有理数(正数与负数――有理数的加减混合运算)复习
(完整word版)有理数和代数式的复习

有理数一(一)、正数和负数1、负数的意义负数是由实际的需要而产生的,如:某地气温是8℃,由于强冷空气南下,气温下降了12℃,则该地区这时的实际气温是(8-12)℃,但在算术中这个差是不存在的,实际上这个气温是客观存在的,为了解决这个“不够减”的矛盾,引入一个新数——负数,即(8-12)℃=-4℃,表示零下4℃.2、相反意义的量与正数为了表示具有相反意义的量,把其中一种意义的量规定为正,另一种与它意义相反的量规定为负,正的量记为“+”,如+6,+2。
5,…叫正数;负的量记做“-”,像-4,-6这类带有负号的数叫负数;“0”既不是正数,也不是负数,是正数与负数的界限,规定零是最小的自然数。
自然界有许多具有相反意义的量,如上升与下降,向东与向西、盈余与亏损等都可以用正负数来表示.3、有理数的概念及分类4、字母a的意义用字母 a表示有理数时:(1)a〉0时,a表示正数,-a表示负数;(2)a<0时,a表示负数,-a表示正数.(3)a≥0时,a表示非负数.(二)、数轴1、数轴的意义数轴是一种特定几何图形;原点、正方向、长度单位称数轴的三要素,这三者缺一不可.2、数轴的画法3、利用数轴比较有理数大小.建立了数轴后,就可以用数轴上的点表示有理数,原点表示的数是0,正有理数用原点右边的点表示,负有理数用原点左边的点表示,即用数轴上的点表示有理数的口诀为:左负右正,原为零,所有的有理数都可在数轴上找到对应的点。
由数轴知,数轴上的两个有理数中,右边的数总比左边的数大,因此有理数大小比较的规律是:正数大于 0,零大于一切负数,负数小于零,正数大于一切负数。
(三)、相反数1、相反数的意义(1)代数意义:只有符号不同的两个数叫互为相反数,其中一个数叫另一个数的相反数,0的相反数是0。
(2)几何意义:在数轴上的原点两旁,离原点的距离相等的两个点所表示的数互为相反数。
(3)性质:互为相反数的和为0,即a+b=0a、b两数互为相反数。
有理数和代数式的复习

有理数一(一)、正数和负数1、负数的意义负数是由实际的需要而产生的,如:某地气温是8℃,由于强冷空气南下,气温下降了12℃,则该地区这时的实际气温是(8-12)℃,但在算术中这个差是不存在的,实际上这个气温是客观存在的,为了解决这个“不够减”的矛盾,引入一个新数——负数,即(8-12)℃=-4℃,表示零下4℃.2、相反意义的量与正数为了表示具有相反意义的量,把其中一种意义的量规定为正,另一种与它意义相反的量规定为负,正的量记为“+”,如+6,+2.5,…叫正数;负的量记做“-”,像-4,-6这类带有负号的数叫负数;“0”既不是正数,也不是负数,是正数与负数的界限,规定零是最小的自然数.自然界有许多具有相反意义的量,如上升与下降,向东与向西、盈余与亏损等都可以用正负数来表示.3、有理数的概念及分类4、字母a的意义用字母 a表示有理数时:(1)a>0时,a表示正数,-a表示负数;(2)a<0时,a表示负数,-a表示正数.(3)a≥0时,a表示非负数.(二)、数轴1、数轴的意义数轴是一种特定几何图形;原点、正方向、长度单位称数轴的三要素,这三者缺一不可.2、数轴的画法3、利用数轴比较有理数大小.建立了数轴后,就可以用数轴上的点表示有理数,原点表示的数是 0,正有理数用原点右边的点表示,负有理数用原点左边的点表示,即用数轴上的点表示有理数的口诀为:左负右正,原为零,所有的有理数都可在数轴上找到对应的点.由数轴知,数轴上的两个有理数中,右边的数总比左边的数大,因此有理数大小比较的规律是:正数大于 0,零大于一切负数,负数小于零,正数大于一切负数.(三)、相反数1、相反数的意义(1)代数意义:只有符号不同的两个数叫互为相反数,其中一个数叫另一个数的相反数,0的相反数是0.(2)几何意义:在数轴上的原点两旁,离原点的距离相等的两个点所表示的数互为相反数.(3)性质:互为相反数的和为0,即a+b=0a、b两数互为相反数.(4)符号:在一个数前面加“-”号表示这个数的相反数,如数a的相反数是-a.2、多重符号的化简化简带有多重符号的数的关键是结合数轴理解相反数,按由内到外的顺序去括号,如:- [-(-3)]=-(+3)=-3.