2014年全国高考新课标2卷文科数学试卷及答案
2014高考全国2卷数学文科试题及答案详解解析

2014 年普通高等学校招生全国统一考试数学第Ⅰ卷一、选择题:本大题共12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合A { 2,0,2} ,2B {x| x x 2 0},则A B=2 0 2(A) (B)(C)(D)考点:交集及其运算.分析:先解出集合B,再求两集合的交集即可得出正确选项.解答:解:∵ A={﹣2,0,2},B={x|x2 ﹣x﹣2=0}={﹣1,2},∴A∩B={2}.故选: B点评:本题考查交的运算,理解好交的定义是解答的关键.1 3i(2)1 i()(A)1 2i (B) 1 2i (C)1-2i (D) 1-2i考点:复数代数形式的乘除运算.分析:分子分母同乘以分母的共轭复数1+i 化简即可.解答:解:化简可得====﹣1+2i故选: B点评:本题考查复数代数形式的化简,分子分母同乘以分母的共轭复数是解决问题的关键,属基础题.f x在x x0 处导数存在,若(3)函数p: f (x ) 0;q : x x0 0是f x 的极值点,则()(A) p 是 q 的充分必要条件(B) p 是q 的充分条件,但不是q 的必要条件(C) p 是q 的必要条件,但不是q 的充分条件(D) p 既不是 q的充分条件,也不是q 的必要条件考点:必要条件、充分条件与充要条件的判断.菁优网版权所有分析:根据可导函数的极值和导数之间的关系,利用充分条件和必要条件的定义即可得到结论.解答:函数f(x)=x3 的导数为f'(x)=3x2,由 f′(x0)=0,得x0=0,但此时函数f(x)单调递增,无极值,充分性不成立.根据极值的定义和性质,若x=x0 是 f(x)的极值点,则f′(x0)=0 成立,即必要性成立,故p 是 q 的必要条件,但不是q 的充分条件,故选: C点评:本题主要考查充分条件和必要条件的判断,利用函数单调性和极值之间的关系是解决本题的关键,比较基础.1(4)设向量a,b 满足|a+b|= 10 ,|a-b|= 6,则a·b= ()(A)1 (B)2 (C)3 (D) 5考点:平面向量数量积的运算.分析:将等式进行平方,相加即可得到结论.解答:∵| + |= ,| ﹣|= ,∴分别平方得,+2 ? + =10,﹣2 ? + =6,两式相减得4? ? =10﹣6=4,即? =1,故选: A点评:本题主要考查向量的基本运算,利用平方进行相加是解决本题的关键,比较基础.(5)等差数列a n 的公差为2,若a2 ,a4 ,a8成等比数列,则a n 的前n 项Sn =()n n 1 n n 1n n 1 n n 12 2 (A)(B)(C)(D)考点:等差数列的性质.分析:由题意可得a42=(a4﹣4)(a4+8),解得a4 可得 a1,代入求和公式可得.解答:由题意可得a42=a2?a8,即 a42=(a4﹣4)(a4+8),解得a4=8,∴a1=a4﹣3×2=2,∴Sn=na1+d,=2n+× 2=n(n+1),故选: A点评:本题考查等差数列的性质和求和公式,属基础题.如图,网格纸上正方形小格的边长为1(表示 1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为 6c m 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()17 5 10 1(A )27 (B)9 (C) 27 (D)3考点:由三视图求面积、体积.菁优网版权所有分析:由三视图判断几何体的形状,通过三视图的数据求解几何体的体积即可.解答:几何体是由两个圆柱组成,一个是底面半径为 3 高为 2,一个是底面半径为2,高为 4,组合体体积是:32π?2+22π?4=34π.底面半径为3cm,高为6cm 的圆柱体毛坯的体积为:32π× 6=54π切削掉部分的体积与原来毛坯体积的比值为:=.故选: C.点评:本题考查三视图与几何体的关系,几何体的体积的求法,考查空间想象能力以及计算能力.2正三棱柱ABC A1 B1C1 的底面边长为2,侧棱长为3 ,D为B C中点,则三棱锥 A B1DC 的体积为()13 3(A)3 (B)2 (C)1 (D)2考点:棱柱、棱锥、棱台的体积.菁优网版权所有分析:由题意求出底面B1DC1的面积,求出 A 到底面的距离,即可求解三棱锥的体积.解答:∵正三棱柱ABC﹣A1B1C1的底面边长为2,侧棱长为,D为B C中点,∴底面B1DC1的面积:=,A 到底面的距离就是底面正三角形的高:.三棱锥A﹣B1DC1的体积为:=1.故选:C.点评:本题考查几何体的体积的求法,求解几何体的底面面积与高是解题的关键.(8)执行右面的程序框图,如果如果输入的x,t 均为2,则输出的S= ()(A)4 (B)5 (C)6 (D)7考点:程序框图.