极坐标与参数方程真题
极坐标与参数方程高考真题58题(学生) (1)

极坐标与参数方程高考真题1、(2018北京理10)在极坐标系中,直线cos sin a ρθρθ+=(0a >)与圆2cos ρθ=相切,则_______a =.2、(2018江苏21C )在极坐标系中,直线l 的方程为πsin()26ρθ-=,曲线C 的方程为4cos ρθ=,求直线l 被曲线C 截得的弦长.3、(2018新课标Ⅰ理22)在直角坐标系xOy 中,曲线1C 的方程为||2y k x =+.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为22cos 30ρρθ+-=. (1)求2C 的直角坐标方程;(2)若1C 与2C 有且仅有三个公共点,求1C 的方程.4、(2018新课标Ⅱ理22)在直角坐标系xOy 中,曲线C 的参数方程为2cos 4sin x θy θ=⎧⎨=⎩(θ为参数),直线l 的参数方程为1cos 2sin x t αy t α=+⎧⎨=+⎩(t 为参数). (1)求C 和l 的直角坐标方程;(2)若曲线C 截直线l 所得线段的中点坐标为(1,2),求l 的斜率.5、(2018新课标Ⅲ理22)在平面直角坐标系xOy 中,O ⊙的参数方程为cos sin x y θθ=⎧⎨=⎩(θ为参数),过点(0,且倾斜角为α的直线l 与O ⊙交于A B ,两点.(1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程.6、(2018天津理12)已知圆2220x y x +-=的圆心为C ,直线1232x y t ⎧=-+⎪⎪⎨⎪=-⎪⎩(t 为参数)与该圆相交于A ,B 两点,则ABC ∆的面积为_______.7、(2017新课标Ⅰ理22)在直角坐标系xOy 中,曲线C 的参数方程为3cos sin x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为41x a ty t=+⎧⎨=-⎩(t 为参数).(1)若1a =-,求C 与l 的交点坐标;(2)若C 上的点到la .8、(2017新课标Ⅱ理22)在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=.(1)M 为曲线1C 上的动点,点P 在线段OM 上,且满足||||16OM OP ⋅=,求点P 的轨迹2C 的直角坐标方程;(2)设点A 的极坐标为(2,)3π,点B 在曲线2C 上,求OAB ∆面积的最大值.9、(2017新课标Ⅲ理22)在直角坐标系xOy 中,直线l 1的参数方程为2+,,x t y kt =⎧⎨=⎩(t 为参数),直线l 2的参数方程为2,,x m m my k =-+⎧⎪⎨=⎪⎩(为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C . (1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3:ρ(cosθ+sinθ),M 为l 3与C 的交点,求M 的极径.10、(2017北京理11)在极坐标系中,点A 在圆22cos 4sin 40ρρθρθ--+=上,点P 的坐标为(1,0),则|AP|的最小值为___________.11、(2017江苏21C )在平面坐标系中xOy 中,已知直线l 的参考方程为x 82t ty ⎧=-+⎪⎨=⎪⎩(t 为参数),曲线C的参数方程为2x 2s ,y ⎧=⎪⎨⎪=⎩(s 为参数)。
高考数学-坐标系与参数方程(含22年真题讲解)

高考数学-坐标系与参数方程 (含22年真题讲解)1.【2022年全国甲卷】在直角坐标系xOy 中,曲线C 1的参数方程为{x =2+t 6y =√t(t 为参数),曲线C 2的参数方程为{x =−2+s 6y =−√s(s 为参数).(1)写出C 1的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 3的极坐标方程为2cosθ−sinθ=0,求C 3与C 1交点的直角坐标,及C 3与C 2交点的直角坐标. 【答案】(1)y 2=6x −2(y ≥0);(2)C 3,C 1的交点坐标为(12,1),(1,2),C 3,C 2的交点坐标为(−12,−1),(−1,−2).【解析】 【分析】(1)消去t ,即可得到C 1的普通方程;(2)将曲线C 2,C 3的方程化成普通方程,联立求解即解出. (1) 因为x =2+t 6,y =√t ,所以x =2+y 26,即C 1的普通方程为y 2=6x −2(y ≥0).(2) 因为x =−2+s 6,y =−√s ,所以6x =−2−y 2,即C 2的普通方程为y 2=−6x −2(y ≤0),由2cosθ−sinθ=0⇒2ρcosθ−ρsinθ=0,即C 3的普通方程为2x −y =0. 联立{y 2=6x −2(y ≥0)2x −y =0 ,解得:{x =12y =1 或{x =1y =2 ,即交点坐标为(12,1),(1,2);联立{y 2=−6x −2(y ≤0)2x −y =0 ,解得:{x =−12y =−1 或{x =−1y =−2 ,即交点坐标为(−12,−1),(−1,−2). 2.【2022年全国乙卷】在直角坐标系xOy 中,曲线C 的参数方程为{x =√3cos2t y =2sint ,(t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,已知直线l 的极坐标方程为ρsin (θ+π3)+m =0. (1)写出l 的直角坐标方程;(2)若l 与C 有公共点,求m 的取值范围. 【答案】(1)√3x +y +2m =0 (2)−1912≤m ≤52 【解析】 【分析】(1)根据极坐标与直角坐标的互化公式处理即可;(2)联立l 与C 的方程,采用换元法处理,根据新设a 的取值范围求解m 的范围即可. (1)因为l :ρsin (θ+π3)+m =0,所以12ρ⋅sinθ+√32ρ⋅cosθ+m =0,又因为ρ⋅sinθ=y,ρ⋅cosθ=x ,所以化简为12y +√32x +m =0,整理得l 的直角坐标方程:√3x +y +2m =0 (2)联立l 与C 的方程,即将x =√3cos2t ,y =2sint 代入 √3x +y +2m =0中,可得3cos2t +2sint +2m =0, 所以3(1−2sin 2t)+2sint +2m =0, 化简为−6sin 2t +2sint +3+2m =0,要使l 与C 有公共点,则2m =6sin 2t −2sint −3有解,令sint =a ,则a ∈[−1,1],令f(a)=6a 2−2a −3,(−1≤a ≤1), 对称轴为a =16,开口向上,所以f(a)max =f(−1)=6+2−3=5, f(a)min =f(16)=16−26−3=−196,所以−196≤2m ≤5m 的取值范围为−1912≤m ≤52.1.(2022·宁夏·吴忠中学三模(文))在平面直角坐标系xOy 中,曲线1C 的参数方程为244x t y t ⎧=-⎨=⎩(t 为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2cos ρθ=.(1)求曲线1C 与2C 的直角坐标方程;(2)已知直线l 的极坐标方程为πR 02θαρα⎛⎫ ⎪=∈⎝<<⎭,,直线l 与曲线1C ,2C 分别交于M ,N (均异于点O )两点,若4OMON=,求α. 【答案】(1)曲线1C 的直角坐标方程为24y x =-,曲线2C 的直角坐标方程为2220x y x +-=, (2)π4α=【解析】 【分析】(1)1C 的参数方程消参可求出1C 的直角坐标方程;2C 的极坐标方程同乘ρ,把cos x ρθ=,222x y ρ=+代入2C 的极坐标方程可求出2C 的直角坐标方程.(2)设M 、N 两点的极坐标分别为()1,ρα、()2,ρα,用极径的几何意义表示出4OMON=,即124ρρ=,解方程即可求出α. (1)解:1C 的参数方程为244x t y t ⎧=-⎨=⎩(t 为参数),把2216y t =代入24x t =-中可得,24y x =-,所以曲线1C 的直角坐标方程为24y x =-,2C 的极坐标方程为2cos ρθ=,即22cos ρρθ=,所以曲线2C 的直角坐标方程为2220x y x +-=,综上所述:曲线1C 的直角坐标方程为24y x =-,曲线2C 的直角坐标方程为2220x y x +-=, (2)由(1)知,1C 的极坐标方程为2sin 4cos ρθθ=-, 设M 、N 两点的极坐标分别为()1,ρα、()2,ρα,则21sin 4cos ραα=-,22cos ρα=,由题意知02πα<<可得sin 0α≠,因为4OMON=,所以124ρρ=,所以24cos 42cos sin ααα-=⨯,故21sin 2α=,所以sin 2α=或sin 2α=(舍) 所以π4α=.2.(2022·四川·宜宾市叙州区第一中学校模拟预测(理))在平面直角坐标系xOy 中,曲线1C 的参数方程为1cos sin x y θθ=+⎧⎨=⎩(θ为参数),曲线2C 的参数方程为2221x t t y t ⎧=-⎨=-⎩(t 为参数).已知曲线2C 与x ,y 正半轴分别相交于,A B 两点.