(四)、绝对值1、绝对值的意义:一个数a的绝对值,就是数轴上表示数a的点与原点的距离,记作|a|.(1)绝对值的代数意义是一个正数的绝对值是正数,负数的绝对值是它的相反数,0的绝对值是0.(2)绝对值的几何意义:一个数的绝对值表示的是这个数离开原点的距离,记做|a|,离原点越远,数的绝对值越大.(3)绝对值是非负数,即|a|≥0.互为相反数的两数绝对值相等:|a|=|-a|.2、绝对值的求法:在处理绝对值符号时,应首先确定绝对值里面的数的正、负性,若是非负数,则直接去掉绝对值符号;若是负数,则去掉绝对值符号后,前面加负号,即二、重、难点剖析本部分的难点是数轴和绝对值,下面就这两个知识点进行讲解 .例 1、如图所示,所画的数轴正确的是()例 2、(1)指出数轴上的点A、B、C、D、E各表示什么数.例 3、(1)已知|a|=4,|b|=3,且a<b,求的值.(2)若a与b同号,求的值.例 4 、根据一个有理数的绝对值的非负性回答:(1)若|x|=-x,求x的取值范围;(2)若|m-n|=n-m,求m与n的大小关系.(3)若|x-2|+|y-4|=0,求x2+y2的值.一、重点知识归纳及讲解1、数轴我们进初中以后学到的一个重要概念,我们知道有理数均可以用数轴上的点来表示,结合数轴,还可以更深刻地理解相反数的意义:从数轴上看,在数轴上原点的两旁,到两原点距离相等的两个点所表示的两个数是互为相反数,其中包含着0的相反数是0的道理.一个数的绝对值的意义,更离不开“数轴”这个工具,我们知道在数轴上表示数a的点到原点的距离叫做数a的绝对值,因为距离是正数或0,所以有理数的绝对值是非负数,即|a|≥0,利用数轴可以表示相反数和绝对值的几何意义.2、利用数轴这个数学工具,还可以比较有理数的大小.(1)我们知道,在数轴上表示的两个有理数,右边的数总比左边的数大,因此,有理数大小比较的法则是:正数都大于零,负数都小于零,正数大于负数.(2)两个负数,绝对值大的反而小.3、有理数的加法法则(1)同号两数相加,取相同符号,并把绝对值相加;(2)绝对值不等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数的和为0;(3)一个数与0相加,仍得原数.4、有理数加法步骤分两步:第一步,确定和的符号;第二步,求和的绝对值.5、利用加法交换律和结合律可以简化计算,通常有以下几种结合的方法:(1)同号的数放在一起相加;(2)互为相反数的两个数放在一起;(3)同分母的分数放在一起;(4)和为整数的数在一起相加.6、加法的交换律:a+b=b+a,加法的结合律:(a+b)+c=a+(b+c).三、难点知识剖析1、M国股民A上星期六买进某公司股票1000股,每股27元,下表为本周每日该股票的涨跌情况:(1)星期三收盘时,每股多少元?(2)本周内最高价是每股多少元?最低价是每股多少元?2、已知|a|=5,|b|=3,且|a-b|=b-a,求a+b的值.(一)、知识点归纳1、有理数的减法(1)有理数的减法法则减去一个数,等于加上这个数的相反数 .这个法则用式子可以表示为a-b=a+(-b).(2)有理数的减法运算有理数的减法,不像算术里那样直接相减,而是把它转化为加法,借助于加法进行计算 .因此,掌握有理数减法的关键是正确地将减法转变为加法.再按有理数的加法法则计算.注意两个“变”:①改变运算符号;②改变减数的性质符号(变为相反数),牢记一个“不变”,被减数与减数的位置不能交换,也就是说,减法没有交换律。
第一章 有理数复习

第一章 有理数复习主备人:黄玲 审核人:督办领导: 使用时间:内容分析:本章概述了正数与负数、有理数、相反数、绝对值等概念,以及有理数的加、减、乘、除、乘方的运算方法与运算律。
【学习目标】1、理解五个重要概念:有理数、数轴、相反数、绝对值、倒数。
2、使学生提高辨别概念能力,能正确地使用这些概念解决问题。
3、能正确比较两个有理数的大小。
4、会进行有理数的加、减、乘、除、乘方的运算5、鼓励学生自己回顾本单元的学习内容。
并与同伴交流在本单元学习中的收获和不足,培养他们的反思意识。
【学习重难点】重点:负数、相反数、绝对值等概念的理解与应用,有理数的运算 难点:对绝对值概念的理解与应用,乘方运算 【教学过程设计】 一、前置学习 (一)【正负数】_____________统称整数,试举例说明 _____________统称分数,试举例说明 ____________统称有理数。