菁优网版权所有分析:根据条件,依次运行程序,即可得到结论.解答:若x=t=2,则第一次循环,1≤2 成立,则M=,S=2+3=5,k=2,第二次循环,2≤2 成立,则M=,S=2+5=7,k=3,此时3≤2 不成立,输出S=7,故选:D.点评:本题主要考查程序框图的识别和判断,比较基础.x y 1 0x y 1 0x 3y 3 0(9)设x,y 满足的约束条件,则z x 2y 的最大值为()( A)8 (B)7 ( C)2 (D)1考点:简单线性规划.分析:作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z 的最大值.解答:作出不等式对应的平面区域,由z=x+2y,得y=﹣,平移直线y=﹣,由图象可知当直线y=﹣经过点 A 时,直线y=﹣的截距最大,此时z 最大.由,得,即A(3,2),此时z 的最大值为z=3+2×2=7,故选:B.点评:本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法3(10)设F为抛物线2C : y 3x的焦点,过 F 且倾斜角为30 的直线交于C于A,B 两点,则AB= ()°30(A)3 (B)6 (C)12 (D)73考点:抛物线的简单性质.分析:求出焦点坐标,利用点斜式求出直线的方程,代入抛物线的方程,利用根与系数的关系,由弦长公式求得|AB| .解答:由y2=3x 得其焦点F(,0),准线方程为x=﹣.则过抛物线y2=3x 的焦点F 且倾斜角为30°的直线方程为y=tan30°( x﹣)= (x﹣).代入抛物线方程,消去y,得16x2﹣168x+9=0.设A(x1,y1),B(x2,y2)则x1+x2= ,所以 |AB|=x1+ +x2+ = + + =12故答案为:12.点评:本题考查抛物线的标准方程,以及简单性质的应用,弦长公式的应用,运用弦长公式是解题的难点和关键.(11)若函数 f (x) kx ln x 在区间(1,+ )单调递增,则k 的取值范围是(), 2 , 1 2, 1,(A)(B)( C)(D)考点:函数单调性的性质.分析:由题意可得,当x>1 时, f′( x)=k﹣≥0,故k﹣1>0,由此求得k 的范围.解答:函数f(x)=kx﹣lnx 在区间(1, +∞)单调递增,∴当x>1 时, f′( x)=k﹣≥0,∴ k﹣1≥0,∴ k≥1,故选:D.点评:本题主要考查利用导数研究函数的单调性,函数的单调性的性质,属于基础题.4(12)设点M ( x0,1),若在圆2 2O : x y 1上存在点N,使得°OMN 45 ,则x0 的取值范围是()1,1(A)(B)1 1,2 2 (C)2, 2(D)2 2,2 2考点:直线和圆的方程的应用.菁优网版权所有分析:根据直线和圆的位置关系,利用数形结合即可得到结论.解答:由题意画出图形如图:∵点 M(x0,1),∴若在圆O:x2+y2=1 上存在点N,使得∠ OMN=45°,∴圆上的点到MN 的距离的最大值为1,要使MN=1,才能使得∠OMN=45 °,图中 M′显然不满足题意,当MN 垂直 x 轴时,满足题意,∴x0 的取值范围是[﹣1,1].故选: A点评:本题考查直线与圆的位置关系,直线与直线设出角的求法,数形结合是快速解得本题的策略之一.第Ⅱ卷本卷包括必考题和选考题两部分。
2014年新课标高考真题全国二卷文科数学

50位市民对乙部门的评分由小到大排序,排在第25,26位的是66,68,故样本中位数为 ,所以该市的市民对乙部门评分的中位数的估计值是67.
(1) , .曲线 在点 处的切线方程为 .由题设得, ,所以 .
(2)由(1)得, .设 .由题设得 .当 时, , 单调递增, , ,所以 在 有唯一实根.当 时,令 ,则 . , 在 单调递减;在 单调递增.所以 .所以 在 没有实根,综上, 在 上有唯一实根,即曲线 与直线 只有一个交点.
考点:1、导数的几何意义;2、利用导数判断函数单调性;3、利用导数求函数的最值.
, , , .
考点:数列的递推公式.
视频
17.(1) , ;(2) .
【解析】试题分析:(1)连接 .在 和 中,利用余弦定理列等式
和 ,且 ,代入数据得
,求 的值,进而求 和 的值;(2)由(1)知 和 的面积可求,故四边形 等于 和 的面积.
(1)由题设及余弦定理得 .①
.②
由①②得 ,故 , .
【解析】试题分析:因为 ,所以 ………………①,又 ,所以 …………②,①-②得 ,所以 ,故选A.
考点:1.向量模的定义及运算;2.向量的数量积.
5.A
【解析】
试题分析:由已知得, ,又因为 是公差为2的等差数列,故 , ,解得 ,所以 ,故 .
【考点】1、等差数列通项公式;2、等比中项;3、等差数列前n项和.
(2)四边形 的面积
.
考点:1、余弦定理;2、诱导公式;3、三角形的面积公式.
