数学专业参考书整理推荐

合集下载

2024 考研 数一 参考书目

2024 考研 数一 参考书目

2024 考研数一参考书目数学一是考研数学科目中的一门重要的专业课,主要涵盖了高等数学、线性代数、概率统计等内容。

为了帮助考生更好地备考数学一,我整理了一份参考书目,供考生参考。

1. 《高等数学》(第七版)上下册这是一本非常经典的高等数学教材,包含了高等数学的各个分支知识,如微积分、极限、数列与级数、多元函数微分学、重积分与曲线积分、常微分方程等。

对于理解高等数学的基本概念和方法非常有帮助。

2. 《线性代数及其应用》(第四版)线性代数是数学一的重点内容之一,这本教材讲解了线性方程组、矩阵、向量空间、特征值与特征向量、正交性和正交变换等内容。

书中内容详细,思路清晰,适合自学使用。

3. 《概率论与数理统计》这本书综合介绍了概率论和数理统计的基本概念、方法和应用,内容涵盖概率,条件概率,离散型和连续型随机变量,极限定理,参数估计,假设检验等。

本书内容系统、详细,并带有大量的例题和习题,对于理解概率论和数理统计非常有帮助。

4. 《数学分析》(第二册)这本书是中国大学教材中的经典之作,内容涵盖了微积分的深入学习,如泰勒展开、傅里叶级数、多元函数的积分和微分等内容。

书中有大量的例题和习题,可以帮助考生加深对数学分析的理解。

5. 《数学物理方法》(第二版)这本书主要介绍了椭圆型偏微分方程、抛物型偏微分方程和双曲型偏微分方程的解法,以及函数的傅里叶展开、拉普拉斯变换、格林函数等方法。

对于理解数学物理方法,解决实际问题有很大的帮助。

6. 《大学数学基础教程》(第三版)这是一套系统的大学数学教材,内容包括数学逻辑与证明、集合与函数、数列与极限、连续与导数、微积分、级数与行列式、矩阵与向量、多元函数与微分、多元函数积分等。

本书所选题材广泛,具有很好的实用性和理论性。

7. 《数学物理方法》这本书主要介绍了常微分方程、偏微分方程、傅里叶分析和特殊函数等内容。

书中有很多例题和应用实例,对于理解数学物理方法、解决实际问题具有很好的参考价值。

数学建模参考书大全

数学建模参考书大全

专业性参考书(这方面书籍很多,仅列几本供参考) :1、数学模型,姜启源编,高等教育出版社(1987年第一版,1993年第二版,2003年第三版,2011年第四版;第一版在1992年国家教委举办的第二届全国优秀教材评选中获"全国优秀教材奖").2.数学模型与计算机模拟,江裕钊、辛培情编,电子科技大学出版社,(1989).3.数学模型选谈(走向数学从书),华罗庚,王元著,王克译,湖南教育出版社;(1991).4.数学建模--方法与范例,寿纪麟等编,西安交通大学出版社(1993).5.数学模型,濮定国、田蔚文主编,东南大学出版社(1994).6..数学模型,朱思铭、李尚廉编,中山大学出版社,(1995)7.数学模型,陈义华编著,重庆大学出版社,(1995)8.数学模型建模分析,蔡常丰编著,科学出版社,(1995).9.数学建模竞赛教程,李尚志主编,江苏教育出版社,(1996).10.数学建模入门,徐全智、杨晋浩编,成都电子科大出版社,(1996).11.数学建模,沈继红、施久玉、高振滨、张晓威编,哈尔滨工程大学出版社,(1996).12.数学模型基础,王树禾编著,中国科学技术大学出版社,(1996).13.数学模型方法,齐欢编著,华中理工大学出版社,(1996).14.数学建模与实验,南京地区工科院校数学建模与工业数学讨论班编,河海大学出版社,(1996).15.数学模型与数学建模,刘来福、曾文艺编,北京师范大学出版杜(1997).16. 数学建模,袁震东、洪渊、林武忠、蒋鲁敏编,华东师范大学出版社。