(1)写出曲线1C 的极坐标方程,并求出,A B 两点的直角坐标;(2)若过原点O 且与直线AB 垂直的直线l 与曲线1C 交于P 点,与直线AB 交于Q 点,求线段PQ 的长度.【答案】(1)2cos ρθ=,A 点为()3,0,B 点为()0,3(2)2【解析】 【分析】(1)普通方程()2211x y -+=,即可得2cos ρθ=(2)求出直线AB 的方程为3y x =-+,然后求出直线l 的方程,然后可求出PQ 的长度 (1)曲线1C 的普通方程()2211x y -+=,极坐标方程()()22cos 1sin 1ρθρθ-+=,∴2cos ρθ=.在曲线2C 上,当0x =时,0=t 或2t =,此时3y =或1y =-(舍),所以B 点为()0,3. 当0y =时,1t =-或1t =,此时3x =或1x =-(舍),所以A 点为()3,0. (2)直线AB 的方程为3y x =-+,极坐标方程为sin cos 3ρθρθ=-+, ∴()sin cos 3ρθθ+=,过原点O 且与直线AB 垂直的直线l 的极坐标方程为4πθ=.4πθ=与2cos ρθ=联立,得1ρ 4πθ=与()sin cos 3ρθθ+=联立,得2ρ=∴21PQ ρρ=-=. 3.(2022·江西·南昌市八一中学三模(理))在直角坐标系xOy 中,直线l的参数方程为11x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数).以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为4sin 6πρθ⎛⎫=-+ ⎪⎝⎭.(1)求C 和l 的直角坐标方程;(2)设点Q的直角坐标为(,P 为C 上的动点,求PQ 中点R 的轨迹的极坐标方程. 【答案】(1)直线l 的普通方程为2x y +=,曲线C 的普通方程为()(2214x y ++=;(2)21ρ= 【解析】 【分析】(1)消去参数t ,即可得到直线l 的普通方程,再由两角和的正弦公式及222cos sin x y x y ρθρθρ=⎧⎪=⎨⎪=+⎩,将曲线C 的极坐标方程化为直角坐标方程;(2)设(),R x y ,即可表示P 点坐标,再根据点P 在曲线C 上,代入C 的方程,即可得到点R 的轨迹方程,再将直角坐标方程化为极坐标方程即可;(1)解:因为直线l的参数方程为11x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数), 所以直线l 的普通方程为2x y +=,因为曲线C 的极坐标方程为4sin 6πρθ⎛⎫=-+ ⎪⎝⎭,即4sin cos cos sin 66ππρθθ⎛⎫=-+ ⎪⎝⎭,即2cos ρθθ=--,所以2sin 2cos ρθρθ=--,又222cos sin x y x y ρθρθρ=⎧⎪=⎨⎪=+⎩,所以222x y x +=--,即()(2214x y +++=,即曲线C 的普通方程为()(2214x y ++=;(2)解:设(),R x y,则(21,2P x y -,因为点P 在曲线C 上,所以()(2221124x y -++=,即221x y +=,所以PQ 中点R 的轨迹方程为221x y +=,即21ρ=4.(2022·黑龙江·哈尔滨三中模拟预测(理))在平面直角坐标系xOy 中,已知直线l 的参数方程为21x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点O 为极点,x 轴正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为()2cos θsin θρ=+. (1)求直线l 的普通方程和曲线C 的直角坐标方程; (2)设点()2,1P ,直线l 与曲线C 的交点为A ,B ,求PA PBPB PA+的值. 【答案】(1)10x y --=,22220x y x y +--= (2)4 【解析】 【分析】(1)直接消去参数,将直线l 的方程化为普通方程,利用互化公式将曲线C 的极坐标方程转化为直角坐标方程(2)将直线的参数方程代入曲线C的普通方程,得到210t -=,得到12121t t t t +==- ,化简()222121212122112122PA PBt t t t t t t t PB PA t t t t t t +-++=+==,代入韦达定理,即可得到答案 (1)直线l的参数方程为21x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数), 消去参数t 可得l 的普通方程为10x y --=.曲线C 的极坐标方程为2(cos θsin θ)ρ=+,即22(cos θsin θ)ρρ=+,根据222cos θsin θx y x y ρρρ=⎧⎪=⎨⎪=+⎩,可得2222x y x y +=+.∴曲线C 的直角坐标方程为22220x y x y +--= (2)在直线l的参数方程21x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数)中,设点A ,B 对应的参数分别为1t ,2t , 将直线l的参数方程221x y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),代入22220x y x y +--=,得210t +-=,∴12t t +=121t t =-.∴()2221212121221121224PA PBt t t t t t t t PB PA t t t t t t +-++=+=== 5.(2022·安徽淮南·二模(文))在平面直角坐标系xOy 中,曲线C 的参数方程为2cos 22sin x y αα=⎧⎨=+⎩(其中α为参数,02πα≤<),以原点O 为极点,x 轴非负半轴为极轴,取相同的单位长度建立极坐标系,直线1l 的极坐标方程为(R)3πθρ=∈.(1)求曲线C 的极坐标方程与直线1l 的直角坐标方程;(2)设直线1l 与曲线C 交于点O ,A ,直线2l 与曲线C 交于点O ,B ,求AOB 面积的最大值. 【答案】(1)4sin ρθ=,y(2)【解析】【分析】(1)依据参数方程与普通方程的互化和极坐标方程与直角坐标方程的互化即可解决; (2)先求得AOB 面积的表达式,再对其求最大值即可. (1)曲线C 的直角坐标方程为22(2)4x y +-=,展开得2240x y y +-=, 则曲线C 的极坐标方程为4sin ρθ=. 直线1l的直角坐标方程为y (2)由(1)可知π||4sin3OA == 设直线2l 的极坐标方程为(R)θβρ=∈,根据条件知要使AOB 面积取最大值,则ππ3β<<,则||4sin OB β=,于是1ππsin sin 233OAB S OA OB βββ⎛⎫⎛⎫=⨯⨯⨯-=- ⎪ ⎪⎝⎭⎝⎭2π6sin cos cos 2)3sin 226ββββββ⎛⎫=-=--=+ ⎪⎝⎭,所以当π3π262β+=即2π3β=时,AOB的面积取最大值,最大值为6.(2022·内蒙古呼和浩特·二模(理))在直角坐标系xOy 中,曲线C的参数方程为))cos sin cos sin 2x y ϕϕϕϕ⎧=+⎪⎨=-⎪⎩(ϕ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,两坐标系取相同单位长度,直线l 的极坐标方程为2cos 3sin 100ρθρθ+-=. (1)求曲线C 的普通方程和直线l 的直角坐标方程; (2)求曲线C 上的点到直线l 距离的最小值. 【答案】(1)2214x y +=,23100x y +-=;【解析】 【分析】(1)消去曲线C 的参数方程中的参数即可得解,利用极坐标与直角坐标互化得直线l 的直角坐标方程作答.(2)设出曲线C 上任意一点的坐标,利用点到直线距离公式及辅助角公式求解作答. (1)由))cos sin cos sin x y ϕϕϕϕ⎧=+⎪⎨=-⎪⎩(ϕ为参数),消去参数得2214x y +=, 所以曲线C 的普通方程为2214x y +=,把cos sin x y ρθρθ=⎧⎨=⎩代入直线l 的极坐标方程2cos 3sin 100ρθρθ+-=得:23100x y +-=,所以直线l 的直角坐标方程为23100x y +-=. (2)由(1)知,曲线C 的参数方程为2cos sin x y αα=⎧⎨=⎩(α为参数),设()2cos ,sin P αα为曲线C 上一点,P 到直线l 的距离为d ,则105sin d αϕ-+===ϕ由4tan 3ϕ=确定,因此,当()sin 1αϕ+=时,d所以曲线C 上的点到直线l 7.(2022·甘肃·武威第六中学模拟预测(文))在直角坐标系xOy 中,曲线C 的参数方程为11x t ty t t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数),以坐标原点极点,以x 轴正半轴为极轴建立极坐标系,直线l 的极坐sin cos 0θρθ-.(1)求曲线C 的普通方程和直线l 的直角坐标方程: (2)若直线与曲线C 交于A ,B 两点,点P 的坐标为(0,1),求11||||PA PB +的值. 