2014年高考真题-文科数学新课标II精校版Word版含答案

2014年普通高等学校招生全国统一考试文科数学注意事项1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号,写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合A=﹛-2,0,2﹜,B=﹛x |2x -x -20=﹜,则A I B=(A) ∅ (B ){}2 (C ){}0 (D) {}2- (2)131ii+=- (A )12i + (B )12i -+ (C )1-2i (D) 1-2i -(3)函数()f x 在0x=x 处导数存在,若p :f ‘(x 0)=0;q :x=x 0是()f x 的极值点,则(A )p 是q 的充分必要条件(B )p 是q 的充分条件,但不是q 的必要条件 (C )p 是q 的必要条件,但不是 q 的充分条件 (D) p 既不是q 的充分条件,也不是q 的必要条件(4)设向量a ,b 满足|a+b|=10,|a-b|=6,则a ·b=(A )1 (B ) 2 (C )3 (D) 5(5)等差数列{}n a 的公差为2,若2a ,4a ,8a 成等比数列,则{}n a 的前n 项和n S =(A ) ()1n n + (B )()1n n - (C )()12n n + (D)()12n n -(6)如图,网格纸上正方形小格的边长为1(表示1cm ), 图中粗线画出的是某零件的三视图,该零件 由一个底面半径为3cm ,高为6c m 的圆柱 体毛坯切削得到,则切削掉部分的体积与 原来毛坯体积的比值为(A )1727 (B ) 59 (C )1027 (D) 13(7)正三棱柱111ABC A B C -的底面边长为2,侧棱长为3,D 为BC 中点,则三棱锥11DC B A -的体积为(A )3 (B )32(C )1 (D )32(8)执行右面的程序框图,如果如果输入的x ,t均为2,则输出的S=(A )4 (B )5 (C )6 (D )7(9)设x ,y 满足的约束条件1010330x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩,则2z x y =+的最大值为(A )8 (B )7 (C )2 (D )1(10)设F 为抛物线2:y =3x C 的焦点,过F 且倾斜角为°30的直线交于C 于,A B 两点,则AB = (A )303(B )6 (C )12 (D )73 (11)若函数()ln f x kx x =-在区间(1,+∞)单调递增,则k 的取值范围是(A )(],2-∞- (B )(],1-∞- (C )[)2,+∞ (D )[)1,+∞ (12)设点0(x ,1)M ,若在圆22:x y =1O +上存在点N ,使得°45OMN ∠=,则0x 的取值范围是(A )[]1,1- (B )1122⎡⎤-⎢⎥⎣⎦, (C )2,2⎡⎤-⎣⎦ (D ) 2222⎡⎤-⎢⎥⎣⎦,第Ⅱ卷本卷包括必考题和选考题两部分。
2014年高考新课标2卷文科数学试题(解析版)

2014年高考新课标2卷文科数学试题(解析版)D(A )4 (B )5 (C )6 (D )7【答案】 D 【解析】.3 7 2 2 5 2 1 3 1 ,2,2D K S M t x 故选变量变化情况如下:==(9)设x ,y 满足的约束条件1010330x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩,则2z x y =+的最大值为(A )8 (B )7 (C )2 (D )1【答案】 B 【解析】..7,2).1,0(),2,3(),0,1(.B y x z 故选则最大值为代入两两求解,得三点坐标,可以代值画可行区域知为三角形+=(10)设F 为抛物线2:y =3x C 的焦点,过F 且倾斜角为°30的直线交于C 于,A B 两点,则AB = (A )303(B )6 (C )12 (D )3 【答案】 C【解析】..1222.6∴),3-2(23),32(233-4322,34322).0,43(2,2C n m BF AF AB n m n m n n m m F n BF m AF 故选,解得角三角形知识可得,则由抛物线的定义和直,设=+=+==+=+=•=+•===(11)若函数()ln f x kx x =-在区间(1,+∞)单调递增,则k 的取值范围是(A )(],2-∞- (B )(],1-∞- (C )[)2,+∞ (D )[)1,+∞ 【答案】 D【解析】.),∞,1[.11≥.0≥1-)(ln -)(0)(),1()(D k xk xk x f x kx x f x f x f 选所以即恒成立上递增,在+∈>=′∴=≥′∴+∞(12)设点0(x ,1)M ,若在圆22:x y =1O +上存在点N ,使得°45OMN ∠=,则0x 的取值范围是(A )[]1,1- (B )1122⎡⎤-⎢⎥⎣⎦, (C )2,2⎡-⎣ (D ) 2222⎡-⎢⎣⎦,【答案】 A 【解析】.].1,1-[∈x .,1)M(x 1,y O 00A 故选形外角知识,可得由圆的切线相等及三角在直线上其中和直线在坐标系中画出圆=第Ⅱ卷本卷包括必考题和选考题两部分。
2014高考全国2卷数学文科试题及答案详解

2014年普通高等学校招生全国统一考试数学第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)已知集合{2,0,2}A =-,2{|20}B x x x =--=,则A B= (A ) ∅ (B ){}2 (C ){}0 (D ) {}2- 考点: 交集及其运算.分析: 先解出集合B ,再求两集合的交集即可得出正确选项.解答: 解:∵A={﹣2,0,2},B={x |x2﹣x ﹣2=0}={﹣1,2},∴A ∩B={2}. 故选: B点评: 本题考查交的运算,理解好交的定义是解答的关键. (2)131ii+=- () (A )12i + (B )12i -+ (C )1-2i (D) 1-2i - 考点: 复数代数形式的乘除运算.分析: 分子分母同乘以分母的共轭复数1+i 化简即可. 解答: 解:化简可得====﹣1+2i 故选: B点评: 本题考查复数代数形式的化简,分子分母同乘以分母的共轭复数是解决问题的关键,属基础题.