCADCB AACH ∆是等腰直角三角形,所以200AH CH ==,从而12002002AE AH EH x BE FH =-=-==,,在Rt ABE ∆中,tan30BE AE =︒,由此得12002002x ⎫=-⎪⎝⎭,解得200146.4x =≈,根据题意,电缆的实际长度约为 146.4 1.2175.7⨯≈米【答案】175.7(二)坡度与坡角图所示).已知图纸上的图形是某建筑物横断面的示意图,它是以圆O 的半径OC 所在的直线为对称轴的轴对称图形,A 是OD 与圆O 的交点.(1)请你帮助小王在下图中把图形补画完整;(2)由于图纸中圆O 的半径r 的值已看不清楚,根据上述信息(图纸中1:0.75i =是坡面CE 的坡度),求r 的值.【答案】(1)图形补全如右图所示:O CA(2) ∵1:0.754:3i ==∴:4:3CH EH =在Rt CHE ∆中,5CE = ∴43CH EH ==, ∴437DH DE EH =+=+= 在Rt ODH ∆中,222HO DH OD += 即()()222477r r ++=+,解得83r =.(三)方向角【例8】 如图,AC 是某市环城路的一段,AE BF CD ,,都是南北方向的街道,其与环城路AC 的交叉路口分别是A B C ,,.经测量花卉世界D 位于点A 的北偏东45︒方向、点B 的北偏东30︒方向上, 2AB km =,15DAC ∠=︒.(1)求B D ,之间的距离; (2)求C D ,之间的距离.【解析】(1)如图,由题意得,4530EAD FBD ∠=︒∠=︒,.∴ 451560EAC EAD DAC ∠=∠+∠=︒+︒=︒. ∵ AE BF CD ∥∥, ∴ 60FBC EAC ∠=∠=︒. ∴ 30DBC ∠=︒.又∵ DBC DAB ADB ∠=∠+∠, ∴ 15ADB ∠=︒.∴ DAB ADB ∠=∠. ∴ 2BD AB ==. 即B D ,之间的距离为2km .(2)过B 作BO DC ⊥,交其延长线于点O 在Rt DBO ∆中,260BD DBO =∠=︒,.∴2sin 6022cos60DO BO =⨯︒===⨯︒ 在Rt CBO ∆中,30tan30CBO CO BO ∠=︒=⋅︒, ∴CD DO CO =-==km ). 即C D ,之间的距离为km 【答案】(1)之间的距离为2km ; (2)之间的距离为km .332B D ,C D ,332和平路文化路中山路30°15°45°FEDCBA 和平路文化路中山路ABC DEF45°15°30°O【巩固】台风是一种自然灾害,它以台风中心为圆心,在周围数十千米范围内形成气旋风暴,有极强的破坏力.据气象观测,距沿海某城市A 的正南方向220km 的B 处有一台风中心,其中心最大风力为12级,每远离台风中心20km ,风力就减弱一级,该台风中心现在以15km/h 的速度沿北偏东30︒方向往C 移动,且台风中心风力不变,若城市所受风力达到四级,则称受台风影响. (1)该城市是否会受这次台风影响?请说明理由.(2)若受台风影响,那么台风影响该城市的持续时间会有多长? (3)该城市受台风影响的最大风力是几级?【答案】⑴ 过A 作AD BC ⊥于D ,∵220AB =,30B ∠=︒, ∴110AD =由题意A 距台风中心不超过(124)20160-⨯=km 时,将会受到台风影响, ∴该城市会受到台风影响.⑵ 在BD 上取点E ,DC 上取点F ,使160AE AF ==,则由题意知:台风中心到达点E 时,该城市即开始受台风影响;台风中心到达点F 时,该城市即结束影响.由勾股定理得,DE∴EF =∵该台风中心以15km/h 的速度移动, ∴=. ⑶ 当台风中心位于D 时,A 市所受这次台风影响的风力最大,其最大风力为11012 6.520-=级(四)其它【例9】 小明发现在教学楼走廊上有一拖把以15︒的倾斜角斜靠在栏杆上,严重影响了同学们的行走安全.他自觉地将拖把挪动位置,使其的倾斜角为75︒,如果拖把的总长为1.80m ,则小明拓宽了行路通道_________m .(结果保留三个有效数字,参考数据:sin150.26︒≈,cos150.97︒≈)【解析】在Rt ABO ∆中,可求得cos15 1.80.97 1.75AO AB =⋅︒=⨯≈米,在Rt CDO ∆中,可求得sin150.468DO AB =⋅︒≈米 ∴ 1.750.468 1.28AD =-=米【答案】1.28米【巩固】如图1,一架长4米的梯子AB 斜靠在与地面OM 垂直的墙壁ON 上,梯子与地面的倾斜角α为60︒.