有理数的分类五种:1、把下列各数填在相应额大括号内:1,-0.1,-789,25,0,-20,-3.14,-590,6/7正整数集{ …} 正有理数集{ …} 负有理数集{ …} 负整数集{ …} 自然数集{ …} 正分数集{ …} 负分数集{ …}2、某种食用油的价格随着市场经济的变化涨落,规定上涨记为正,则-5.8元的意义是 ;如果这种油的原价是76元,那么现在的卖价是 。
(二)【数轴】 规定了 、 、 的直线,叫数轴 1、如图所示的图形为四位同学画的数轴,其中正确的是( )2、在数轴上画出表示下列各数的点,并按从大到小的顺序排列,用“>”号连接起来。
4,-|-2|, -4.5, 1, 0有理数有理数3、下列语句中正确的是( )A、数轴上的点只能表示整数 B、数轴上的点只能表示分数C、数轴上的点只能表示有理数 D、所有有理数都可以用数轴上的点表示出来 4、①比-3大的负整数是____;②已知m是整数且-4<m<3,则m为______。
(word完整版)第1讲--《有理数》《整式的加减》--复习

《有理数》与《整式的加减》【知识框架】第一章有理数第二章整式的加减【知识概念】第一章有理数1.正数与负数①表示大小②在实际中表示意义相反的量③带“-”号的数并不都是负数2.数轴(规定了原点,正方向和单位长度的直线叫数轴)①三要素:原点、正方向、单位长度②如何画数轴③数轴上的点与有理数④在数轴上可以根据正方向比较大小3.相反数①只有符号不同的两个数,叫做互为相反数.数轴上表示相反数的两点关于原点对称.⎧⎨⎩⎧⎪②a 的相反数—a ;0的相反数是0. ③a 与b 互为相反数:a +b =0④多重符号化简:结果是由“-”决定的.“-”个数是奇数个,则结果为“-", “-”个数是偶数个,则结果为“+”.4.绝对值①一般地,数轴上表示数a 的点与原点距离,表示成|a |. ②离原点越远,绝对值越大,离原点越近,绝对值越小.③一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;0的绝对值是0。
a (a ≥0)|a |=-a (a ≤0)④正数大于0,0大于负数,正数大于负数. 两个负数,绝对值大的反而小. 5.倒数①乘积是1的两个数叫作互为倒数.(求一个数的倒数时,正负不变) ②a 的倒数是1a(a ≠0) ③a 与b 互为倒数:ab =1 6⑤相反数是它本身的数是0 ⑥绝对值最小的数是0. 7.乘方①求几个相同因数的积的运算叫做乘方.(表示乘方时,底数是负数或分数时,需要加上括号)a ·a ·…·a =a n②8.科学记数法①把一个绝对值大于10的数表示成a ×n 10(其中1≤|a |<10,n 为正整数). a 的整数位必须只有一位数.负数表示成科学记数法,不能忘了“-”. ②指数n 与原数的整数位数之间的关系:n—1 9.近似数与有效数字①准确数、近似数、精确度(3种求近似值的形式)精确到万位⎧⎪⎨⎪⎩⎧⎪⎨⎪⎩⎧⎪⎨⎪⎩⎧⎪⎨⎪⎩⎧⎪⎨⎪⎩⎧⎪⎨⎪⎩精确度 精确到0.001保留三个有效数字②近似数的最后一位是什么位,这个数就精确到哪位. 求一个科学记数法的精确值必须将数还原回来;③有效数字(求一个科学记数法的有效数字跟它的乘方部分无关) ④如何求较大数的近似数,不要忘记用科学记数法10⑤任何除0以外的数的0次幂是1 ⑥1的任何次幂都是1 二、有理数的分类1.按整数与分数分 2、按正负有理数分正整数 正整数整数 0 正有理数 负整数 正分数 有理数 有理数 0 正分数 负整数 分数 负有理数 负分数 负分数 (π不是有理数,但是3.14是有理数.) 三、有理数的运算1.运算种类:加、减、乘、除、乘方 2.运算法则:(1)有理数的加法法则: ; (2)有理数的减法法则: ; (3)有理数的乘法法则: ; (4)有理数的除法法则: . 3.运算定律(用字母表示)(1)加法交换律: ;(2)加法结合律: ; (3)乘法交换律: ;(4)乘法结合律: ; (5)乘法分配律: . 4.混合运算顺序①三级(先乘方)二级(再乘除)一级(最后加减); ②同级运算应从左到右进行;③有括号的先做括号内的运算;(小括号 中括号 大括号)④能简便运算的应尽量简便.