【答案】(1)224x y -=,0x+= (2)5【解析】【分析】(1)消去参数t 可得曲线C 的方程,利用公式法转化得到直线l 的直角坐标方程; (2)利用直线l 的参数方程中t 的几何意义求解. (1)∴11x t ty t t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数),∴22222222112112x t t t t y t t t t ⎧⎛⎫=+=++⎪ ⎪⎪⎝⎭⎨⎛⎫⎪=-=+- ⎪⎪⎝⎭⎩,所以224x y -=, 所以曲线C 的方程为224x y -=又∴cos x ρθ=,sin y ρθ=,0x - 所以直线l的直角坐标方程为0x =; (2)∴()0,1P 在直线l 上,∴直线l的参数方程为112x y t⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数)设A ,B 对应的参数分别为1t 与2t将直线l 的参数方程代入到224x y -=得22100t t --=. ∴2Δ(2)41(10)440=--⨯⨯-=>, ∴122t t +=,12100t t ⋅=-<, ∴1||PA t =,2||PB t =∴1212121111||||-+=+====t tPA PB t t t t,所以11||||+=PA PB 8.(2022·全国·赣州市第三中学模拟预测(理))在平面直角坐标系xOy 中,曲线1C 满足参数方程2241421t x t y t ⎧=⎪⎪+⎨⎪=-⎪+⎩(t 为参数且11t -≤≤).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,点P 为曲线1C 上一动点,且极坐标为(),ρθ. (1)求曲线1C 的直角坐标方程; (2)求()cos 3sin ρθθ+的取值范围.【答案】(1)y =()2204y x y +=≥(2)⎡-⎣ 【解析】 【分析】(1)消去参数t 可得普通方程,由11t -≤≤,得到0y ≥,即可求出曲线1C 的直角坐标方程; (2)先判断出2ρ=利用三角函数出()cos 3sin ρθθ+的范围. (1)由2241421t x t y t ⎧=⎪⎪+⎨⎪=-⎪+⎩消去t 可得:224x y +=. 由于11t -≤≤,则212t +≤,即0y ≥.因此曲线1C的直角坐标方程为y ()2204y x y +=≥(2)曲线1C 为上半圆,点P 在1C 上,因此2ρ=,0,θπ⎡⎤∈⎣⎦ 由三角函数的性质知,在[]0,π上,1cos 3sin θθ-≤+≤因此()cos 3sin 2,ρθθ⎡+∈-⎣9.(2022·黑龙江·哈尔滨三中三模(理))在平面直角坐标系xOy 中,已知直线l 的参数方程为22x y t ⎧=⎪⎨=-⎪⎩(t 为参数).以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,圆C 的极坐标方程为22cos 4sin 10ρρθρθ---=. (1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点A 、B ,若点P 的坐标为()2,2,求1PA PB-.【答案】(1)()()22126x y -+-=;【解析】 【分析】(1)将222x y ρ=+、cos x ρθ=、sin y ρθ=代入圆C 的极坐标方程即可求其直角坐标方程; (2)将直线l 的参数方程化为标准形式,代入圆C 的直角坐标方程得到关于参数t 的二次方程,根据韦达定理和直线参数方程参数的几何意义即可求出1PA PB-.(1)∴22cos 4sin 10ρρθρθ---=,∴222410x y x y +---=, 即()()22126x y -+-=; (2)直线l参数方程的标准形式为2122x y t ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数), 代入圆C直角坐标方程整理得250t -=, 设方程的两根为1t 、2t ,则A 、B 对应参数1t 、2t ,则121250t t t t ⋅=-<⎧⎪⎨+⎪⎩,∴1PA PB-121211t t t t ==+-10.(2022·河南·模拟预测(理))在平面直角坐标系xOy 中,曲线1C 的参数方程为222x m y m⎧=⎨=⎩(m 为参数),直线l 的参数方程为12x tcos y tsin αα⎧=+⎪⎨⎪=⎩,(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2cos ρθ=,直线l 与1C 交于点P ,Q ,与2C 交于点S ,T ,与x 轴交于点R .(1)写出曲线1C 的普通方程和曲线2C 的直角坐标方程; (2)若()4PR QR SR TR -=-,求直线l 的倾斜角. 【答案】(1)22y x =,()2211x y -+= (2)2π或4π或34π【解析】 【分析】(1)消参求得曲线1C 的普通方程为22y x =.由2cos ρθ=同乘ρ得到2C 的直角坐标方程. (2)l 过定点1,02R ⎛⎫ ⎪⎝⎭.将直线l 的参数方程代入21:2C y x =,整理得22sin 2cos 10t t αα--=,利用参数的几何含义化简求解. (1)曲线1C 的普通方程为22y x =.由2cos ρθ=得22cos ρρθ=.所以2C 的直角坐标方程为222x y x +=,即()2211x y -+=.(2)不妨设0απ<<,则sin 0α>.易知1,02R ⎛⎫ ⎪⎝⎭是l 过的定点.将直线l 的参数方程代入21:2C y x =,整理得22sin 2cos 10t t αα--=,设P ,Q 对应的参数分别为P t ,Q t ,则22cos sin P Q PR QR t t αα-=+=.将直线l 的参数方程代入()222:11C x y -+=,得23cos 04t t α--=, 设S ,T 对应的参数分别为S t ,T t ,则cos S T SR TR t t α-=+=.由()4PR QR SR TR -=-得22cos 4cos sin ααα=,得cos 0α=或sin α=l 的倾斜角为2π或4π或34π. 11.(2022·河南洛阳·三模(理))在直角坐标系xOy 中,直线1l的参数方程为12x ty kt⎧=⎪⎨=⎪⎩(t 为参数),直线2l的参数方程为x m m y k ⎧=⎪⎨=-⎪⎩(m 为参数),设1l 与2l 的交点为P ,当k 变化时,P 的轨迹为曲线1C .(1)求曲线1C 的普通方程;(2)以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,设曲线2C 的极坐标方程为2cos ρθ=,射线OM :()04πθρ=≥与1C ,2C 分别交于A ,B 两点,求线段AB 的长.【答案】(1)22163x y +=,()0y ≠(2)2【解析】 【分析】(1)消去参数得到直线1l 、2l 的普通方程,联立两方程消去k ,即可得到P 的轨迹; (2)首先将1C 的方程化为极坐标方程,再将()04πθρ=≥代入两极坐标方程即可求出OA ,OB ,即可得解;(1)解:因为直线1l的参数方程为12x ty kt⎧⎪⎨=⎪⎩(t 为参数), 消去参数t 得直线1l的普通方程为(12y k x =①, 直线2l的参数方程为x m m y k ⎧=⎪⎨=-⎪⎩(m 为参数), 消去参数m 得直线2l的普通方程为(1y x k=-②, 设(),P x y ,由①②联立得((121y k x y x k ⎧=⎪⎪⎨⎪=-⎪⎩,消去k 得()22162y x =--即曲线1C 的普通方程为22163x y +=,()0y ≠;(2)解:设1OA ρ=,2OB ρ=,由cos sin x y ρθρθ=⎧⎨=⎩得曲线1C 的极坐标方程为2261sin ρθ=+(02θπ<<,θπ≠),代入()04πθρ=≥得12OA ρ==,将()04πθρ=≥代入2cos ρθ=得2OB ρ==所以2AB OA OB =-= 即线段AB的长度为212.(2022·安徽省芜湖市教育局模拟预测(理))在平面直角坐标系xOy 中,曲线1C 的参数方程为2cos 3sin x y ββ=+⎧⎨=⎩(β为参数),将曲线1C 经过伸缩变换13x xy y =⎧''⎪⎨=⎪⎩得到曲线2C .以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求曲线2C 的极坐标方程;(2)已知射线():0l θαρ=≥与曲线2C 交于A 、B 两点,若3OB OA =,求tan α的值. 【答案】(1)24cos 30ρρθ-+= (2)0 【解析】 【分析】(1)求出曲线2C 的参数方程,化为普通方程,再利用极坐标方程与直角坐标方程之间的转换关系可得出曲线2C 的极坐标方程;(2)设()1,A ρα、()2,B ρα,则1ρ、2ρ为方程24cos 30ρρα-+=的两根,由已知可得213ρρ=,结合韦达定理可求得cos α的值,利用同角三角函数的基本关系可求得tan α的值. (1)解:由题可得2C 的参数方程为2cos sin x y ββ=+⎧⎨=⎩(β为参数),则2C 的直角方程为()2221x y -+=,即22430x y x +-+=, 因为cos x ρθ=,sin y ρθ=,所以24cos 30ρρθ-+=,所以曲线2C 的极坐标方程为24cos 30ρρθ-+=. (2)解:设()1,A ρα、()2,B ρα,则1ρ、2ρ为方程24cos 30ρρα-+=的两根, 2Δ16cos 120α=->,则124cos ρρα+=①,123ρρ=②, 因为3OB OA =,所以213ρρ=③,由①②③解得cos 1α=,则sin 0α=,tan 0α∴=,此时16120∆=->,合乎题意. 