(1)求AO 与BO 的长;(2)若梯子顶端A 沿NO 下滑,同时底端B 沿OM 向右滑行.① 如图2,设A 点下滑到C 点,B 点向右滑行到D 点,并且:2:3AC BD =,试计算梯子顶端A 沿NO 下滑多少米;② 如图3,当A 点下滑到'A 点,B 点向右滑行到'B 点时,梯子AB 的中点P 也随之运动到'P 点.若'15POP ∠=︒,试求'AA 的长.【答案】⑴ Rt AOB ∆中,90O ∠=︒,60α∠=︒∴30OAB ∠=︒,又4AB =米, ∴122OB AB ==米.sin 604OA AB =⋅==米 ⑵ 设2AC x =,3BD x =,在Rt COD ∆中,2OC x =,23OD x =+,4CD =根据勾股定理:222OC OD CD +=∴()()2222234xx ++=∴(213120x x +-=∵0x ≠∴13120x +-,∴x =2AC x == 即梯子顶端A 沿NO米 ⑶ ∵点P 和点P '分别是Rt AOB ∆的斜边AB 与Rt ''A OB ∆的斜边''A B 的中点∴PA PO =,'''P A P O = ∴PAO AOP ∠=∠,P A O A OP ''''∠=∠ ∴P A O PAO A OP AOP ''''∠-∠=∠-∠ ∴15P A O PAO POP '''∠-∠=∠=︒∵30PAO ∠=︒,∴45P A O ''∠=︒∴cos454A O A B '''=⨯︒==∴AA OA A O ''=-=米【例10】 关于三角函数有如下的公式:sin()sin cos cos sin αβαβαβ+=+ cos()cos cos sin sin αβαβαβ+=-tan tan tan()(1tan tan 0)1tan tan αβαβαβαβ++=-⋅≠-⋅利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值,如图1图2图3tan 45tan 60tan105tan(4560)(21tan 45tan 60︒+︒︒=︒+︒===--︒⋅︒根据上面的知识,你可以选择适当的公式解决下面实际问题:如图,直升飞机在一建筑物CD 上方A 点处测得建筑物顶端D 点的俯角α为60︒,底端C 点的俯角β为75︒,此时直升飞机与建筑物CD 的水平距离BC 为42米,求建筑物CD 的高. 【解析】过点D 作DE AB ⊥于E ,依题意在Rt ADE △中,60ADE α∠=∠=︒,tan 60tan 60AE ED BC =⋅︒=⋅︒=.在Rt ACB △中,75tan75ACB AB BC β∠=∠=︒=⋅︒, ∵tan 45tan 30tan 75tan(4530)21tan 45tan 30︒+︒︒=︒+︒==-︒⨯︒∴42(284AB =⨯+=+∴8484CD BE AB AE ==-=+(米)【答案】建筑物的高为84米.课堂检测1. (2011•遵义)某市为缓解城市交通压力,决定修建人行天桥,原设计天桥的楼梯长6AB cm =,45ABC ∠=︒,后考虑到安全因素,将楼梯脚B 移到CB 延长线上点D 处,使30ADC ∠=︒(如图所示) (1)求调整后楼梯AD 的长; βαDCBAE βαDCBAACB∠=.【解析】过点C作CD PB∥,则6045ACD BCD∠=︒∠=︒,所以6045105ACB∠=︒+︒=︒【答案】105°课后作业水坡CD 的坡度为2,坝高CF 为2m ,在坝顶C 处测得杆顶A 的仰角为30︒,D 、E 之间是宽为2m 的人行道,试问:在拆除电线杆AB 时,为确保行人安全,是否需要将此人行道封上?请说明理由(在地面上,以点B 为圆心.以AB 的长为半径的圆形区域为危险区域).【解析】过点C 作CH AB ⊥于点H ,得矩形HBFC 连接DF∵21CF DF =,2CF =(m) ∴1DF =(m)∴2CF HB ==(m),15HC BF ==(m) 在Rt AHC ∆中,tan3015tan30AH HC =⋅︒=⨯︒=,∵210.66(m)AB AH HB =+=≈ 12(m)BE BD ED =-=F E人行道DCB AFE人行道30︒H DCBA∴,AB BE∴不需将此人行道封上.【答案】不需将此人行横道封上。