第二章 整式的加减1.代数式:用基本的运算符号(加、减、乘、除、乘方等)把数或表示数的字母连结而成的式子叫做代数式.单独的一个数或字母也是代数式.2.单项式:像a 2-,2πr ,y x 231-,abc -,732yzx ,…,这些代数式中,都是____________,这样的代数式称为单项式.3.单项式的次数:是指单项式中______________.4.单项式的系数:单项式中的_____因数叫做单项数的系数.5.同类项:所含字母相同,并且相同字母的指数也分别相同的单项式叫做同类项. 6.多项式:几个单项式的_____叫做多项式.7.多项式的项:其中每个_______都是该多项式的一个项.8.多项式的次数:多项式里,次数最高__________就是这个多项式的次数. 9.整式:________和________统称为整式10.合并同类项:把多项式中同类项合并成一项,叫做合并同类项. 11.去括号和添括号:(1)去括号法则如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同; 如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反. (2)添括号法则所添括号前面是“+"号,括到括号里的各项都不变符号; 所添括号前面是“-"号,括到括号里的各项都改变符号。
初一上期数学第一章 有理数 知识归纳

第一章有理数1.1正数和负数1.正负数正数:大于0的数叫做正数.负数:小于0的数叫做负数.0:非正非负【注】①符号:一个数前面的“+”“-”号叫做它的符号.②正数前面的“+”号可以省略,负数前面的“-”号不可以省略.2.相反意义的量用正数和负数表示具有相反意义的量:如果正数表示某种意义,那么负数表示它的相反意义,反之亦然.【注】“相反意义的量”包括两个方面的含义:一是相反意义;二是要有量.3.“O”的特征(1)0既不是正数,也不是负数,是正数与负数的分界;(2)0是自然数;(3)0的意义:①有时表示没有,如文具盒中有0支铅笔,表示没有铅笔;②有时是一个数,如0度是一个确定的温度;③有时也作为基准,如零上3度.1.2有理数知识点一有理数1、有理数的定义:整数和分数统称为有理数(小数可以化为分数,所以看为为分数)2、有理数的分类:1):按定义⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎭⎬⎫⎪⎩⎪⎨⎧⎭⎬⎫数有限小数或无限循环小负分数正分数分数负整数自然数正整数整数有理数0 2):按正负分⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数正分数正整数正有理数有理数04、四非正数和零统称为非负数;负数和零统称为非正数;正整数和零统称为非负整数(自然数);负整数和零统称为非正整数;【技巧】读的时候,在非正、非负后面加一个“的”知识点二 数轴1、数轴的定义:用一条直线上的点表示数,这条直线叫做数轴。
2、数轴三要素原点、正方向、单位长度称为数轴的三要素,三者缺一不可.【注】单位长度:指所取度量单位的名称,是一条人为规定的代表"1"的线段,这条线段可长可短,按实际情况来规定,同一数轴上的单位长度一旦确定,不能再改变.3、数轴画法首先:画一条水平的直线;其次:在直线上选取一点为原点;再次:确定向右为正方向,用箭头表示出来;最后:根据实际情况,选取适当的长度作为单位长度.4、与有理数的关系(1)有理数和无理数都可以用数轴上的点表示出来.(2)正有理数表示的点位于原点的右边,负有理数表示的点位于原点的左边5、利用数轴比较大小数轴可以用来比较大小,左<右﹔负数<0<正数.知识点三相反数1、定义只有符号不同的两个数叫做互为相反数.【注】①一般地,a和a-互为相反数,a表示任意一个数,可以是正数、负数,也可以是0.②0的相反数是0③“只有符号不同”应与“只要符号不同”区分开﹒④相反数必须成对出现,不能单独存在.2、几何意义一对相反数表示的点在数轴上应分别位于原点两侧;到原点的距离相等;这两点是关于原点对称的.3、求法求任意一个数的相反数,只要在这个数的前面添上“—”号即可.4、相反数的性质(1)若a与b互为相反数,则0=a,则a与b互为相反数.