(3)函数()f x 在0x x =处导数存在,若00:()0;:p f x q x x '==是()f x 的极值点,则() (A )p 是q 的充分必要条件(B )p 是q 的充分条件,但不是q 的必要条件 (C )p 是q 的必要条件,但不是 q 的充分条件 (D ) p 既不是q 的充分条件,也不是q 的必要条件 考点: 必要条件、充分条件与充要条件的判断.菁优网版权所有分析: 根据可导函数的极值和导数之间的关系,利用充分条件和必要条件的定义即可得到结论. 解答: 函数f(x )=x3的导数为f'(x )=3x2,由f ′(x0)=0,得x0=0,但此时函数f (x )单调递增,无极值,充分性不成立.根据极值的定义和性质,若x=x0是f (x)的极值点,则f ′(x0)=0成立,即必要性成立,故p 是q 的必要条件,但不是q 的充分条件,故选: C点评: 本题主要考查充分条件和必要条件的判断,利用函数单调性和极值之间的关系是解决本题的关键,比较基础.(4)设向量a ,b 满足|a+b|=10,|a-b|=6,则a ·b= ()(A )1 (B ) 2 (C )3 (D ) 5 考点: 平面向量数量积的运算.分析: 将等式进行平方,相加即可得到结论. 解答: ∵|+|=,|﹣|=, ∴分别平方得,+2•+=10,﹣2•+=6,两式相减得4••=10﹣6=4,即•=1,故选: A点评: 本题主要考查向量的基本运算,利用平方进行相加是解决本题的关键,比较基础.(5)等差数列{}n a 的公差为2,若2a ,4a ,8a 成等比数列,则{}n a 的前n 项n S = () (A) ()1n n + (B )()1n n - (C )()12n n + (D )()12n n -考点: 等差数列的性质.分析: 由题意可得a42=(a4﹣4)(a4+8),解得a4可得a1,代入求和公式可得. 解答: 由题意可得a42=a2•a8,即a42=(a4﹣4)(a4+8),解得a4=8, ∴a1=a4﹣3×2=2,∴Sn=na1+d ,=2n+×2=n (n+1),故选: A点评: 本题考查等差数列的性质和求和公式,属基础题.(6)如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6c m 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为() (A)1727 (B ) 59 (C)1027 (D) 13考点: 由三视图求面积、体积.菁优网版权所有分析: 由三视图判断几何体的形状,通过三视图的数据求解几何体的体积即可.解答: 几何体是由两个圆柱组成,一个是底面半径为3高为2,一个是底面半径为2,高为4,组合体体积是:32π•2+22π•4=34π.底面半径为3cm ,高为6cm 的圆柱体毛坯的体积为:32π×6=54π 切削掉部分的体积与原来毛坯体积的比值为:=.故选:C .点评: 本题考查三视图与几何体的关系,几何体的体积的求法,考查空间想象能力以及计算能力.(7)正三棱柱111ABC A B C -的底面边长为2,侧棱长为3,D 为BC 中点,则三棱锥11DC B A -的体积为()(A )3 (B )32 (C )1 (D )32考点: 棱柱、棱锥、棱台的体积.菁优网版权所有分析: 由题意求出底面B1DC1的面积,求出A 到底面的距离,即可求解三棱锥的体积. 解答: ∵正三棱柱ABC ﹣A1B1C1的底面边长为2,侧棱长为,D 为BC 中点,∴底面B1DC1的面积:=,A 到底面的距离就是底面正三角形的高:. 三棱锥A ﹣B1DC1的体积为:=1.故选:C .点评: 本题考查几何体的体积的求法,求解几何体的底面面积与高是解题的关键.(8)执行右面的程序框图,如果如果输入的x ,t 均为2,则输出的S= () (A )4 (B )5 (C)6 (D )7 考点: 程序框图.菁优网版权所有分析: 根据条件,依次运行程序,即可得到结论. 解答: 若x=t=2,则第一次循环,1≤2成立,则M=,S=2+3=5,k=2, 第二次循环,2≤2成立,则M=,S=2+5=7,k=3, 此时3≤2不成立,输出S=7,故选:D .点评: 本题主要考查程序框图的识别和判断,比较基础.(9)设x ,y 满足的约束条件1010330x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩,则2z x y =+的最大值为()(A )8 (B)7 (C )2 (D )1考点: 简单线性规划.分析: 作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z 的最大值. 解答: 作出不等式对应的平面区域,由z=x+2y ,得y=﹣,平移直线y=﹣,由图象可知当直线y=﹣经过点A 时,直线y=﹣的截距最大,此时z 最大.由,得, 即A (3,2),此时z 的最大值为z=3+2×2=7,故选:B .点评: 本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法(10)设F 为抛物线2:3C y x =的焦点,过F 且倾斜角为°30的直线交于C 于,A B 两点,则AB = ()(A )303(B )6 (C )12 (D )73 考点: 抛物线的简单性质.分析: 求出焦点坐标,利用点斜式求出直线的方程,代入抛物线的方程,利用根与系数的关系,由弦长公式求得|AB|.解答: 由y2=3x 得其焦点F (,0),准线方程为x=﹣.则过抛物线y2=3x 的焦点F 且倾斜角为30°的直线方程为y=tan30°(x ﹣)=(x ﹣).代入抛物线方程,消去y ,得16x2﹣168x+9=0.设A (x1,y1),B(x2,y2) 则x1+x2=,所以|AB |=x1++x2+=++=12故答案为:12.点评: 本题考查抛物线的标准方程,以及简单性质的应用,弦长公式的应用,运用弦长公式是解题的难点和关键.(11)若函数()ln f x kx x =-在区间(1,+∞)单调递增,则k 的取值范围是() (A )(],2-∞- (B )(],1-∞- (C )[)2,+∞ (D )[)1,+∞ 考点: 函数单调性的性质.分析: 由题意可得,当x >1时,f ′(x )=k ﹣≥0,故 k ﹣1>0,由此求得k 的范围. 