九年级数学上册23-2解直角三角形及其应用第4课时坡度问题及一次函数k的几何意义课件新版沪科版

九年级数学上册23-2解直角三角形及其应用第4课时坡度问题及一次函数k的几何意义课件新版沪科版

解:如图,过点 A 作 AE⊥BC 于点 E,过点 D 作 DF⊥BC 于点 F.
在 Rt△ABE 中,sin∠ABE=AAEB, ∴AE=ABsin∠ABE=6sin74°≈5.77.
cos∠ABE=BAEB, ∴BE=ABcos∠ABE=6cos74°≈1.65.
∵AH∥BC,∴DF=AE≈5.77.
解:过点作CF⊥AD于点F,得
CF=BE,EF=BC,∠A=α,∠D=β.
∵ BE=5.8 m BE 1 , CF 1 ,
BC
AE 1.6 DF 2.5 i=1:1.6
∴ AE=9.28 m ,DF=14.5 m. A α E F
∴ AD=AE+EF+DF=9.28+9.8+14.5≈33.6 m.
(2) 坝底AD与斜坡AB的长度 (精确到0.1m).
6
B
C
i=1:3 A
E
i=1:2.5 23 α FD
解:分别过点B、C作BE⊥AD,CF⊥AD,垂足分别
为点E、 F,由题意可知BE=CF=23m , EF=BC=6m.
在Rt△ABE中,
i BE 1,AE 3BE 323 69m.
AE 3
h 水平面
2. 坡度 (或坡比) 如图所示,坡面的铅垂高度 (h) 和水平长度 (l) 的比 叫做坡面的坡度 (或坡比),记作i, 即 i = h : l . 坡度通常写成 1∶m的形式,如i=1∶6.
3. 坡度与坡角的关系
i h tan
l
即坡度等于坡角的正切值.
坡面
i= h : l
h
α
l 水平面
在 Rt△BDF 中,tan∠DBF=DBFF,
∴BF=tan∠DFDBF≈ta5n.5757°≈4.04.

华师大版数学九年级上册《解直角三角形》说课稿4

华师大版数学九年级上册《解直角三角形》说课稿4

华师大版数学九年级上册《解直角三角形》说课稿4一. 教材分析华师大版数学九年级上册《解直角三角形》这一节的内容是在学生已经学习了锐角三角函数的基础上进行的。

这部分内容主要让学生了解直角三角形的性质,掌握解直角三角形的方法,以及熟练运用解直角三角形的知识解决实际问题。

教材从生活实际出发,通过让学生观察和分析实际问题,引出直角三角形的性质和解直角三角形的方法。

然后,通过例题和练习题的讲解和练习,使学生掌握解直角三角形的方法,并能够运用到实际问题中。

二. 学情分析学生在学习这一节内容时,已经掌握了锐角三角函数的知识,对三角函数有一定的理解。

但是,对于解直角三角形的方法和应用,可能还比较陌生。

因此,在教学过程中,需要引导学生从生活实际出发,理解直角三角形的性质和解直角三角形的方法,并通过大量的练习,使学生能够熟练掌握解直角三角形的方法,并能够运用到实际问题中。

三. 说教学目标教学目标主要包括三个方面:知识与技能、过程与方法、情感态度与价值观。

1.知识与技能:使学生了解直角三角形的性质,掌握解直角三角形的方法,能够熟练运用解直角三角形的知识解决实际问题。

2.过程与方法:通过观察、分析实际问题,引导学生发现直角三角形的性质,学会解直角三角形的方法,培养学生的逻辑思维能力和解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作精神,使学生感受到数学在生活中的应用,培养学生的创新精神和实践能力。