+b=+ba;反之,若0(2)任何一个数都有相反数,而且只有一个.正数的相反数是负数;负数的相反数是正数; 0的相反数仍是0.五、多重符号化简一个正数前面不管有多少个“+”号,都可以全部去掉;一个正数前面有偶数个“―”号,也可以把“―”号全部去掉;一个正数前面有奇数个"―"号,则化简后只保留一个"―"号,即“奇负偶正”(其中“奇偶”是指正数前面的“―"号的个数的奇偶数,“负正"是指化简的最后结果的符号).知识点四 绝对值1、绝对值的定义:一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记做a (a 可以是正数、负数和0)2、绝对值性质:()()()⎪⎩⎪⎨⎧<-=>=0000a a a a a a3、绝对值具有非负性(1)若有几个非负数的和为0,则这几个非负数均为0。
有理数的加减乘除混合运算

有理数的加减乘除混合运算有理数是指能够表示为两个整数的比值的数,包括正整数、负整数、零以及分数。
在数学中,有理数的加减乘除混合运算是一个基础而重要的概念。
本文将对有理数的加减乘除混合运算进行详细介绍。
1. 加法运算有理数的加法运算是指在两个有理数之间进行相加操作。
当两个有理数的符号相同时,只需要将它们的绝对值相加,并保留相同的符号。
例如,(-3) + (-2) = -5。
当两个有理数的符号不同时,我们需要进行减法操作。
即将绝对值较大的数减去较小的数,并保留绝对值较大数的符号。
例如,(-3) + 2 = -1。
2. 减法运算有理数的减法运算是指在两个有理数之间进行相减操作。
可以将减法转化为加法,即将减数取相反数,然后进行加法运算。
例如,5 - 3可以转化为 5 + (-3)。
3. 乘法运算有理数的乘法运算是指在两个有理数之间进行相乘操作。
正数与正数相乘或负数与负数相乘,结果为正数;正数与负数相乘或负数与正数相乘,结果为负数。
即符号相同为正,符号不同为负。
例如,(-2) ×5 = -10,(-3) × (-4) = 12。
4. 除法运算有理数的除法运算是指将两个有理数进行相除操作。
除法可以通过乘法的倒数得到,即将除数的倒数与被除数相乘。
例如,(-10) ÷ 2可以转化为 (-10) × (1/2) = -5。
5. 混合运算有理数的混合运算是指在一个表达式中同时包含加减乘除这四种运算。
在进行混合运算时,需要按照运算符的优先级进行计算,并使用括号来改变运算顺序。
通常,括号中的运算先于乘除法的运算,乘除法的运算先于加减法的运算。
例如,计算表达式:(-3) + 4 × (-2) - 6 ÷ 3。
首先进行乘法和除法运算:4 × (-2) = -8;6 ÷ 3 = 2。
然后进行加法和减法运算:(-3) + (-8) - 2 = -13。
正负数有理数混合运算

正负数有理数混合运算在数学学科中,有理数是指可以表示为两个整数的比值的数,包括正整数、负整数和零。
在实际问题中,我们经常会遇到正负数的混合运算。
本文将就正负数有理数的混合运算进行讨论和解析。
一、正负数的表示方法正数通常用一个正号"+"表示,例如+5表示正五。
负数通常用一个负号"-"表示,例如-3表示负三。
正数和负数统称为有理数,可以用分数形式表示,例如5/1表示正五,-3/1表示负三。
二、正负数的加法和减法1. 正数与正数相加:正数与正数相加,结果仍为正数。
例如+3 + (+2) = +5。
2. 负数与负数相加:负数与负数相加,结果仍为负数,但绝对值变大。
例如-3 + (-2) = -5。
3. 正数与负数相加:正数与负数相加,结果的符号取决于绝对值大小,绝对值较大的符号保留,并取两个数绝对值的差。
例如+3 + (-5) = -2。
4. 正数与正数相减:正数与正数相减,结果为正数。
例如+5 - (+3)= +2。
5. 负数与负数相减:负数与负数相减,结果为负数,但绝对值变大。
例如-5 - (-3) = -2。
6. 正数与负数相减:正数与负数相减,结果的符号取决于绝对值大小,绝对值较大的符号保留,并取两个数绝对值的和。
例如+5 - (-3) =+8。
三、正负数的乘法和除法1. 正数与正数相乘:正数与正数相乘,结果仍为正数。