解答: 函数f (x)=kx ﹣lnx 在区间(1,+∞)单调递增,∴当x >1时,f ′(x )=k ﹣≥0,∴k ﹣1≥0,∴k ≥1,故选:D .点评: 本题主要考查利用导数研究函数的单调性,函数的单调性的性质,属于基础题.(12)设点0(,1)M x ,若在圆22:1O x y +=上存在点N ,使得°45OMN ∠=,则0x 的取值范围是()(A )[]1,1- (B )1122⎡⎤-⎢⎥⎣⎦, (C )2,2⎡⎤-⎣⎦ (D ) 2222⎡⎤-⎢⎥⎣⎦,考点: 直线和圆的方程的应用.菁优网版权所有分析: 根据直线和圆的位置关系,利用数形结合即可得到结论.解答:由题意画出图形如图:∵点M (x0,1),∴若在圆O :x2+y2=1上存在点N,使得∠OMN=45°,∴圆上的点到MN 的距离的最大值为1,要使MN=1,才能使得∠OMN=45°, 图中M ′显然不满足题意,当MN 垂直x 轴时,满足题意, ∴x0的取值范围是[﹣1,1]. 故选:A点评: 本题考查直线与圆的位置关系,直线与直线设出角的求法,数形结合是快速解得本题的策略之一.第Ⅱ卷本卷包括必考题和选考题两部分。
2014年(全国卷II)(含答案)高考文科数学

2014年普通高等学校招生全国统一考试(2 新课标Ⅱ卷)数学(文)试题一、选择题 ( 本大题 共 12 题, 共计 60 分)1.已知集合2{2,0,2},{|20}A B x x x =-=--=,则A ∩B=( ) A. ∅ B. {}2 C. {0} D. {2}-2.131ii+=-( ) A.12i + B. 12i -+ C. 12i - D. 12i --3.函数()f x 在0x x =处导数存在,若0:()0p f x =:0:q x x =是()f x 的极值点,则( ) A .p 是q 的充分必要条件 B. p 是q 的充分条件,但不是q 的必要条件 C. p 是q 的必要条件,但不是q 的充分条件 D. p 既不是q 的充分条件,学科 网也不是q 的必要条件4.设向量,a b 满足10a b +=,6a b -=,则a b ⋅=( ) A. 1 B. 2 C. 3 D. 55.等差数列{}n a 的公差是2,若248,,a a a 成等比数列,则{}n a 的前n 项和n S =( ) A. (1)n n + B. (1)n n - C.(1)2n n + D. (1)2n n - 6.如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削的部分的体积与原来毛坯体积的比值为( ) A.2717 B.95 C.2710 D.317.正三棱柱111ABC A B C -的底面边长为2,,D 为BC 中点,则三棱锥11A B DC -的体积为A.3B.32C.1D.28.执行右面的程序框图,如果输入的x ,t 均为2,则输出的S =( ) A.4 B.5 C.6 D.79.设x ,y 满足约束条件10,10,330,x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩则2z x y =+的最大值为( )A.8B.7C.2D.110.设F 为抛物线2:+3C y x 的焦点,过F 且倾斜角为30︒的直线交C 于A ,B 两点,则AB =( )A.3B.6C.12D.11.若函数()f x kx Inx =-在区间()1,+∞单调递增,则k 的取值范围是( )A.(],2-∞-B.(],1-∞-C.[)2,+∞D.[)1,+∞12.设点()0,1M x ,若在圆22:+1O x y =上存在点N ,使得45OMN ∠=︒,则0x 的取值范围是( )A.[-1,1]B.11,22⎡⎤-⎢⎥⎣⎦C.⎡⎣D.22⎡-⎢⎣⎦二、填空题:本大题共4小题,每小题5分.13.甲,乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为_______.14. 函数x x x f cos sin 2)sin()(ϕϕ-+=的最大值为________.15. 偶函数)(x f y =的图像关于直线2=x 对称,3)3(=f ,则)1(-f =________. 16.数列}{n a 满足2,1181=-=+a a a nn ,则=1a ________. 三、解答题:17.(本小题满分12分)四边形ABCD 的内角A 与C 互补,2,3,1====DA CD BC AB . (1)求C 和BD ;(2)求四边形ABCD 的面积.18.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 是PD 的中点.(1)证明:PB //平面AEC ;(2)设1,3AP AD ==,三棱锥P ABD -的体积34V =,求A 到平面PBC 的距离.19.(本小题满分12分)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民,根据这50位市民对这两—部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:(1)分别估计该市的市民对甲、乙两部门评分的中位数;(2)分别估计该市的市民对甲、乙两部门的评分高于90的概率;(3)根据茎叶图分析该市的市民对甲、乙两部门的评价.20.(本小题满分12分)设12,F F 分别是椭圆C:22221(0)x y a b a b+=>>的左右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N . (1)若直线MN 的斜率为34,求C 的离心率; (2)若直线MN 在y 轴上的截距为2,且1||5||MN F N =,求,a b .21.(本小题满分12分)已知函数32()32f x x x ax =-++,曲线()y f x =在点(0,2)处的切线与x 轴交点的横坐标为2-. (1)求a ;(2)证明:当1k <时,曲线()y f x =与直线2y kx =-只有一个交点.22.(本小题满分10分)选修4-1:几何证明选讲如图,P 是O 外一点,PA 是切线,A 为切点,割线PBC 与O 相交于,B C ,2PC PA =,D 为PC 的中点,AD 的延长线交O 于点E .