故tan 0α=.13.(2022·贵州遵义·三模(文))在极点为O 的极坐标系中,经过点π2,6M ⎛⎫⎪⎝⎭的直线l 与极轴所成角为α,且与极轴的交点为N . (1)当π2α=时,求l 的极坐标方程; (2)当ππ,43α⎡⎤∈⎢⎥⎣⎦时,求MON △面积的取值范围.【答案】(1)cos ρθ=(2)⋃⎣⎦⎣⎦【解析】 【分析】(1)先求得l 的直角坐标方程,再转化为极坐标方程.(2)对直线l 的倾斜角进行分类讨论,结合三角形的面积公式求得MON △面积的取值范围. (1)点π2,6M ⎛⎫ ⎪⎝⎭,则π2cos 6π2sin 16x y ⎧=⨯=⎪⎪⎨⎪=⨯=⎪⎩,所以M点的直角坐标为),当π2α=时,直线l的直角坐标方程为x =转化为极坐标方程为cos ρθ=.(2)在极坐标系下:经过点π2,6M ⎛⎫⎪⎝⎭的直线l 与极轴所成角为α,在直角坐标系下:经过点)M的直线l 的倾斜角为α或πα-.即直线l 的倾斜角是α或πα-. 当直线l 的倾斜角为α时,直线l 的方程为(1tan y x α-=,令0y =得1tan N x α-=ππ,43α⎡⎤∈⎢⎥⎣⎦,tan α⎡∈⎣,111,1,,tan tan tan N x ααα⎤⎡∈-∈-=-⎥⎢⎣⎦⎣⎦⎦,所以1π111sin 2262tan 2MONSOM ON α⎛=⨯⨯⨯=⨯⨯-+⨯ ⎝11tan 2α⎛=-⨯∈ ⎝⎣⎦.当直线l 的倾斜角为πα-时,直线l 的方程为()((1tan πtan y x x αα-=-=-,令0y =得1tan N x α=11,1tan tan N x αα⎤⎤∈=⎥⎥⎣⎦⎣⎦,所以1π111sin 2262tan 2MONSOM ON α⎛=⨯⨯⨯=⨯⨯⨯ ⎝11tan 2α⎛=⨯∈ ⎝⎣⎦.综上所述,MON △面积的取值范围是⋃⎣⎦⎣⎦. 14.(2022·江西·上饶市第一中学二模(文))在平面直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的普通方程为:22(2)4x y -+=,曲线2C 的参数方程是2cos x y θθ=⎧⎪⎨=⎪⎩(θ为参数),点2,2P π⎛⎫⎪⎝⎭.(1)求曲线1C 和2C 的极坐标方程; (2)设射线(0)3πθρ=>分别与曲线1C 和2C 相交于A ,B 两点,求PAB △的面积.【答案】(1)4cos ρθ=,22123sin ρθ=+(2)1 【解析】 【分析】(1)由公式法求极坐标方程(2)联立方程后分别求出A ,B 坐标,及P 到直线AB 距离后求面积 (1)曲线1C 的直角坐标方程为:2240x y x +-=, 将cos ,sin x y ρθρθ==代入上式并化简, 得曲线1C 的极坐标方程为:4cos ρθ=. 曲线2C 的普通方程是:22143x y +=, 将cos ,sin x y ρθρθ==代入上式并化简, 得曲线2C 的极坐标方程为:22123sin ρθ=+.(2)设12,,,33A B ππρρ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,则1||4cos23OA πρ===,22221216||53sin 3OB ρπ===+,所以||OB =,所以||||||2AB OA OB =-=-. 又(0,2)P到直线:AB y =的距离为:1d ==所以12112PABS⎛=⨯⨯= ⎝⎭ 15.(2022·全国·模拟预测(文))在直角坐标系xOy 中,曲线C的参数方程为x y θθ⎧=⎪⎨=⎪⎩(θ为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为cos sin 4ρθθ=. (1)求C 和l 的直角坐标方程;(2)若点M ,N 分别为曲线C 和直线l 上的动点,求MN 的最小值.【答案】(1)22163x y +=,40x -=2- 【解析】 【分析】(1)利用22cos sin 1θθ+=消去参数θ,可得曲线C 的普通方程,利用极坐标与直角坐标的互化公式可求出直线l 的直角坐标方程, (2)设曲线C上任意一点)Mθθ到直线l 的距离为d ,然后利用点到直线的距离公式表示出d ,再根据三角函数的性质可求出其最小值 (1)由曲线C的参数方程为x y θθ⎧=⎪⎨=⎪⎩(θ为参数)可知2222cos sin 1θθ+=+=,故曲线C 的直角坐标方程为22163x y +=.由直线l的极坐标方程为cos sin 4ρθθ=,结合cos x ρθ=,sin y ρθ=可知l的直角坐标方程为40x -=. (2)MN 的最小值即为曲线C 上任意一点到直线l 距离的最小值.设曲线C上任意一点)Mθθ到直线l 的距离为d ,则2cos 24d πθ⎛⎫==+≥ ⎪⎝⎭,故MN 2..。
高考专题全国卷真题2011至2018-极坐标与参数方程

4—4.坐标系与参数方程【高考真题】4.4-1(2011全国-23)在直角坐标系中,曲线的参数方程为(为参数),是上的动点,点满足,点的轨迹为曲线。
(Ⅰ)当求的方程;(Ⅱ)在以为极点,轴的正半轴为极轴的极坐标系中,射线与的异于极点的交点为,与的异于极点的交点为,求.4.4-2(2012全国-23)已知曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程是。
正方形ABCD 的顶点都在上, 且A ,B ,C ,D 依逆时针次序排列,点A 的极坐标为(2,)。
(1)求点A ,B ,C ,D 的直角坐标;(2)设为上任意一点,求的取值范围。
4.4-3(2013全国Ⅰ-23)已知曲线C 1的参数方程为⎩⎨⎧x =4+5costy =5+5sint(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sinθ。
(Ⅰ)把C 1的参数方程化为极坐标方程;(Ⅱ)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π)4.4-4(2013全国Ⅱ-23)已知动点P ,Q 都在曲线C : 上,对应参数分别为β=α与α=2π为(0<α<2π)M 为PQ 的中点。
(Ⅰ)求M 的轨迹的参数方程(Ⅱ)将M 到坐标原点的距离d 表示为a 的函数,并判断M 的轨迹是否过坐标原点。
xOy 1C 2cos 22sin x y αα=⎧⎨=+⎩αM 1C P 2OP OM =P 2C 2C O x 3πθ=1C A 2C B ||AB 1C ⎩⎨⎧==ϕϕsin 3cos 2y x ϕx 2C 2=ρ2C 3πP 1C 2222||||||||PD PC PB PA +++()2cos 2sin x y βββ=⎧⎨=⎩为参数4.4-5(2014全国Ⅰ-23)已知曲线:,直线:(为 参数). (Ⅰ)写出曲线的参数方程,直线的普通方程;(Ⅱ)过曲线上任一点作与夹角为的直线,交于点,求的最大值与最小值.4.4-6(2014全国Ⅱ-23)在直角坐标系xoy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为,.(Ⅰ)求C 的参数方程;(Ⅱ)设点D 在C 上,C 在D 处的切线与直线垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.4.4-7(2015全国Ⅰ-23)在直角坐标系中,直线:=2,圆:,以坐标原点为极点, 轴的正半轴为极轴建立极坐标系。
经典《极坐标及全参数方程》综合测试题含问题详解

适用标准文案《极坐标与参数方程》综合测试题1.在极坐标系中,已知曲线C:ρ=2cosθ,将曲线C 上的点向左平移一个单位,而后纵坐标不变,横坐标伸长到本来的 2 倍,获得曲线 C1,又已知直线 l 过点P( 1,0 ),倾斜角为,且直线l与曲线C1交于A,B两点.3(1)求曲线 C1的直角坐标方程,并说明它是什么曲线;(2)求+.2.在直角坐标系xOy 中,圆 C 的参数方程(φ为参数),以O为极点, x 轴的非负半轴为极轴成立极坐标系.( 1)求圆 C 的极坐标方程;( 2)直线 l 的极坐标方程是2ρsin (θ +)=3,射线OM:θ =与圆C的交点为 O、P,与直线 l 的交点为 Q,求线段 PQ的长.3.在极坐标系中,圆C 的极坐标方程为:ρ2=4ρ( cosθ+sin θ)﹣ 6.若以极点 O为原点,极轴所在直线为 x 轴成立平面直角坐标系.(Ⅰ)求圆 C 的参数方程;(Ⅱ)在直角坐标系中,点 P(x,y)是圆 C上动点,试求 x+y 的最大值,并求出此时点 P 的直角坐标.4.若以直角坐标系xOy 的 O为极点, Ox为极轴,选择同样的长度单位成立极坐标系,得曲线 C 的极坐标方程是ρ =.( 1)将曲线 C 的极坐标方程化为直角坐标方程,并指出曲线是什么曲线;( 2)若直线 l 的参数方程为( t 为参数),P 3,当直线 l 与曲线 C ,02AB2.订交于 A,B 两点,求PA PB5.在平面直角坐标系 xOy 中,以原点 O 为极点, x 轴的非负半轴为极轴,成立极坐标系,曲线x 3cos 为参数),曲线 C 的极坐标方C 的参数方程为(12sin2y 程为.