四. 说教学重难点教学重点是使学生掌握解直角三角形的方法,并能够熟练运用到实际问题中。

教学难点是引导学生发现直角三角形的性质,理解解直角三角形的方法。

五. 说教学方法与手段在教学过程中,我会采用问题驱动法、案例教学法和小组合作法等教学方法。

同时,利用多媒体教学手段,如PPT、视频等,帮助学生更好地理解和掌握知识。

六. 说教学过程1.导入:通过展示一些生活中的实际问题,引导学生观察和分析,引出直角三角形的性质和解直角三角形的方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
500必发指数
[单选]我国目前采用超率累进税率的是()。A.土地增值税B.个人所得税C.企业所得税D.消费税 [多选]建筑节能分部工程的质量验收,应在检验批、分项工程全部合格的基础上,进行()。A.建筑围护结构的外墙承载实体检验B.夏热冬冷地区的外窗气密性现场检测C.系统节能性能检测D.节能工艺检验E.系统联合试运转与调试 [填空题]执行机构绝缘电阻应合格,通电试合时动作平衡,开度指示()。 [单选]一定体积的容器中,空气压力().A、与空气密度和空气温度乘积成正比B、与空气密度和空气温度乘积成反比C、与空气密度和空气绝对湿度乘积成反比D、与空气密度和空气绝对温度乘积成正比 [单选]下列情形中,会使企业提高股利支付水平的是()。A.市场竞争加剧,企业收益的稳定性减弱B.企业财务状况不好,无力偿还负债C.经济增长速度减慢,企业缺乏良好的投资机会D.企业的举债能力不强 [单选]下列不属于招标采购合同基本法律特点的是()。A.招标采购合同是一种民事法律行为B.招标采购合同是一种刑事法律行为C.招标采购合同是合同当事人意思表示一致的协议D.招标采购合同以设立、变更、终止民事权利义务关系为目的 [单选]在关系中,"元数"(Arity)是指()A.行数B.元组个数C.关系个数D.列数 [单选]胎盘合成的激素不包括().A.雌激素B.孕激素C.HPLD.HCGE.肾上腺皮质激素 [多选]铝土矿的类型有()。A、三水铝石型B、一水软铝石型C、一水硬铝石型D、混合型 [名词解释]种子安全含水量 [单选]根据《中华人民共和国消防法》的规定,新研制的尚未制定国家标准、行业标准的消防产品,应当按照国务院产品质量监督部门会同国务院公安部门规定的办法,经符合消防安全要求的,方可生产、销售、使用。()A、产品鉴定B、质量鉴定C、技术鉴定D、成果鉴定 [单选]某一耐张距为()。A、200mB、300mC、316mD、327m [单选]局部浸润麻醉选用普鲁卡因时,其常用浓度为()A.0.5%B.1%C.1.5%D.2%E.2.5% [单选]MRI与CT相比,下述颅脑成像优点中,哪项不对()A.无辐射损伤B.颅内病变定位、定性价值高C.直接多方位成像D.对中颅窝底、后颅窝病变价值高E.对钙化、急性出血敏感 [单选]()是用来寻找点、线、面的工具。A.辅助角度导航B.辅助坐标导航C.辅助百分比导航D.辅助微调导航 [多选]对于安装工程施工图预算,可采用()编制单位工程施工图预算。ABCD [问答题,简答题]货运检查作业基本程序中计划安排和准备有何规定? [单选]开车前不需要对()进行确认。A、装置的吹扫、气密、水联运等试验B、机、电、仪等完好备用C、交接班本和原始记录D、以上答案都不对 [单选,A1型题]具有化湿解暑功效的化湿药物是()A.苍术B.佩兰C.豆蔻D.砂仁E.草豆蔻 [多选]出现干酪样坏死的疾病有A.结核病B.伤寒C.梅毒D.麻风E.阿米巴病 [单选]在放射免疫分析法(RIA)检测中其结合率用B/(B+F)表示,其意义是()A.结合态的标记抗原与总的标记抗原之比B.结合态的标记抗原与游离的标记抗原之比C.总标记抗原与抗原抗体复合物之比D.结合态的抗原与总的抗原之比E.结合态的抗原与总的抗原之比 [单选]《注册消防工程师制度暂行规定》也明确把()作为注册消防工程师必须履行的义务。