17.数学模型,谭永基,俞文吡编,复旦大学出版社,(1997).18.数学模型实用教程,费培之、程中瑗层主编,四川大学出版社,(1998).19.数学建模优秀案例选编(工科数学基地建设丛书),汪国强主编,华南理工大学出版社,(1998).20.经济数学模型(第二版)(工科数学基地建设丛书),洪毅、贺德化、昌志华编著,华南理工大学出版社,(1999).21.数学模型讲义,雷功炎编,北京大学出版社(1999).22.数学建模精品案例,朱道元编著,东南大学出版社,(1999),23.问题解决的数学模型方法,刘来福,曾文艺编著、北京师范大学出版社,(1999).24.数学建模的理论与实践,吴翔,吴孟达,成礼智编著,国防科技大学出版社,(1999).25、数学建模案例分析,白其岭主编,海洋出版社,(2000年,北京).26.数学实验(高等院校选用教材系列),谢云荪、张志让主编,科学出版社,(2000).27.数学实验,傅鹏、龚肋、刘琼荪,何中市编,科学出版社,(2000).28.数学建模与数学实验,赵静、但琦编,高等教育出版社,(2000).国外参考书(中译本):1、数学模型引论,E.A。

数学分析参考书

数学分析参考书

数学分析参考书1.《微积分学教程》菲赫金哥尔茨人民教育出版社推荐理由:经典的数学分析的百科全书, 论述严谨, 内容全面, 例题丰富, 对希望全面掌握数学分析理论的学生是一本较好的参考书。

2.《数学分析》华东师大数学系高等教育出版社推荐理由:本书是教育部推荐的优秀教材,内容安排自然合理,读者容易接受,选学内容加了“*”适合多层次的需求;读者可以通过附录1和附录2了解微积分的发展线索记实数理论。

3.《数学分析》北大数学系方企勤、沈燮昌、廖可人等高等教育出版社推荐理由:本书阐述细致,引进概念注意讲清实际背景,定理证明、公式推演作了必要的分析,并提出一些值得思考的问题;通过大量不同类型例题,介绍解题基本方法和特殊技巧。

全书还配有习题集一册,其中有不少难度较大的题目。

适合要求进一步提高数学分析素养的同学。

4. 《数学分析》李成章黄玉民科学出版社推荐理由:总体内容与华东师大教材相仿. 书中有大量的习题可作为补充练习题.5. 《数学分析》陈纪修等高等教育出版社推荐理由:书中对三角级数阐述的较为详细,可供参考.6. 《数学分析习题精解》吴良森等高等教育出版社推荐理由:书中题型丰富,可供较为优秀的学生选7. 《数学分析习题课讲义》谢惠民等高等教育出版社推荐理由:李大潜院士是这样评价此书的“它的着眼点,不像现在充斥市面的各种各样的习题解答那样,消极地为读者提供一些习题的解答,而是引导学生理解课程内容,启发学生深入思考,扩大学生知识视野,力求使学生达到举一反三,由小见大,由表及里的境界,较快的高等数学的思想方法,迈进高等数学的广阔天地。

对于学生,这是一本富有启发性且颇有新意的辅导读物。

”8. 《数学分析中的典型问题与方法》裴礼文高等教育出版社推荐理由:本书收录了大量的研究生数学分析入学试题,前苏联高校竞赛题。

选题具有很强的典型性,灵活性,启发性,趣味性和综合性,对培养学生的能力极为有益。

8. 《Calculus(微积分)》Howard Anton, Irl Bivens, Stephen Davis郭镜明改编高等教育出版社推荐理由:本书为高等教育出版社“世界优秀教材中国版”系列教材之一。

数学专业参考材料书汇总整编推荐

数学专业参考材料书汇总整编推荐

学数学要多看书,但是初学者很难知道那些书好,我从网上收集并结合自己的经验进行了整理:从数学分析开始讲起:数学分析是数学系最重要的一门课,经常一个点就会引申出今后的一门课,并且是今后数学系大部分课程的基础。