( 1)求曲线 C 1 的一般方程和曲线 C 2 的直角坐标方程;( 2)设 P 为曲线 C 1 上一点, Q 曲线 C 2 上一点,求 |PQ|的最小值及此时 P 点极坐标.6.在极坐标系中,曲线 C 的方程为ρ 2= ,点 R ( 2 ,).(Ⅰ)以极点为原点,极轴为x 轴的正半轴,成立平面直角坐标系,把曲线 C的极坐标方程化为直角坐标方程, R 点的极坐标化为直角坐标;(Ⅱ)设 P 为曲线 C 上一动点,以 PR 为对角线的矩形 PQRS 的一边垂直于极轴,求矩形 PQRS 周长的最小值.7.已知平面直角坐标系中,曲线C1的参数方程为(φ为参数),以原点为极点, x 轴的正半轴为极轴成立极坐标系,曲线C2的极坐标方程为ρ=2cosθ.(Ⅰ)求曲线 C1的极坐标方程与曲线C2的直角坐标方程;(Ⅱ)若直线θ =(ρ∈ R)与曲线C1交于P,Q两点,求|PQ|的长度.8.在直角坐标系中,以原点为极点,x 轴的正半轴为极轴,以同样的长度单位成立极坐标系,己知直线 l 的极坐标方程为ρ cosθ﹣ρ sin θ =2,曲线 C 的极坐标方程为ρ sin 2θ=2pcosθ( p> 0).( 1)设 t 为参数,若 x=﹣ 2+ t ,求直线 l 的参数方程;(2)已知直线 l 与曲线 C交于 P、Q,设 M(﹣ 2,﹣ 4),且 |PQ| 2 =|MP|? |MQ|,务实数 p 的值.9.在极坐标系中,射线l :θ =与圆C:ρ =2交于点A,椭圆Γ的方程为ρ2=,以极点为原点,极轴为x 轴正半轴成立平面直角坐标系xOy (Ⅰ)求点 A 的直角坐标和椭圆Γ的参数方程;(Ⅱ)若 E 为椭圆Γ的下极点, F 为椭圆Γ上随意一点,求?的取值范围.10.已知在直角坐标系中,曲线的 C 参数方程为(φ为参数),现以原点为极点, x 轴的正半轴为极轴成立极坐标系,直线l的极坐标方程为ρ =.(1)求曲线 C 的一般方程和直线 l 的直角坐标方程;(2)在曲线 C 上能否存在一点 P,使点 P 到直线 l 的距离最小?若存在,求出距离的最小值及点 P 的直角坐标;若不存在,请说明原因.11.已知曲线 C1的参数方程为(t为参数),以原点O为极点,以x轴的正半轴为极轴成立极坐标系,曲线C2的极坐标方程为.(I )求曲线 C2的直角坐标系方程;(II )设 M1是曲线 C1上的点, M2是曲线 C2上的点,求 |M1M2| 的最小值.12.设点 A 为曲线 C:ρ=2cosθ在极轴 Ox上方的一点,且 0≤θ≤,以极点为原点,极轴为 x 轴正半轴成立平面直角坐标系xOy,(1)求曲线 C 的参数方程;(2)以 A 为直角极点, AO为一条直角边作等腰直角三角形 OAB(B 在 A 的右下方),求 B 点轨迹的极坐标方程.13.在平面直角坐标系xOy中,曲线 C1:(φ为参数,实数a> 0),曲线 C2:(φ为参数,实数b> 0).在以 O 为极点, x 轴的正半轴为极轴的极坐标系中,射线l :θ =α(ρ≥ 0, 0≤α≤)与C1交于O、A 两点,与 C2交于 O、B 两点.当α =0 时,|OA|=1;当α =时,|OB|=2.(Ⅰ)求 a,b 的值;(Ⅱ)求 2|OA| 2 +|OA|? |OB| 的最大值.14.在平面直角坐标系中,曲线 C1:(a为参数)经过伸缩变换后,曲线为 C2,以坐标原点为极点, x 轴正半轴为极轴建极坐标系.(Ⅰ)求 C2的极坐标方程;(Ⅱ)设曲线C3的极坐标方程为ρ sin (﹣θ)=1,且曲线C3与曲线C2订交于 P,Q两点,求 |PQ| 的值.15.已知半圆 C 的参数方程为,a为参数,a∈[﹣,] .(Ⅰ)在直角坐标系xOy 中,以坐标原点为极点, x 轴的非负半轴为极轴成立极坐标系,求半圆 C 的极坐标方程;(Ⅱ)在(Ⅰ)的条件下,设T 是半圆 C 上一点,且 OT= ,试写出 T 点的极坐标.16.已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x 轴的正半轴为极轴成立极坐标系,曲线C2的极坐标方程为ρ =2sin θ.(Ⅰ)把 C1的参数方程化为极坐标方程;(Ⅱ)求 C1与 C2交点的极坐标(ρ≥ 0, 0≤θ< 2π)《极坐标与参数方程》综合测试题答案一.解答题(共16 小题)1.在极坐标系中,已知曲线 C:ρ =2cosθ,将曲线 C 上的点向左平移一个单位,而后纵坐标不变,横坐标伸长到本来的 2 倍,获得曲线 C1,又已知直线 l 过点 P ( 1,0 ),倾斜角为,且直线l与曲线C1交于A,B两点.3( 1)求曲线 C1的直角坐标方程,并说明它是什么曲线;(2)求+.【解答】解:(1)曲线 C 的直角坐标方程为: x2+y2﹣2x=0 即( x﹣1)2+y2=1.∴曲线 C1的直角坐标方程为=1,∴曲线 C 表示焦点坐标为(﹣,0),(, 0),长轴长为 4 的椭圆( 2)将直线 l 的参数方程代入曲线 C 的方程=1 中,得13t24t 12 0 .设 A、B 两点对应的参数分别为t 1, t 2,∴+=210 .32.在直角坐标系xOy 中,圆 C 的参数方程(φ为参数),以O为极点, x 轴的非负半轴为极轴成立极坐标系.( 1)求圆 C 的极坐标方程;( 2)直线 l 的极坐标方程是2ρsin (θ +)=3,射线OM:θ =与圆C的交点为 O、 P,与直线 l 的交点为 Q,求线段 PQ的长.【解答】解:(I )利用 cos2φ +sin 2φ =1,把圆 C 的参数方程为参数)化为( x﹣1)2+y2=1,∴ρ2﹣ 2ρ cosθ =0,即ρ =2cosθ.( II )设(ρ1,θ1)为点 P 的极坐标,由,解得.(ρ 2 ,θ 2 )点Q 的极坐,由,解得.∵θ 1=θ2 ,∴|PQ|=|ρ1ρ 2|=2.∴|PQ|=2 .3.在极坐系中, C 的极坐方程:ρ2=4ρ( cosθ+sin θ) 6.若以极点 O原点,极所在直 x 成立平面直角坐系.(Ⅰ)求 C 的参数方程;(Ⅱ)在直角坐系中,点 P(x,y)是 C上点,求 x+y 的最大,并求出此点 P 的直角坐.【解答】(本小分 10 分)修 4 4:坐系与参数方程解:(Ⅰ)因ρ2=4ρ( cosθ +sin θ) 6,因此 x2+y2=4x+4y 6,因此 x2+y24x 4y+6=0,即( x 2)2+(y 2)2=2C的一般方程.⋯( 4 分)因此所求的 C 的参数方程(θ 参数).⋯(6分)(Ⅱ)由(Ⅰ)可得,⋯(7 分)当,即点 P 的直角坐(3,3),⋯(9 分)x+y 取到最大 6.⋯(10 分)4.若以直角坐系xOy 的 O极点, Ox极,同样的度位成立极坐系,得曲 C 的极坐方程是ρ =.( 1)将曲 C 的极坐方程化直角坐方程,并指出曲是什么曲;( 2)若直线 l 的参数方程为( t 为参数),P 3,0,当直线 l 与曲线 C 2AB2.订交于 A, B 两点,求PA PB【解答】解:(1)∵ρ =,∴ρ 2sin2θ =6ρcosθ,∴曲线 C 的直角坐标方程为y2=6x.曲线为以(,0)为焦点,张口向右的抛物线.( 2)直线 l的参数方程可化为,代入 y2=6x 得 t 2﹣4t ﹣12=0.解得 t 1=﹣2,t 2=6.22AB∴ | |=|t 1﹣t 2|=8 .3PA PB5.在平面直角坐标系xOy 中,以原点 O 为极点, x 轴的非负半轴为极轴,成立x3cos为参数),曲线 C 的极坐标方程为极坐标系,曲线 C 的参数方程为(12sin 2y.(1)求曲线 C1的一般方程和曲线 C2的直角坐标方程;(2)设 P 为曲线 C1上一点, Q曲线 C2上一点,求 |PQ|的最小值及此时 P 点极坐标.【解答】解:( 1)由消去参数α,得曲线C1的一般方程为.由得,曲线 C2的直角坐标方程为.(2)设 P(2 cosα, 2sin α),则点P到曲线C2的距离为.当时, d 有最小值,因此|PQ|的最小值为.6.在极坐标系中,曲线 C 的方程为ρ2=,点 R(2 ,).(Ⅰ)以极点为原点,极轴为x 轴的正半轴,成立平面直角坐标系,把曲线C的极坐标方程化为直角坐标方程,R点的极坐标化为直角坐标;(Ⅱ)设 P 为曲线 C 上一动点,以 PR为对角线的矩形 PQRS的一边垂直于极轴,求矩形 PQRS周长的最小值.【解答】解:(Ⅰ)因为 x=ρcosθ, y=ρsin θ,则:曲线 C 的方程为ρ2=,转变成.点 R 的极坐标转变成直角坐标为: R(2,2).(Ⅱ)设 P()依据题意,获得 Q( 2, sin θ),则: |PQ|=,|QR|=2﹣sin θ,因此: |PQ|+|QR|=.当时,( |PQ|+|QR| )min=2,矩形的最小周长为 4.7.已知平面直角坐标系中,曲线 C1的参数方程为(φ为参数),以原点为极点, x 轴的正半轴为极轴成立极坐标系,曲线 C 的极坐标方程为ρ2=2cosθ.(Ⅰ)求曲线 C1的极坐标方程与曲线 C2的直角坐标方程;(Ⅱ)若直线θ =(ρ∈ R)与曲线 C1交于 P,Q两点,求 |PQ| 的长度.【解答】解:(I )曲线 C1的参数方程为(φ为参数),利用平方关系消去φ可得:+(y+1)2 =9,睁开为: x2+y2﹣ 2 x+2y﹣ 5=0,可得极坐标方程:ρcosθ+2ρ sin θ﹣ 5=0.2曲线C2的极坐标方程为ρ=2cosθ,即ρ=2ρ cos θ,可得直角坐标方程:( II )把直线θ =(ρ∈ R)代入ρcosθ+2ρsinθ﹣5=0,整理可得:ρ2﹣ 2ρ﹣ 5=0,∴ρ 1+ρ2 =2,ρ 1?