证明:(1)BE EC =; (2)22AD DE PB ⋅=23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ,[0,]2πρθθ=∈.(1)求C 得参数方程;(2)设点D 在C 上,C 在D 处的切线与直线:2l y =+垂直,根据(1)中你得到的参数方程,确定D 的坐标.24.(本小题满分10分)选修4-5:不等式选讲 设函数1()||||(0)f x x x a a a=++-> (1)证明:()2f x ≥;(2)若(3)5f <,求a 的取值范围.2014年普通高等学校招生全国统一考试(2 新课标Ⅱ卷)数学(文)试题参考答案:参考答案1.B 【解析】试题分析:由已知得,{}21B =,-,故{}2A B =,选B . 考点:集合的运算. 2.B 【解析】试题分析:由已知得,131i i+-(13)(1i)2412(1i)(1i)2i ii ++-+===-+-+,选B . 考点:复数的运算.3.C 【解析】试题分析:若0x x =是函数()f x 的极值点,则'0()0f x =;若'0()0f x =,则0x x =不一定是极值点,例如3()f x x =,当0x =时,'(0)0f =,但0x =不是极值点,故p 是q 的必要条件,但不是q 的充分条件,选C .考点:1、函数的极值点;2、充分必要条件. 4.A 【解析】试题分析:由已知得,22210a a b b +⋅+=,2226a a b b -⋅+=,两式相减得,44a b ⋅=,故1a b ⋅=.考点:向量的数量积运算. 5.A 【解析】试题分析:由已知得,2428a a a =⋅,又因为{}n a 是公差为2的等差数列,故2222(2)(6)a d a a d +=⋅+,22(4)a +22(12)a a =⋅+,解得24a =,所以2(2)n a a n d =+-2n =,故1()(n 1)2n n n a a S n +==+.【考点】1、等差数列通项公式;2、等比中项;3、等差数列前n 项和. 6.C 【解析】 试题分析:由三视图还原几何体为一个小圆柱和大圆柱组成的简单组合体.其中小圆柱底面半径为2、高为4,大圆柱底面半径为3、高为2,则其体积和为22243234πππ⨯⨯+⨯⨯=,而圆柱形毛坯体积为23654ππ⨯⨯=,故切削部分体积为20π,从而切削的部分的体积与原来毛坯体积的比值为20105427ππ=. 考点:三视图. 7.C 【解析】 试题分析:如下图所示,连接AD ,因为ABC ∆是正三角形,且D 为BC 中点,则AD BC ⊥,又因为1BB ⊥面ABC ,故1BB AD ⊥,且1BB BC B =,所以AD ⊥面11BCC B ,所以AD 是三棱锥11A B DC -的高,所以111111133A B DC B DC V S AD -∆=⋅==.考点:1、直线和平面垂直的判断和性质;2、三棱锥体积. 8.D 【解析】试题分析:输入2,2x t ==,在程序执行过程中,,,M S k 的值依次为1,3,1M S k ===;2,5,2M S k ===;2,7,3M S k ===,程序结束,输出7S =. 考点:程序框图. 9.B 【解析】试题分析:画出可行域,如图所示,将目标函数2z x y =+变形为122zy x =-+,当z 取到最大值时,直线122z y x =-+的纵截距最大,故只需将直线12y x =-经过可行域,尽可能平移到过A 点时,z 取到最大值. 10330x y x y --=⎧⎨-+=⎩,得(3,2)A ,所以max z 3227=+⨯=.考点:线性规划. 10.C 【解析】试题分析:由题意,得3(,0)4F .又因为0k tan 30==故直线AB 的方程为3y )4=-,与抛物线2=3y x 联立,得21616890x x -+=,设1122(x ,y ),(x ,y )A B ,由抛物线定义得,12x x AB p =++= 168312162+=,选C . 考点:1、抛物线的标准方程;2、抛物线的定义. 11.D 【解析】试题分析:'1()f x k x =-,由已知得'()0f x ≥在()1,x ∈+∞恒成立,故1k x≥,因为1x >,所以101x<<,故k 的取值范围是[)1,+∞. 【考点】利用导数判断函数的单调性.12.A【解析】试题分析:依题意,直线MN 与圆O 有公共点即可,即圆心O 到直线MN 的距离小于等于1即可,过O 作OA ⊥MN ,垂足为A ,在Rt OMA ∆中,因为OMA ∠045=,故0sin 45OA OM ==1≤,所以OM ≤≤011x -≤≤.考点:1、解直角三角形;2、直线和圆的位置关系.13.13 【解析】试题分析:甲,乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种有9种不同的结果,分别为(红,红),(红,白),(红,蓝),(白,红),(白,白),(白,蓝),(蓝,红),(蓝,白),(蓝,蓝).他们选择相同颜色运动服有3种不同的结果,即(红,红),(白,白),(蓝,蓝),故他们选择相同颜色运动服的概率为3193P ==. 考点:古典概型的概率计算公式.14.1【解析】试题分析:由已知得,()sin cos cos sin 2cos sin f x x x x ϕϕϕ=+-sin cos cos sin x x ϕϕ=-sin()x ϕ=-1≤,故函数x x x f cos sin 2)sin()(ϕϕ-+=的最大值为1.考点:1、两角和与差的正弦公式;2、三角函数的性质.15.3【解析】试题分析:因为)(x f y =的图像关于直线2=x 对称,故(3)(1)3f f ==,又因为)(x f y =是偶函数,故(1)(1)3f f -==.考点:1、函数图象的对称性;2、函数的奇偶性.16.12. 【解析】试题分析:由已知得,111n n a a +=-,82a =,所以781112a a =-=,67111a a =-=-,56112a a =-=, 451112a a =-=,34111a a =-=-,23112a a =-=,121112a a =-=.三、解答题(17)解:(I )由题设及余弦定理得2222cos BD BC CD BC CD C =+-⋅=1312cos C - , ①2222cos BD AB DA AB DA A =+-⋅54cos C =+. ②由①,②得1cos 2C =,故060C =,7BD = (Ⅱ)四边形ABCD 的面积11sin sin 22S AB DA A BC CD C =⋅+⋅ 011(1232)sin 6022=⨯⨯+⨯⨯ 23=(18)解:(I )设BD 与AC 的交点为O ,连结EO.因为ABCD 为矩形,所以O 为BD 的中点,又E 为PD 的中点,所以EO ∥PB.EO ⊂平面AEC ,PB ⊄平面AEC,所以PB ∥平面AEC.(Ⅱ)V 166PA AB AD AB =⋅⋅=.由4V =,可得32AB =.作AH PB ⊥交PB 于H 。