也是初学时比较难的一门课,这里的难主要是对数学分析思想和方法的不适应,其实随着课程的深入会一点点容易起来。

当大四考研复习再看时会感觉轻松许多。

数学系的数学分析讲三个学期共计15学分270学时。

将《数学分析》中较难的一部分删去再加上常微分方程的一些最简单的内容就是中国非数学专业的《高等数学》,或者叫数学一的高数部分。

记住以下几点:1,对于数学分析的学习,勤奋永远比天分重要。

2,学数学分析不难,难得是长期坚持做题和不遗余力的博览群书。

3,别指望第一遍就能记住和掌握什么,请看第二遍,第三遍,…,第阿列夫遍。

4,看得懂的仔细看,看不懂的硬着头皮看。

5,课本一个字一个字的看完,至少再看一本参考书,尽量做一本习题集。

6,开始前三遍,一本书看三遍效果好于三本书看一遍;第四遍开始相反。

7,经常回头看看自己走过的路以上几点请在学其他课程时参考。

数学分析书:初学从中选一本教材,一本参考书就基本够了。

我强烈推荐11,推荐1,2,7,8。

另外建议看一下当不了教材的16,20。

中国人自己写的:1《数学分析》陈传璋,金福临,朱学炎,欧阳光中著(新版作者顺序颠倒)应该是来自辛钦的《数学分析简明教程》,是数学系用的时间最长,用的最多的书,大部分学校考研分析的指定教材。

我大一用第二版,现在出了第三版,但是里面仍有一些印刷错误,不过克可以一眼看出来。

网络上可以找到课后习题的参考答案,不过建议自己做。

不少经济类工科类学校也用这一本书。

里面个别地方讲的比较难懂,而且比其他书少了一俩个知识点,比如好像没有讲斯托尔滋(stolz)定理,实数的定义也不清楚。

不过仍然不失为一本好书。

能广泛被使用一定有它自己的一些优势。

2《数学分析》华东师范大学数学系著师范类使用最多的书,课后习题编排的不错,也是考研用的比较多的一本书。

初中学科知识点要点整理与梳理参考资料书单

初中学科知识点要点整理与梳理参考资料书单

初中学科知识点要点整理与梳理参考资料书单一、数学:数学是一门重要的学科,它涵盖了许多基础知识和概念。

以下是初中数学知识点要点的整理与梳理的参考资料书单:1. 《初中数学课程标准实施的指导与参考》- 本书能帮助教师理解并应用最新的数学课程标准,为教师提供了宝贵的教学参考辅助。

2. 《中学数学教师手册》- 这本书提供了初中阶段数学教学中各个知识点的详细讲解和丰富的习题,能够帮助教师系统地梳理数学知识。

3. 《中学数学基础知识全集》- 本书概括了初中数学各个学科的基础知识点,并提供了大量的例题和习题,是学生复习和巩固数学知识的重要参考。

二、语文:语文是培养学生综合语言运用能力的重要学科。

以下是初中语文知识点要点的整理与梳理的参考资料书单:1. 《初中语文课程标准实施的指导与参考》- 本书详细解读了语文课程标准,并提供了相应的教学指导和实施方法,对于教师具有重要的参考价值。

2. 《中学语文教学与评价指南》- 该书详细介绍了初中语文教学的要点和评价方法,同时提供了大量实例和案例分析,帮助教师更好地梳理语文知识点。

3. 《中学语文复习丛书》- 这本丛书梳理了初中语文各个学科的重点知识点,并提供了高质量的文学文本和习题,是学生复习和提高语文能力的重要参考资料。

三、英语:英语是一门必修外语,也是现代社会中必不可少的技能。

以下是初中英语知识点要点的整理与梳理的参考资料书单:1. 《初中英语课程标准实施的指导与参考》- 本书针对初中英语课程标准提供了教学指导和实施方法,帮助教师理解和应用课程标准。

2. 《中学英语教学与评价指南》- 这本书详细介绍了初中英语教学的要点和评价方法,还提供了大量的示范教学案例和教学活动设计,对于教师来说是一本重要的参考书。

3. 《中学英语备考指南》- 该书梳理了初中英语各个学科的重点知识点和考点,提供了全面的应试指导和习题训练,对于学生复习和备考英语考试非常有帮助。

总结:初中学科知识点要点的整理与梳理是帮助教师和学生有效学习和教学的重要工具。

数学专业参考书(1)

数学专业参考书(1)