例如+3 ×(+2) = +6。
2. 负数与负数相乘:负数与负数相乘,结果仍为正数。
例如-3 × (-2) = +6。
3. 正数与负数相乘:正数与负数相乘,结果为负数。
例如+3 × (-2)= -6。
4. 正数除以正数:正数除以正数,结果仍为正数。
例如+6 ÷ (+2) =+3。
5. 负数除以负数:负数除以负数,结果仍为正数。
例如-6 ÷ (-2) =+3。
6. 正数除以负数:正数除以负数,结果为负数。
第一章有理数复习教案共3课时

《有理数》总复习(第1课时)一、内容分析小结与复习分作两个部分。
第一部分概述了正数与负数、有理数、相反数、绝对值等概念,以及有理数的加、减、乘、除、乘方的运算方法与运算律,从而给出全章内容的大致轮廓,第二部分针对这一章新出现的内容、方法等提出了5个问题;通过这5个问题引发学生的思考,主动进行新的知识的建构。
二、课时安排:小节与复习的要求是要把这一章内容系统化,从而进一步巩固和加深理解学习内容。
本章的主要内容可以概括为有理数的概念与有理数的运算, 科学计数法、近似数与有效数字三部分。
因此,本章总复习的三课时这样安排(测验课除外):第一课时复习有理数的意义及其有关概念;第二课时复习有理数的运算;第三课时科学计数法、近似数与有效数字。
第一课时本节课将复习有理数的意义及其有关概念。
其内容包括正负数、有理数、数轴、有理数大小的比较、相反数与绝对值等。
在教学过程中,应利用数轴来认识、理解有理数的有关概念,借助数轴,把这些概念串在一起形成一个用以描述有理数特征的系统。
另外,在运用有理数概念的同时,还应注意纠正可能出现的错误认识。
一.教学目标:1.理解五个重要概念:有理数、数轴、相反数、绝对值、倒数。
2.使学生提高辨别概念能力,能正确地使用这些概念解决问题。
3.能正确比较两个有理数的大小。
二.教学重点:对有理数的五个概念:有理数、数轴、相反数、绝对值、倒数的理解与运用。
三.教学难点:对绝对值概念的理解与应用。
四.教学程序设计:一知识梳理:1.正数与负数:(给出4个问题,让学生了解负数产生的必要性和负数在生产、生活中的应用。
)回答下列问题(1)温度为-4℃是什么意思?(2)如果向正北规定为正,那么走-70米是什么意思?(3)21世纪的第一年,日本的服务出口额比上一年增长了-7.3%,这里的"服务出口额比上一年增长了-7.3%"是什么意思?(4)请同学们谈一谈,为什么要引入负数?你还能举出生活中有关负数的例子吗?2.有理数的分类:(通过2个问题让学生掌握有理数的两种分类方法,理解有理数的意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数(正数与负数――有理数的加减混合运算)复习
1、相反数:(1)-2的相反数是 ; (2)-丨-2丨的相反数是 ;
(3) 的相反数是它本身;(4)化简:+(-2)= ,-(+3)= ,-(-3)= 。
2、绝对值:(1)-3/2的绝对值是 ;(2)比较大小:-丨-3丨 -(-3);
(3) 的绝对值是它本身。
3、有理数的两种分类:
有理数{ 有理数{
4、请对下列各数分类:-1 ,3/2 ,-1.5 ,π,丨-3丨 ,-(-2+3) ,-22/7 ,0.168 ,0 ,-0.3 ,5% ,-10 ,38 ,2(1/2)-6(1/2)
正有理数集:{ ……} 负分数集: { ……} 自然数集: { ……}
5、数轴:(1)数轴的三要素 ;
(2)在数轴上指出下列各数:0,-1,-4(1/2),2(1/3),-丨-3丨,1-2(1/2)
并用“<”连接。
解:
6、计算:(1)5-〔6+3-10〕; (2)-[-3(1/2)]+丨-7(1/3)丨-6(1/3)+丨1/2-5丨;
(3)-4+丨5-(-2)丨-(-8) 。
解:
7、一袋苹果的标准质量为10千克,多出部分记为正数。
某袋苹果有8.5千克,应记为 。
若记得+1.5、-0.5、+2、+0.5、-1,则这些苹果共有 千克。
解:
8、逻辑推理:(1)-1+2-3+4-……-99+100= ;
(2)如图,是由火柴杆拼出的一列图形中,第n 个图形,由n 个正方形组成:
通过观察可以发现:第三个图形中,火柴杆有 根,第n 个图形中,火柴杆有 根。