2014年高考数学新课标2卷(文科)答案word版

2014年普通高等学校招生全国统一考试(新课标II卷)文科数学试题答案与解析1.解析 因为集合{}2,0,2A =-,{}{}2202,1B x x x =--==-,所以{}2AB =,故选B. 2. 解析()()()()13i 1i 13i 24i12i1i 1i 1i 2+++-+===-+--+,故选B. 3. 解析 因为()f x 在0x x =处可导,所以若0x x =是()f x 的极值点,则()00f x '=,所以q p ⇒,故p 是q 的必要条件;反之,以()3f x x =为例,()00f '=,但0x =不是极值点,所以p q ⇒/,故p 不是q 的充分条件.故选C.4. 解析 因为+=a b ,所以22210+⋅+=a a b b .①又-=a b ,所以2226-⋅+=a a b b .②-①②,得44⋅=a b ,即1⋅=a b ,故选A.5. 解析 因为248,,a a a 成等比数列,所以2428a a a =⋅,即()()()211137a d a d a d +=++,将2d =代入上式,解得12a =,所以()()12212n n n S n n n -⋅=+=+.故选A. 6. 解析 该零件是两个圆柱体构成的组合体,其体积为22π24π3234π⨯⨯+⨯⨯=3cm ,圆柱体毛坯的体积为2π3654π⨯⨯=3cm ,所以切削掉部分的体积为54π34π20π-=3cm ,所以切削掉部分的体积与原来毛坯体积的比值为20π1054π27=,故选C.7. 解析 在正三棱柱111ABC A B C -中,因为AD BC ⊥,所以AD ⊥平面11B DC ,所以111111121332A B DC B DC V S AD -=⋅=⨯⨯=△,故选C.8. 解析 1k =时,12…成立,此时2M =,235S =+=;2k =时,22…成立,此时2M =,257S =+=;3k =时,32>,终止循环,输出7S =.故选D.9. 解析 约束条件表示的平面区域如图中阴影部分所示,由2z x y =+,得122zy x =-+,2z 为直线122z y x =-+在轴上的截距,要使z 最大,则需2z 最大,所以当直线122z y x =-+经过点()3,2B 时,z 最大,最大值为3227+⨯=,故选B.10. 解析 焦点F 的坐标为3,04⎛⎫⎪⎝⎭,直线AB的斜率为,所以直线AB的方程为334y x ⎛⎫=- ⎪⎝⎭,即y =,代入23y x =,得217303216x x -+=,设()11,A x y ,()22,B x y ,则12212x x +=,所以12321312222AB x x =++=+=,故选C. C 1B 1A 1DC BA11. 解析 依题意得()10f x k x '=-…在()1,+∞上恒成立,即1k x…在()1,+∞上恒成立,因为1x >,所以101x<<,所以1k …,故选D. 12. 解析 解法一:过M 作圆O 的两条切线,MA MB ,切点分别为,A B ,若在圆O 上存在点N ,使45OMN ∠=,则45OMB OMN ∠∠=…,所以90AMB ∠…, 所以011x -剟,故选A.解法二:过O 作OP MN ⊥于P ,则sin 451OP OM =…,所以OM …201x …,即011x -剟,故选A.评注 本题考查直线与圆的位置关系,体现了数形结合的思想方法.13. 解析甲、乙的选择方案有红红、红白、红蓝、白红、白白、白蓝、蓝红、蓝白、蓝蓝9种,其中颜色相同的有3种,所以所求的概率为3193=. 14. 解析 ()()sin 2sin cos sin cos cos sin 2sin cos f x x x x x x ϕϕϕϕϕ=+-=+-=()sin cos cos sin sin 1x x x ϕϕϕ-=-…,所以()max 1f x =.15. 解析 因为函数()y f x =的图像关于直线2x =对称,所以()()22f x f x +=-对任意x 恒成立,令1x =,得()()133f f ==,所以()()113f f -==.16. 解析 由111n n a a +=-,得111n n a a +=-,因为82a =,所以711122a =-=,67111a a =-=-,56112a a =-=,,所以{}n a 是以3为周期的数列,所以1712a a ==.17. 解析 (1)由题设及余弦定理得2222cos 1312cos BD BC CD BC CD C C =+-⋅=-,①2222cos 54cos BD AB DA AB DA A C =+-⋅=+.②由①,②得1cos 2C =,故60C =,BD (2)四边形ABCD 的面积1111sin sin 1232sin 60232222S AB DA A BC CD C ⎛⎫=⋅+⋅=⨯⨯+⨯⨯= ⎪⎝⎭评注 本题考查余弦定理的应用和四边形面积的计算,考查运算求解能力和转化的思想,把四边形分割成两个三角形是求面积的常用方法.18. 解析 (I )设BD 与AC 的交点为O ,连接EO .因为ABCD 为矩形,所以O 为BD 的中点.又E 为PD的中点,所以//EO PB .EO ⊂平面AEC ,PB ⊄平面AEC ,所以//PB 平面AEC . (II )166V PA AB AD AB =⋅⋅=.由4V =,可得32AB =.作AH PB ⊥交PB 于H . 由题设知BC ⊥平面PAB ,所以BC AH ⊥,故AH ⊥平面PBC . 又PA AB AH PB ⋅==A 到平面PBC .评注 本题考查直线和平面平行、垂直的判定方法以及空间距离的计算,考查了空间想象能力.19. 