数学专业参考书一解析几何空间解析几何实在是一门太经典, 或者说古典的课.从教学内容上说, 可以认为它描述的主要是三维欧氏空间里面的一些基本常识,包括最基本的线性变换(那是线性代数的特例), 和二阶曲面的不变量理论.在现行的复旦的教材,苏先生,胡先生他们编的"空间解析几何"里面,最后还有一章讲射影几何. 这本书非常之薄.但是内容还是比较丰富的. 特别是有些习题并不是非常容易.最后一章射影的内容还不是很好念的. 当然,这里还要提到十来年前大概做过教材的一本书: 项武义,潘养廉等"古典几何学". 这书的内容与课本不是很一样,不过处理方法还是很不错的.项先生应当算做很能侃的那种类型的. 可以考虑的参考书包括: 1.陈(受鸟) "空间解析几何学" 内容基本上和课本差不多,不过要厚许多,自然要好念点. 陈先生是吴大任先生(大猷先生的堂弟,南开多年的教务长) 的夫人,也是中国早期留学海外的女学者. 2.朱鼎勋"解析几何学" 这本书基本上只在欧氏空间里面讨论问题.优点是非常易懂, 连二维的不变量理论也在附录里面交代得异常清楚.那里面的习题也比较合理,不是非常的难(如果我没有记错的话). 朱先生相当有才华,可惜英年早逝. 如果想了解比较"新"的动态,可以考虑 3.Postnikov "解析几何学与线性代数(?)"(第一学期) 这是莫斯科大学新的课本,从课程形式就可以看出,解析几何这样一门课如果不是作为对刚进大学的学生的一个引导,给出一些具体的对象的话,迟早是要给吃到线性代数里面去的. 海外教材中心有一本英文本. 我个人以为,现在教委的减轻学生负担的做法迟早是要遭报应的.中国的中学教育水平也就比美国最糟糕的中学好点,从整体上说,比整个欧洲都要差. 我相信所谓三维的"解析"几何的内容总有一天要下放到高中里面去. 上面的书如果撑不饱你,你又不想学其它的课程的话. 可以考虑下面两本经典.其好处是看过以后可以对很多几何对象(当然具体说是指三维空间里面的二次曲面)有相当深刻的了解. 4.狄隆涅"(解析)几何学" 这套三卷本的大书包括了许多非常有意思的讨论,记得五年前看的时候感觉非常有意思.这位苏联科学院院士真是够能写的.总书库里面有. 5.穆斯海里什维利"解析几何学教程" 这套书在上面提到的陈先生的书里面就多次引用了. 具体的说特别值得参考的是它里面关于射影的一些观点和讲法(比如认为椭圆也是有渐近线的,只不过是"虚"的而已).二线性代数高等代数可以认为处理的是有限维线性空间的理论.如果严格一点, 关于线性空间的理论应该叫线性代数, 再加上一点多项式理论(就是可以完完全全算做代数的内容的)就叫高等代数了. 这门课在西方的对应一般叫Linear Algebra, 就是苏联人喜欢用高等这个词,你可以在外国教材中心里面找到一本Kurosh(库落什)的Higher Algebra. 现在用的课本好象是北大的"高等代数"(第二版?). 用外校的课本在基础课里面是不常见的. 这本书可以说是四平八稳,基本上该讲的都讲了.但是你要说它有什么地方讲的特别好,恐怕说不出来. 值得注意的是95-96学年度,北大现在的校党委组织部长王杰老师(段学复先生的弟子)给北大数学科学学院95级1班开课时曾经写过一本补充材料,把空间理论的讲得非常清楚.如果谁能搞到的话翻印出来是件很好的事情(我的那本舒五昌老师给96开课的时候送给他了,估计是找不到了). 好象上面有一点说得不对,就是北大的书用的还是第一版.第二版在书店里似乎看见过. 从这门课的内容上说,是可以有很多种讲法的. 线性空间的重点自然是线性变换,那么如果在定义空间和像空间里面取定一组基的话,就有一个矩阵的表示.因此这门课的确是可以建立在矩阵论上的. 而且如果要和数值搭界的话还必须这么做. 复旦以前有两本课本就是这么做的. 1.蒋尔雄,吴景琨等"线性代数" 这是那时候计算数学专业的课本,其教学要求据说是比数学专业相应的课程要高的. 