ρ2=﹣5,∴ |PQ|=| ρ1﹣ρ2|===2.8.在直角坐标系中,以原点为极点, x 轴的正半轴为极轴,以同样的长度单位成立极坐标系,己知直线 l 的极坐标方程为ρ cosθ﹣ρ sin θ=2,曲线 C的极坐标方程为ρ sin 2θ=2pcosθ( p>0).( 1)设 t 为参数,若 x=﹣ 2+ t ,求直线 l 的参数方程;(2)已知直线 l 与曲线 C 交于 P、Q,设 M(﹣ 2,﹣ 4),且 |PQ| 2=|MP|? |MQ|,务实数 p 的值.【解答】解:( 1)直线 l 的极坐标方程为ρ cosθ﹣ρ sin θ=2,化为直角坐标方程: x﹣y﹣2=0.∵ x=﹣2+ t ,∴ y=x﹣2=﹣ 4+ t ,∴直线l的参数方程为:(t为参数).(2)曲线 C 的极坐标方程为ρ sin 2θ =2pcosθ( p>0),即为ρ2 sin 2θ=2pρ cos θ( p>0),可得直角坐标方程: y2=2px.把直线 l 的参数方程代入可得: t 2﹣( 8+2p)t+8p+32=0.∴ t 1+t 2=(8+2p),t1t2=8p+32.不如设 |MP|=t 1, |MQ|=t 2.|PQ|=|t 1﹣ t 2 |===.∵|PQ| 2=|MP|? |MQ|,∴ 8p2+32p=8p+32,化为: p2+3p﹣4=0,解得 p=1.9.在极坐标系中,射线 l :θ =与圆C:ρ =2 交于点 A,椭圆Γ的方程为ρ2=,以极点为原点,极轴为x 轴正半轴成立平面直角坐标系 xOy (Ⅰ)求点 A 的直角坐标和椭圆Γ的参数方程;(Ⅱ)若 E 为椭圆Γ的下极点, F 为椭圆Γ上随意一点,求?的取值范围.【解答】解:(Ⅰ)射线 l :θ =与圆 C:ρ =2 交于点 A( 2,),点 A 的直角坐标(,1);椭圆Γ 的方程为ρ2=,直角坐标方程为+y2=1,参数方程为(θ为参数);(Ⅱ)设 F( cosθ, sin θ),∵ E( 0,﹣ 1),∴=(﹣,﹣ 2), =(cosθ﹣, sin θ﹣ 1),∴?=﹣3cosθ +3﹣2(sin θ﹣ 1)=sin (θ +α) +5,∴?的取值范围是 [5 ﹣,5+] .10.已知在直角坐标系中,曲线的 C 参数方程为(φ为参数),现以原点为极点, x 轴的正半轴为极轴成立极坐标系,直线l的极坐标方程为ρ=.(1)求曲线 C 的一般方程和直线 l 的直角坐标方程;(2)在曲线 C 上能否存在一点 P,使点 P 到直线 l 的距离最小?若存在,求出距离的最小值及点 P 的直角坐标;若不存在,请说明原因.【解答】解:(1)曲线的 C 参数方程为(φ为参数),一般方程为(x﹣ 1)2+(y﹣ 1)2=4,直线 l 的极坐标方程为ρ =,直角坐标方程为x﹣ y﹣ 4=0;( 2)点 P 到直线 l 的距离 d==,∴φ﹣=2kπ﹣,即φ =2kπ﹣(k∈ Z),距离的最小值为2﹣2,点P 的直角坐标( 1+,1﹣).11.已知曲线 C1的参数方程为(t为参数),以原点O为极点,以x轴的正半轴为极轴成立极坐标系,曲线C2的极坐标方程为.(I )求曲线 C2的直角坐标系方程;(II )设 M1是曲线 C1上的点, M2是曲线 C2上的点,求 |M1M2| 的最小值.【解答】解:(I )由可得ρ =x﹣2,∴ρ 2=(x﹣2)2,即y2=4(x﹣1);(Ⅱ)曲线 C1的参数方程为(t为参数),消去t得:2x+y+4=0.∴曲线 C1的直角坐标方程为2x+y+4=0.∵ M1是曲线 C1上的点, M2是曲线 C2上的点,∴|M1M2| 的最小值等于 M2到直线 2x+y+4=0 的距离的最小值.设 M2(r 2﹣ 1,2r ), M2到直线 2x+y+4=0 的距离为 d,则 d==≥.∴ |M1M2| 的最小值为.12.设点 A 为曲线 C:ρ=2cosθ在极轴 Ox上方的一点,且 0≤θ≤,以极点为原点,极轴为 x 轴正半轴成立平面直角坐标系xOy,(1)求曲线 C 的参数方程;(2)以 A 为直角极点, AO为一条直角边作等腰直角三角形 OAB(B 在 A 的右下方),求点 B 轨迹的极坐标方程.【解答】(1)x1 cos(0,θ为参数)y sin2( 2):设 A(ρ0,θ0),且知足ρ0=2cosθ0,B(ρ,θ),依题意,即代入ρ 0=2cosθ0 并整理得,,,因此点 B 的轨迹方程为,.13.在平面直角坐标系xOy中,曲线 C1:(φ为参数,实数a> 0),曲线 C2:(φ为参数,实数b>0).在以 O 为极点, x 轴的正半轴为极轴的极坐标系中,射线l :θ =α(ρ≥ 0, 0≤α≤)与C1交于O、A两点,与 C2交于 O、 B 两点.当α =0 时, |OA|=1 ;当α =时,|OB|=2.(Ⅰ)求 a,b 的值;(Ⅱ)求 2|OA| 2 +|OA|? |OB| 的最大值.【解答】解:(Ⅰ)由曲线 C1:(φ为参数,实数a>0),化为一般方程为( x﹣ a)2+y2 =a2,睁开为: x2+y2﹣ 2ax=0,其极坐标方程为ρ2=2aρ cos θ,即ρ =2acosθ,由题意可适当θ=0 时, |OA|=ρ =1,∴ a= .曲线 C2:(φ为参数,实数b>0),化为一般方程为x2 +( y﹣ b)2=b2,睁开可得极坐标方程为ρ=2bsin θ,由题意可适当时, |OB|= ρ=2,∴ b=1.(Ⅱ)由( I )可得 C1,C2的方程分别为ρ =cosθ,ρ =2sin θ.∴2|OA| 2+|OA| ? |OB|=2cos 2θ+2sinθcosθ=sin2θ+cos2 θ+1=+1,∵ 2θ + ∈,∴+1 的最大值为+1,当 2θ+ =时,θ =时取到最大值.14.在平面直角坐标系中,曲线 C1:(a 为参数)经过伸缩变换后的曲线为 C ,以坐标原点为极点, x 轴正半轴为极轴成立极坐标系.2(Ⅰ)求 C2的极坐标方程;(Ⅱ)设曲线 C3的极坐标方程为ρ sin (﹣θ) =1,且曲线 C3与曲线 C2订交于 P,Q两点,求 |PQ| 的值.【解答】解:(Ⅰ)C2的参数方程为(α为参数),一般方程为( x′﹣ 1)2+y′2=1,∴ C2的极坐标方程为ρ =2cosθ;(Ⅱ)C2是以(1,0)为圆心, 2 为半径的圆,曲线 C3的极坐标方程为ρ sin (﹣θ) =1,直角坐标方程为x﹣y﹣2=0,∴圆心到直线的距离d== ,∴ |PQ|=2=.15.已知半圆 C 的参数方程为,a为参数,a∈[﹣,] .(Ⅰ)在直角坐标系xOy 中,以坐标原点为极点, x 轴的非负半轴为极轴成立极坐标系,求半圆 C 的极坐标方程;(Ⅱ)在(Ⅰ)的条件下,设T 是半圆 C 上一点,且 OT=,试写出T点的极坐标.【解答】解:(Ⅰ)由半圆 C的参数方程为,a为参数,a∈[﹣,] ,则圆的一般方程为x2+(y﹣1)2=1(0≤x≤1),由 x=ρ cosθ, y=ρ sin θ, x2+y2=ρ2,可得半圆 C 的极坐标方程为ρ =2sin θ,θ∈ [0 ,] ;(Ⅱ)由题意可得半圆 C 的直径为 2,设半圆的直径为OA,则 sin ∠TAO=,因为∠ TAO∈ [0 ,] ,则∠ TAO=,因为∠ TAO=∠TOX,因此∠ TOX=,T 点的极坐标为(,).16.已知曲线 C1的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴成立极坐标系,曲线C2的极坐标方程为ρ =2sin θ.(Ⅰ)把 C1的参数方程化为极坐标方程;(Ⅱ)求 C1与 C2交点的极坐标(ρ≥ 0, 0≤θ< 2π)【解答】解:(Ⅰ)曲线 C1的参数方程式(t为参数),得( x﹣4)2+(y﹣5)2=25 即为圆 C1的一般方程,即 x2+y2﹣8x﹣10y+16=0.将 x=ρ cosθ, y=ρ sin θ代入上式,得.ρ2﹣8ρcosθ﹣ 10ρsin θ +16=0,此即为 C1的极坐标方程;(Ⅱ)曲线 C2的极坐标方程为ρ =2sin θ化为直角坐标方程为:x2+y2﹣2y=0,由,解得或.∴ C1与 C2交点的极坐标分别为(,),(2,).。
极坐标与参数方程高考题含答案)