解析(1)由所给茎叶图知,50位市民对甲部门的评分由小到大排序,排在第25,26位的是75,75,故样本中位数为75,所以该市的市民对甲部门评分的中位数的估计值是75.50位市民对乙部门的评分由小到大排序,排在第25,26位的是66,68,故样本中位数为6668672+=,所以该市的市民对乙部门评分的中位数的估计值是67. (2)由所给茎叶图知,50位市民对甲、乙部门的评分高于90的比率分别为50.150=,80.1650=,故该市的市民对甲、乙部门的评分高于90的概率的估计值分别为0.1,0.16. (3)由所给茎叶图知,市民对甲部门的评分的中位数高于对乙部门的评分的中位数,而且由茎叶图可以大致看出对甲部门的评分的标准差要小于对乙部门的评分的标准差,说明该市市民对甲部门的评价较高、评价较为一致,对乙部门的评价较低、评价差异较大.评注 本题考查利用茎叶图进行中位数,概率的相关计算,考查用样本的数字特征估计总体的数字特征,运用统计与概率的知识与方法解决实际问题的能力,考查数据处理能力及应用意识.20. 解析 (I)根据c =2,b M c a ⎛⎫ ⎪⎝⎭,223b ac =.将222b ac =-代入223b ac =,解得12c a =或2c a=-(舍去).故C 的离心率为12.(II )由题意,知原点O 为12F F 的中点,2//MF y 轴,所以直线1MF 与y 轴的交点()0,2D HEOPDCBA是线段1MF 的中点,故24b a=,即24b a =,① 由15MN F N =得112DF F N=.设()11,N x y ,由题意知10y <, 则()11222c x c y ⎧--=⎪⎨-=⎪⎩,即11321x c y ⎧=-⎪⎨⎪=-⎩,代入C 的方程为,得2229114c a b +=.②将①及c =()22941144a a a a-+=.解得7a =,2428b a ==. 故7a =,b =评注 本题主要考查椭圆的标准方程和几何性质,直线与椭圆的位置关系等基础知识,考查用代数方法研究圆锥曲线的性质,考查运算求解能力,以及用方程思想解决问题的能力. 21. 解析(1)()236f x x x a '=-+,()0f a '=,曲线()y f x =在点()0,2处的切线方程为2y ax =+.由题设得22a-=-,所以1a =. (2)由(1)知,()3232f x x x ax =-++.设()()()322314g x f x kx x x k x =-+=-+-+.由题设知10k ->.当0x …时,()23610g'x x x k =-+->,()g x 单调递增,()110g k -=-<,()04g =,所以()0g x =在(],0-∞上有唯一实根.当0x >时,令()3234h x x x =-+,则()()()()1g x h x k x h x =+->.()()23632h'x x x x x =-=-,()h x 在()0,2上单调递减,在()2,+∞上单调递增,所以()()()20g x h x h >=….所以()0g x =在()0,+∞上没有实根.综上,()0g x =在R 上有唯一实根,即曲线()y f x =与直线2y kx =-只有一个交点. 评注 本题主要考查导数的几何意义及导数的应用,考查了分类讨论、函数与方程、等价转化等思想方法.把曲线()y f x =与直线2y kx =-只有一个交点的问题转化为研究函数()()32314g x x x k x =-+-+在R 上有唯一实根问题是解决问题的关键.22. 解析 (I )连接AB ,AC ,由题设知PA PD =,故PAD PDA ∠=∠.因为PDA DAC DCA ∠=∠+∠,PAD BAD PAB ∠=∠+∠,DCA PAB ∠=∠,所以DAC BAD ∠=∠,从而BE EC =,因此BE EC =.(II )由切割线定理得2PA PB PC =⋅.因为PA PD DC ==,所以2DC PB =,BD PB =,由相交弦定理得AD DE BD DC ⋅=⋅,所以22AD DE PB ⋅=.23. 解析 (I )C 的普通方程为()()221101x y y-+=剟.可得C 的参数方程为1cos sin x ty t=+⎧⎨=⎩(t 为参数,0πt 剟).(II )设()1c o s ,sin D t t +.由(I )知C 是以()1,0G 为圆心,1为半径的上半圆.因为C 在点D 处的切线与l 垂直,所以直线GD 与l 的斜率相同. tan t =π3t =.故D 的直角坐标为ππ1cos,sin 33⎛⎫+ ⎪⎝⎭.即32⎛ ⎝⎭. 24. 解析 (I )由0a >,有()()1112f x x x a x x a a a a a=++-+--=+厖,所以()2f x ….(II )()1333f a a=++-.当3a >时,()13f a a =+,由()35f <得532a +<<.当03a <…时,()136f a a =-+,由()35f <得132a +<….综上,a 的取值范围是⎝⎭.。
2014年高考(大纲全国卷)数学(文科) 附详细答案解析

解:由题设和正弦定理得 3sin Acos C=2sin Ccos A.
故 3tan Acos C=2sin C,
因为 tan A=1,所以 cos C=2sin C,tan C=1.
3
2
所以 tan B=tan[180°- (A+C)]= - tan(A+C)
=ttaann t+atnan-1=-1,
A.-1
B.0
C.1
D.2
7.有 6 名男医生、5 名女医生,从中选出 2 名男医生、1 名女医生组成一个医疗小组,则不
同的选法共有( ).
A.60 种
B.70 种
C.75 种
ห้องสมุดไป่ตู้
D.150 种
8.设等比数列{an}的前 n 项和为 Sn.若 S2=3,S4=15,则 S6=( ).
A.31
B.32
C.63
由 z=x+4y,得 y= - 1x+ . 44
先画出直线 y=-1x,再平移直线 y=-1x,
4
4
当经过点 B(1,1)时,z=x+4y 取得最大值为 5.
16.【答案】4
3
【解析】如图所示,设 l1 与圆 O:x2+y2=2 相切于点 B,
l2 与圆 O:x2+y2=2 相切于点 C,
则 OB= 2,OA= 10,AB=2 2.
( ).
A.1
B. 3
C.1
6
6
3
5.函数 y=ln(3 +1)(x>-1)的反函数是(
D. 3
3
).
A.y=(1-ex)3(x>-1) C.y=(1-ex)3(x∈R)