因为是偏向计算的缘故,你可以找到一些比较常用的算法. 我个人以为还是比较有意思的.理图里有. 2.屠伯埙等"高等代数" 这就是在上海科技出版的一整套复旦数学系教材里讲高等代数的那本.不记得图书馆里面有,不过系里可能可以买到翻印的. 这本书将80%的篇幅贡献给矩阵的有关理论.有大量习题,特别是每章最后的"选做题".能独立把这里面的习题做完对于理解矩阵的各种各样的性质是非常有益的. 当然这不是很容易的: 据说屠先生退休的时候留下这么句话:"今后如果有谁开高等代数用这本书做教材,在习题上碰到麻烦的话可以来找我."有此可见一斑. 如果从习题方面考虑,觉得上面的书太难吃下去的话, 那么下面这本应该说是比较适当的. 3.屠伯埙等"线性代数-方法导引" 这本书比上面那本可能更容易找到,里面的题目也更"实际"一些.值得一做. 另外,讲到矩阵论.就必须提到 4.甘特玛赫尔"矩阵论" 我觉得这恐怕是这方面最权威的一本著作了.其中译者是柯召先生. 在这套分两册的书里面,讲到了很多不纳入通常课本的内容.举个例子,大家知道矩阵有Jordan 标准型,但是化一个矩阵到它的Jordan标准型的变换矩阵该怎么求?请看"矩阵论". 这书里面还有一些关于矩阵方程的讨论,非常有趣. 总书库里有. 图书馆里面还有一本书的名字和矩阵论沾边. 5.许以超"线性代数和矩阵论" 虽然许先生对复旦不甚友好(高三那会他对我说要在中国念大学数学系要么去北大,要么去科大--他是北大毕业的, 现在数学所工作--我可没听他的),但是必须承认这本书还是写得很不错的,习题也不错.必须指出,这里面其实对于空间的观念很重视.不管怎么样,他还是算华先生的弟子的. 6.华罗庚"高等数学引论" 华先生做数学研究的特点是其初等直观的方法别具一格,在矩阵理论方面他也有很好的工作.甘特玛赫尔的书里面你只能找到两个中国人的名字,一个是樊畿先生,另一个就是华先生. 可能是他第一次把下述观点引进中国的数学教材的(不记得是不是在这本书里面了): n阶行列式是n个n维线性空间的笛卡尔积上唯一一个把一组标准基映到1的反对称线性函数. 这就是和多线性代数或者说张量分析的观点很接近了. 高等代数的另外一种考虑可能是更加代数化的.比如7.贾柯勃逊(N.Jacobson) Lectures on Abstract Algebra ,II:Linear Algebra GTM(Graduate Texts in Mathematics)No.31 ("抽象代数学"第二卷:线性代数) 这里想说的是,这套书的中译者黄缘芳先生,大概数学系里面已经没多少人还记得文革前复旦有这么一位代数学教授了. 此书英文版总书库里有,中文版(字体未完全简化)理图里有. 8.Greub Linear Algebra(GTM23) 这里面其实更多讲的是多线性代数.里面的有些章节还是值得一读的. 还有两本书我觉得很好,不知道图书馆里面是不是有: 9.丘维声"高等代数"(上,下) 北大94级的课本,相当不错.特点是很全,虽然在矩阵那个方向没有上面提到的几本书将得深,但是在空间理论,具体的说一些几何化的思想上讲得还是非常清楚的.多项式理论那块也讲了不少. 10.李炯生,查建国"线性代数" 这是中科大的课本,可能是承袭华先生的一些传统把,里面有一些内容的处理在国内可能书属于相当先进的了.三常微分方程从常微分方程开始,数学课就变成没底的东西,每一个标题做下去都是数学研究里面庞大的一块. 对于一门基本课程应该讲些什么也始终讨论不断. 这里我打算还是从现行课本讲起. 常微分方程这门课,金福临先生和李迅经先生在六十年代写过一本课本,后来在八十年代由控制那一块的老师们修订了一下,变成第二版,就是现在常用的课本. 上海科技出版社出版. 