极坐标与参数方程高考题1.在直角坐标系xOy 中,直线1:2C x =-,圆()()222:121C x y -+-=,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.(I )求12,C C 的极坐标方程. (II )若直线3C 的极坐标方程为()πR 4θρ=∈,设23,C C 的交点为,M N ,求2C MN ∆ 的面积. 解:(Ⅰ)因为cos ,sin x y ρθρθ==,∴1C 的极坐标方程为cos 2ρθ=-,2C 的极坐标方程为22cos 4sin 40ρρθρθ--+=.(Ⅱ)将=4πθ代入22cos 4sin 40ρρθρθ--+=,得240ρ-+=,解得1ρ=2ρ,|MN|=1ρ-2ρ,因为2C 的半径为1,则2C MN 的面积o 11sin 452⨯=12.2.已知曲线194:22=+y x C ,直线⎩⎨⎧-=+=t y t x l 222:(t 为参数) (1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求PA 的最大值与最小值. 解:(1)曲线C 的参数方程为(θ为参数).直线l 的普通方程为2x+y-6=0. (2)曲线C 上任意一点P(2cos θ,3sin θ)到l 的距离为|4cos θ+3sin θ-6|, 则|PA|==|5sin(θ+α)-6|,其中α为锐角,且tan α=43.当sin(θ+α)=-1时,|PA|取得最大值,.当sin(θ+α)=1时,|PA|取得最小值,3.在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cos θ02πθ⎡⎤∈⎢⎥⎣⎦,,(1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线垂直,根据(1)中你得到的参数方程,确定D 的坐标.解:(1)C 的普通方程为(x-1)2+y 2=1(0≤y ≤1).可得C 的参数方程为: x 1cos sin y θθ=+⎧⎨=⎩(0≤θ≤π).(2)设D(1+cos θ,sin θ).由(1)知C 是以G(1,0)为圆心,1为半径的上半圆.因为C 在点D 处的切线与l 垂直,所以直线GD 与l 的斜率相同,tan θ=,θ=3π.故D 的直角坐标为32(. 4.将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C. (1)写出C 的参数方程;(2)设直线l:2x+y-2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.解:(1)设(x 1,y 1)为圆上的点,经变换为C 上点(x,y),由22x y +=1得x 2+22y ⎪⎭⎫ ⎝⎛=1,即曲线C 的方程为4x 2+2y =4.故C 的参数方程为⎩⎨⎧==θθsin 2cos x y (θ为参数).(2)由解得或不妨设P 1(1,0),P 2(0,2),则线段P 1P 2的中点坐标为12(,1),所求直线斜率为k=12,于是所求直线方程为y-1=12(x-12),化为极坐标方程,并整理得2ρcos θ-4ρsin θ=-3,即ρ=θθsin 4cos 23--. 5.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立坐标系.曲线C 的极坐标方程为ρcos ⎝⎛⎭⎪⎫θ-π3=1,M 、N 分别为C 与x 轴,y 轴的交点.(1)写出C 的直角坐标方程,并求M 、N 的极坐标;(2)设MN 的中点为P ,求直线OP 的极坐标方程.解:(1)由ρcos ⎝ ⎛⎭⎪⎫θ-π3=1得ρ⎝ ⎛⎭⎪⎫12cos θ+32sin θ=1.从而C 的直角坐标方程为12x +32y =1,即x +3y =2,当θ=0时,ρ=2,所以M (2,0).当θ=π2时,ρ=233,所以N ⎝ ⎛⎭⎪⎫233,π2.(2)M 点的直角坐标为(2,0).N 点的直角坐标为(0,233).所以P 点的直角坐标为⎝ ⎛⎭⎪⎫1,33,则P 点的极坐标为⎝⎛⎭⎪⎫233,π6,所以直线OP 的极坐标方程为θ=π6,ρ∈(-∞,+∞).6.在极坐标系下,已知圆O :ρ=cos θ+sin θ和直线l :ρsin (θ-π4)=22,(1)求圆O 和直线l 的直角坐标方程;(2)当θ∈(0,π)时,求直线l 与圆O 公共点的一个极坐标.解:(1)圆O :ρ=cos θ+sin θ,即ρ2=ρcos θ+ρsin θ,圆O 的直角坐标方程为x 2+y 2=x +y ,即x2+y 2-x -y =0.直线l :ρsin(θ-π4)=22,即ρsin θ-ρcos θ=1,则直线l 的直角坐标方程为y -x =1,即x -y +1=0.(2)由⎩⎪⎨⎪⎧x 2+y 2-x -y =0,x -y +1=0得⎩⎪⎨⎪⎧x =0,y =1.故直线l 与圆O 公共点的一个极坐标为(1,π2).7.在平面直角坐标系xOy 中,求过椭圆⎩⎪⎨⎪⎧x =5cos φ,y =3sin φ(φ为参数)的右焦点,且与直线⎩⎪⎨⎪⎧x =4-2t ,y =3-t (t 为参数)平行的直线的普通方程.解:由题设知,椭圆的长半轴长a =5,短半轴长b =3,从而c =a 2-b 2=4,所以右焦点为(4,0).将已知直线的参数方程化为普通方程:x -2y +2=0.故所求直线的斜率为12,因此其方程为y =12(x -4),即x -2y -4=0.8.在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3-22t ,y =5+22t (t 为参数).在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为ρ=25sin θ. (1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点A ,B .若点P 的坐标为(3,5),求|PA |+|PB |. 解:(1)ρ=25sin θ,得x 2+y 2-25y =0,即x 2+(y -5)2=5.(4分) (2)将l 的参数方程代入圆C 的直角坐标方程,得(3-22t )2+(22t )2=5,即t 2-32t +4=0.由于Δ=(32)2-4×4=2>0,故可设t 1,t 2是上述方程的两实根,所以⎩⎨⎧t 1+t 2=32,t 1·t 2=4.又直线l 过点P (3,5),故由上式及t 的几何意义得|PA |+|PB |=|t 1|+|t 2|=t 1+t 2=3 2.9.在直角坐标版权法xOy 吕,直线l的参数方程为132(x t t y ⎧=+⎪⎪⎨⎪=⎪⎩为参数),以原点为极点,x 轴的正半轴为极轴建立极坐标系,C的极坐标方程为ρθ=.(I)写出C 的直角坐标方程;(II)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求点P 的坐标. 解:(I)由ρθ=,得2sin ρθ=,从而有22x y +=,所以(223x y +-=(II)设132P t ⎛⎫+ ⎪⎝⎭,又C,则PC ==, 故当0t =时,PC 取得最小值,此时P 点的坐标为(3,0).。
近三年高考数学全国卷坐标系与参数方程真题

近三年高考数学真题坐标系与参数方程专练 2020全国理科一22.在直角坐标系xOy 中,曲线1C 的参数方程为cos ,sin k k x t y t⎧=⎨=⎩(t 为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4cos 16sin 30ρθρθ-+=. (1)当1k =时,1C 是什么曲线?(2)当4k =时,求1C 与2C 的公共点的直角坐标.2020全国卷二.已知曲线C 1,C 2的参数方程分别为C 1:224cos 4sin x y θθ⎧=⎨=⎩,(θ为参数),C 2:1,1x t t y t t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数).(1)将C 1,C 2的参数方程化为普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.设C 1,C 2的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程.2019全国理科一在直角坐标系xOy 中,曲线C 的参数方程为(t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为.(1)求C 和l 的直角坐标方程;(2)求C 上的点到l 距离的最小值.2019江苏在极坐标系中,已知两点3,,42A B ππ⎛⎫⎫ ⎪⎪⎝⎭⎭,直线l 的方程为sin 34ρθπ⎛⎫+= ⎪⎝⎭. (1)求A ,B 两点间的距离;(2)求点B 到直线l 的距离.C.[选修4-5:不等式选讲](本小题满分10分)设x ∈R ,解不等式||+|2 1|>2x x -.2018全国卷2221141t x t ty t ⎧-=⎪⎪+⎨⎪=⎪+⎩,2cos sin 110ρθθ+=在直角坐标系xOy 中,曲线C ₁的方程为y=k ∣x ∣+2.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C ₂的极坐标方程为p ²+2p -3=0.(1) 求C ₂的直角坐标方程:(2) 若C ₁与C ₂有且仅有三个公共点,求C ₁的方程.2017全国卷在直角坐标系xOy 中,曲线C 的参数方程为(θ为参数),直线l 的参数方程为. (1)若a =−1,求C 与l 的交点坐标;(2)若C 上的点到la.2020全国理科一3cos ,sin ,x y θθ=⎧⎨=⎩4,1,x a t t y t =+⎧⎨=-⎩(为参数)(1)当1k =时,曲线1C 的参数方程为cos (sin x t t y t =⎧⎨=⎩为参数), 两式平方相加得221x y +=,所以曲线1C 表示以坐标原点为圆心,半径为1的圆; (2)当4k =时,曲线1C 的参数方程为44cos (sin x t t y t ⎧=⎨=⎩为参数), 所以0,0x y ≥≥,曲线1C的参数方程化为22cos (sin t t t==为参数), 两式相加得曲线1C1+=,1=1,01,01y x x y =-≤≤≤≤, 曲线2C 的极坐标方程为4cos 16sin 30ρθρθ-+=,曲线2C 直角坐标方程为41630x y -+=,联立12,C C方程141630y x x y ⎧=-⎪⎨-+=⎪⎩,整理得12130x -=12=136=(舍去), 11,44x y ∴==,12,C C ∴公共点的直角坐标为11(,)44. 2019全国理科一解:(1)因为221111t t --<≤+,且()22222222141211y t t x t t ⎛⎫-⎛⎫+=+= ⎪ ⎪+⎝⎭⎝⎭+,所以C 的直角坐标方程为221(1)4y x x +=≠-. l的直角坐标方程为2110x +=.(2)由(1)可设C 的参数方程为cos ,2sin x y αα=⎧⎨=⎩(α为参数,ππα-<<).C 上的点到lπ4cos 11α⎛⎫-+ ⎪=. 当2π3α=-时,π4cos 113α⎛⎫-+ ⎪⎝⎭取得最小值7,故C 上的点到l. 2019江苏解:(1)设极点为O .在△OAB 中,A (3,4π),B,2π),由余弦定理,得AB=.(2)因为直线l 的方程为sin()34ρθπ+=, 则直线l过点)2π,倾斜角为34π.又)2B π,所以点B 到直线l的距离为3sin()242ππ⨯-=.。