A.提高技能B.保守秘密C.依法执业D.公平竞争 [单选]后卸式铲斗装岩机行走方式目前多采用()。A.履带式B.轨轮式C.轮胎式D.履带轮胎式 [多选]施工现场在电缆线路通过时应用套钢管进行保护的部位()。A.电缆过墙部位B.电缆过道部位C.通过消防箱时D.通过现场配电箱时E.电缆过临建设施时 [单选]气割的优点是()。A.设备简单灵活B.对切口两侧金属的成分和组织不会产生影响C.不会引起被割工件的变形D.对所有金属均可进行气割 [单选]下列骨折最容易发生骨筋膜室综合征的是()A.锁骨骨折B.肱骨干骨折C.桡骨远端骨折D.肱骨髁上伸直型骨折E.尺骨上1/3骨折 [单选]关于抗磷脂综合征,哪项叙述不准确()。A.抗磷脂综合征诊断的确立必须同时具备临床表现和持续的抗磷脂抗体阳性B.SLE患者和类风湿关节炎患者均可出现抗磷脂抗体阳性C.应根据抗磷脂抗体的滴度对患者的病情进行评估,并进行相应处理D.网状青斑为抗磷脂综合征的非特征性临床表 [单选]列检所用于的管理的设备,须具备数据采集、资料统计、分析和()等功能。A、先进、成熟B、先进、实用C、方案科学D、方案优化 [单选,A2型题,A1/A2型题]下列抗体中是Graves病的直接致病原因的是().A.TSAbB.TSBAbC.TGID.TPOAbE.TgAb [单选]图示静定梁及Mc的影响线,当梁承受全长向下均布荷载作用时,则弯矩Mc的值为:()A.Mc>0B.Mc<0C.Mc=0D.Mc不定,取决于a值 [单选]制作询问笔录,下列说法错误的是()。A、可以有三名火灾调查人员参加询问B、对于被询问对象的陈述要按照其本人的语气记录,不能作任何修饰、概括和修改。C、被询问对象请求自行书写陈述的,不应准许。D、询问笔录应该按顺序逐页编号,并由被询问对象逐页签名或者捺指印。 [单选,A2型题,A1/A2型题]关于米氏常数,描述正确的是().A.与酶性质无关B.与酶浓度无关C.与底物浓度有关D.与酶浓度有关E.对不同底物具有相同的值 [多选,案例分析题]李师傅,男,50岁。是一名采矿工人。工龄30年,胸闷10年,近1个月加重,出现气短,呼吸困难,轻微胸痛,在双下胸部,阵发性,查体:双肺听诊呼吸音降低,两下肺细小干湿啰音,心律齐,未闻及病理性杂音。分析该患者为长期吸入什么物质所致()。A.二氧化硅B.二氧 [单选]关于传播途径的描述,下列错误的是()A.传染途径既可是单一因素,也可是外界多种因素组成B.手、玩具既可传播消化道传染病,也可传播呼吸道传染病C.传播传染病的节肢动物是中间宿主D.血液、血制品是乙型肝炎、丙型肝炎等的最主要传播途径E.破伤风通过未经严格消毒的刀、剪传 [单选]下列关于会计主体,说法不正确的是()。A.会计主体是指会计信息所反映的特定单位B.会计主体也称为会计实体、会计个体C.会计主体不同于法律主体D.会计主体一定是法律主体 [单选]男性,50岁。拟明日上午8时腰麻下行斜疝修补术。护士告诉病人禁食的时间是().A.今晚8时开始B.今晚9时开始C.今晚10时开始D.今晚12时开始E.明早禁食 [单选]带电粒子在某一长度径迹上消耗的能量与该径迹在光电效应中,γ光子()A.通过多次散射失去能量B.失去的能量等于光子能量减去结合能C.失去一半能量D.失去全部能量E.损失的能量与物质密度有关长度之比是() [单选]农业税于()年全部取消。A.2001B.2003C.2004D.2006 [单选]患者,3岁,发现瞳孔区黄白色反光。眼底检查发现玻璃体浑浊。结合超声声像图,最可能的诊断是()A.视网膜母细胞瘤B.新生儿视网膜脱离C.原始玻璃体增生症D.先天性白内障E.玻璃体后脱离 [单选,A2型题,A1/A2型题]下列化学发光酶免疫分析特点中错误的是()A.属于酶免疫测定范畴B.整个反应无需固相载体参加,完全液态化C.酶标记抗原或抗体结合稳定D.酶催化发光剂发出的光稳定,持续时间长E.最后一步将底物改为发光剂和测定的仪器为光信号检测仪
相关文档
最新文档