应该说,金先生他们的第一版在今天看来还是很好的一本课本(这本书估计受了下面的一本参考书的不小的影响), 该书在理图老分类的那一块里有. 但是第二版有那么点不敢恭维. 不知为什么,似乎这本书对具体方程的求解特别感兴趣,对于一些比较"现代"的观点,比如定性的讨论等等相当地不重视.最有那么点好笑的是在某个例子中(好象是介绍Green函数方法的),在解完了之后话锋一转,说"这个题其实按下面的办法解更简单..." 而这个所谓更简单的办法是根本不具一般性的. 下面开始说参考书,毫无疑问, 我们还是得从我们强大的北方邻国说起. 1.彼得罗夫斯基"常微分方程讲义" 在20世纪数学史上,这位前莫斯科大学校长占据着一个非常特殊的地位.从学术上说,他在偏微那一块有非常好的工作,五十年代谷先生去苏联读学位的时候还参加过他主持的讨论班. 他从三十年代末开始就转向行政工作.在他早年的学生里面有许多后来苏共的高官,所以他就利用和这些昔日学生的关系为苏联数学界构筑了一个保护伞,他本人也以一个非共产党员得以做到苏联最高苏维埃主席团成员.下面将提到的那个天不怕地不怕的Arnold提起他来还是满恭敬的. 他这本书在相当长的时期里是标准教材,但是可能和性格,地位有关吧,对此书的一种评论是有学术官僚作风,讲法不是非常活泼. 2.庞特里亚金"常微分方程" 庞特里亚金院士十四岁时因化学实验事故双目失明,在母亲的鼓励和帮助下,他以惊人的毅力走上了数学道路,别的不说,光看看他给后人留下的"连续群","最佳过程的数学理论", 你就不得不对他佩服得五体投地,有六体也投下来了.他的这本课本就是李迅经先生他们翻译的. 此书影响过很多我们的老师辈的人物,也很大的影响了复旦的课本.如果对没有完全简化的字不感冒的话绝对值得一读. 下面转到欧美方面, 3.Coddington &amp; Levinson "Theory of Ordinary Differnetial Equations" 这本书自五十年代出版以来就一直被奉为经典, 数学系里有.说老实话这书里东西太多,自己看着办吧. 比较"现代"的表述有 4.Hirsh &amp; Smale "Differential Equations ,Linear Algebra and Dynamical Systems" (中译本"微分方程,线性代数和动力系统") 这两位重量级人物写的书其实一点都不难念, 非常易懂.所涉及的内容也是非常基本,重要的. 关于作者嘛, 可以提一句,Smale现在在香港城市大学,身价是三年1000万港币.我想称他为在中国领土上工作的最重要的数学家应该没有什么疑问. 图书馆里有中译本. 5.Arnol'd "常微分方程" 必须承认,我对Arnol'd是相当崇拜的.作为Kolmogorov的学生, 他们两就占了KAM里的两个字母.他写的书,特别是一些教材以极富启发性而著称.实际上,他的习惯就是用他自己的观点把相应的材料全部重新处理一遍.从和他的几个学生的交往中我也发现他教学生的本事也非常大.特别是他的学生之间非常喜欢讨论,可能是受他言传身教的作用吧.他自己做学生的时候就和其它几个学生(都是跟不同的导师的)组织了讨论班,互相教别人自己的专长,想想这里都走出来了些什么人物吧:Anosov, Arnol'd,Manin,Novikov,Shavarevich,Sinai...由此可见互相讨论的重要性.从学术观点上说,他更倾向于比较几何化的想法,在这本书里面也得到了相当的体现.近年来,Arnol'd 对于Bourbaki 的指责已经到了令大家瞠目结舌的程度.不过话说回来,在日常生活中他还是个非常平易近人的人,至少他的学生们都是这么说的. 这本书理图里有中译本,不过应当指出译者的英文水平不是很高, 竟然会把"北极光"一词音译,简直笑话. 再说一句,Arnol'd的另外一本书,中文名字叫"常微的几何方法...." 的,程度要深得多. 