极坐标参数方程高考练习含答案非常好的练习题

极坐标参数方程高考练习含答案非常好的练习题公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]极坐标与参数方程高考精练(经典39题)1.在极坐标系中,以点(2,)2C π为圆心,半径为3的圆C 与直线:()3l R πθρ=∈交于,A B两点.(1)求圆C 及直线l 的普通方程.(2)求弦长AB .2.在极坐标系中,曲线2:sin 2cos L ρθθ=,过点A (5,α)(α为锐角且3tan 4α=)作平行于()4R πθρ=∈的直线l ,且l 与曲线L 分别交于B ,C 两点.(Ⅰ)以极点为原点,极轴为x 轴的正半轴,取与极坐标相同单位长度,建立平面直角坐标系,写出曲线L 和直线l 的普通方程;(Ⅱ)求|BC|的长.3.在极坐标系中,点M 坐标是)2,3(π,曲线C 的方程为)4sin(22πθρ+=;以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,斜率是1-的直线l 经过点M .(1)写出直线l 的参数方程和曲线C 的直角坐标方程;(2)求证直线l 和曲线C 相交于两点A 、B ,并求||||MB MA ⋅的值.4.已知直线l 的参数方程是)(242222是参数t t y t x ⎪⎪⎩⎪⎪⎨⎧+==,圆C 的极坐标方程为)4cos(2πθρ+=.(1)求圆心C 的直角坐标;(2)由直线l 上的点向圆C 引切线,求切线长的最小值.5.在直角坐标系xOy 中,直线l 的参数方程为()为参数t ty ta x ,3⎩⎨⎧=+=.在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为θρcos 4=.(Ⅰ)求圆C 在直角坐标系中的方程;(Ⅱ)若圆C 与直线l 相切,求实数a 的值.6.在极坐标系中,O 为极点,已知圆C 的圆心为(2,)3π,半径r=1,P 在圆C 上运动。
(I )求圆C 的极坐标方程;(II )在直角坐标系(与极坐标系取相同的长度单位,且以极点O 为原点,以极轴为x 轴正半轴)中,若Q 为线段OP 的中点,求点Q 轨迹的直角坐标方程。
极坐标与参数方程含答案(经典39题)(整理版)

高考极坐标参数方程(经典39题)在极坐标系中,以点(2,)2C π为圆心,半径为3的圆C 与直线:()3l R πθρ=∈交于,A B 两点.(1)求圆C 及直线l 的普通方程. (2)求弦长AB .2.在极坐标系中,曲线2:sin 2cos L ρθθ=,过点A (5,α)(α为锐角且3tan 4α=)作平行于()4R πθρ=∈的直线l ,且l 与曲线L 分别交于B ,C 两点. (Ⅰ)以极点为原点,极轴为x 轴的正半轴,取与极坐标相同单位长度,建立平面直角坐标系,写出曲线L 和直线l 的普通方程; (Ⅱ)求|BC|的长.3.在极坐标系中,点M 坐标是)2,3(π,曲线C 的方程为)4sin(22πθρ+=;以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,斜率是1-的直线l 经过点M .(1)写出直线l 的参数方程和曲线C 的直角坐标方程;(2)求证直线l 和曲线C 相交于两点A 、B ,并求||||MB MA ⋅的值.4.已知直线l的参数方程是)(242222是参数t t y t x ⎪⎪⎩⎪⎪⎨⎧+==,圆C 的极坐标方程为)4cos(2πθρ+=.(1)求圆心C 的直角坐标;(2)由直线l 上的点向圆C 引切线,求切线长的最小值.5.在直角坐标系xOy 中,直线l 的参数方程为()为参数t t y ta x ,3⎩⎨⎧=+=.在极坐标极轴)中,圆C 的方程为θρcos 4=. (Ⅰ)求圆C 在直角坐标系中的方程;(Ⅱ)若圆C 与直线l 相切,求实数a 的值.6.在极坐标系中,O 为极点,已知圆C 的圆心为(2,)3π,半径r=1,P 在圆C 上运动。
(I )求圆C 的极坐标方程;(II )在直角坐标系(与极坐标系取相同的长度单位,且以极点O 为原点,以极轴为x 轴正半轴)中,若Q 为线段OP 的中点,求点Q 轨迹的直角坐标方程。
7.在极坐标系中,极点为坐标原点O ,已知圆C 的圆心坐标为)4,2(C π,半径为2,直线l 的极坐标方程为22)4sin(=θ+πρ.(1)求圆C 的极坐标方程;(2)若圆C 和直线l 相交于A ,B 两点,求线段AB 的长.8.平面直角坐标系中,将曲线⎩⎨⎧==ααsin cos 4y x (α为参数)上的每一点纵坐标不变,横坐标变为原来的一半,然后整个图象向右平移1个单位,最后横坐标不变,纵坐标变为原来的2倍得到曲线1C .以坐标原点为极点,x 的非负半轴为极轴,建立的极坐标中的曲线2C 的方程为θρsin 4=,求1C 和2C 公共弦的长度.9.在直角坐标平面内,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程是θρcos 4=,直线l 的参数方程是⎪⎪⎩⎪⎪⎨⎧=+-=.21, 233t y t x (t 为参数).求极点在直线l 上的射影点P 的极坐标;若M 、N 分别为曲线C 、直线l 上的动点,求MN 的最小值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.(2019江苏)在极坐标系中,已知两
点3,
,42A B ππ⎛⎫⎫ ⎪⎪⎝⎭⎭
,直线l 的方程为sin 34
ρθπ⎛⎫
+= ⎪⎝
⎭
.
(1)求A ,B 两点间的距离;(2)求点B 到直线l 的距离.
2.(2018江苏)在极坐标系中,直线l 的方程为π
sin()26ρθ-=,曲线C 的方程为4cos ρθ=,
求直线l 被曲线C 截得的弦长.
3.(2017江苏)在平面坐标系中xOy 中,已知直线l 的参考方程为82
x t t
y =-+⎧⎪
⎨=⎪⎩(t 为参数),曲线C
的参数方程为2
2x s
y ⎧=⎪⎨=⎪⎩(s 为参数).设P 为曲线C 上的动点,求点P 到直
线l 的距离的最小值.
(Ⅱ)设点P 在1C 上,点Q 在2C 上,求||PQ 的最小值及此时P 的直角坐标.
4.(2016江苏)在平面直角坐标系xOy 中,已知直线l
的参数方程为()11,2,x t t y ⎧
=+⎪⎪
⎨⎪=⎪⎩为参数,
椭圆C 的参数方程为()cos ,
2sin ,x y θθθ=⎧⎨=⎩
为参数,设直线l 与椭圆C 相交于,A B 两点,求线
段AB 的长.
5.(2015江苏)已知圆C
的极坐标方程为2sin()404
π
ρθ+--=,求圆C 的半径.
答案部分
1、解:(1)设极点为O .在△OAB 中,A (3,
4π),B
,2
π
), 由余弦定理,得AB
=(2)因为直线l 的方程为sin()34ρθπ+=,则直线l
过点)2π,倾斜角为
34
π.
又)2B π,所以点B 到直线l
的距离为3sin(
)242
ππ
⨯-=. 2、因为曲线C 的极坐标方程为=4cos ρθ,所以曲线C 的圆心为(2,0),直径为4的圆.
因为直线l 的极坐标方程为πsin()26ρθ-=,则直线l 过(4,0)A ,倾斜角为π
6,
所以A 为直线l 与圆C 的一个交点.设另一个交点为B ,则∠OAB =π
6
. 连结OB ,因为OA 为直径,从而∠OBA =
π2
,
O
l
所以π
4cos
6
AB ==l
被曲线C 截得的弦长为 3.直线l 的普通方程为280x y -+=.
因为点P
在曲线C 上,设2(2,)P s , 从而点P
到直线l
的的距离22d =
=,
当
s =
min 5
d =
. 因此当点P 的坐标为(4,4)时,曲线C 上点P
到直线l 的距离取到最小值
5
.
4、椭圆C 的普通方程为22
14y x +=,将直线l
的参数方程112x t y ⎧=+⎪⎪⎨⎪=⎪⎩, 代入2
2
14y
x +
=
,得2
2)12(1)12
4
t ++=,即27160t t +=, 解得10t =,2167t =-
.所以1216
||7
AB t t =-=. 5、 以极坐标系的极点为平面直角坐标系的原点O ,以极轴为x 轴的正半轴,建立直角坐
标系xoy .
圆C
的极坐标方程为2
40ρθθ⎫+--=⎪⎪⎝⎭
,
化简,得2
2sin 2cos 40ρρθρθ+--=.。