看了半天,讲来讲去都是外国人写的东西,有中国人自己的值得一看的课本吗?答曰Yes. 6.丁同仁,李承治"常微分方程教程" 这绝对是中国人写的最好的常微课本,内容翔实, 观点也比较高.在复旦念这本书还有一个有利的地方, 袁小平老师是丁先生的弟子,有不懂的话不愁找不到人问. 附带提一句,理图里面有这书,但是是第一次(?)印刷的, 里面有一个习题印错了,在后来印刷的书里面有改动. 再说一句,就是真的对解方程感兴趣的话不妨去看看7.卡姆克(Kamke) 常微分方程手册,那里面的方程多得不可胜数, 理图里有. 对于变系数常微分方程,有一类很重要的就是和物理里常用的特殊函数有关的.对于这些方程, 现在绝对是物理系的学生比数学系的学生更熟悉. 我的疑问是不是真有必要象现在物理系的"数学物理方法"课里那样要学生全部完全记在心里. 事实上,我很怀疑,不学点泛函的观点如何理解这些特殊函数系的"完备性",象8.Courant-Hilbert "数学物理方法"第一卷可以说达到古典处理方法的顶峰了,但是看起来并不是很容易的.我的理解是学点泛函的观点可以获得一些统一的处理方法,可能比一个函数一个方法学起来更容易一些. 而且, 9.王竹溪,郭敦仁"特殊函数概论" 的存在使人怀疑是不是可以只对特殊函数的性质了解一些框架性的东西,具体的细节要用的时候去查书.要知道,查这本书并不是什么丢人的事情, 看看扬振宁先生为该书英文版写的序言吧: "(70年代末)...我的老师王竹溪先生送了我一本刚出版的'特殊函数概论'...从此这本书就一直在我的书架上,...经常在里面寻找我需要的结论..." 连他老先生都如此,何况我们? 上面这两本书理图里面都有,9.的英文版系资料室有一本.四单复变函数论单复变函数论从它诞生之日(1811年的某天Gauss给Bessel写了封信,说"我们应当给'虚'数i以实数一样的地位...")就成为数学的核心, 上个世纪的大师们基本上都在这一领域里留下了一些东西,因此数学的这个分支在本世纪初的时候已经基本上成形了. 到那时为止的成果基本上都是学数学的学生必修的东西. 复旦现在这门课是张锦豪老师教. 张老师是做多复变的.毫无疑问, 多复变在二十世纪的数学里也占有相当重要的地位,不仅它自身的内容非常丰富,在其它分支中的应用也是相当多的--举个例子就是Penrose的Spinor 理论,基本上就是一个复分析的问题.这就扯远了,就此打住. 张老师用的是他自己的讲义,那书要到今年夏天才能印出来.所以还是这两年上过这门课的ddmm来谈谈感受比较好. 现在具体的情况我不是很清楚,复旦以前有一本 1.范莉莉,何成奇"复变函数论" 这是上海科技出版的那套书里面的复变. 今天回过头来看,这本书讲的东西也不是很难,包括那些数量很不少的习题. 但是做为第一次学的课本,应当说还不是很容易的. 总的说来,从书的序言里面列的参考书目就可以看出两位先生是借鉴了不少国际上的先进课本的. 不知道数学系的学生还发这本书吗? 如果要列参考书的话,单复变的课本真是多得不可胜数,从比较经典的讲起吧: 2.普里瓦洛夫"复变函数(论)引论" 这是我们的老师辈做学生的时候的标准课本.内容翔实,具有传统的苏联标准课本的一切特征.听说过这么一个小故事: 普里瓦洛夫是莫斯科大学的教授,一次期末口试(要知道,口试可比笔试难多了, 无论是从教师还是从学生的角度来说), 有一个学生刚走进屋子,就被当头棒喝般地问了一句"sin z有界无界?"此人稀里糊涂地回答了一句"有界",就马上被开回去了,实在是不幸之至. 这书不在理图就在总书库里面. 3.马库雪维奇"解析函数论(教程?)" 这本厚似砖头的书可以在总书库里找到. 它比上面这本要深不少.张老师说过, 以前学复变的学生用 2.做课本,学完后再看 3.,然后就可以开始做研究了. 这本书的一个毛病是它喜欢用自己的一套数学史,所以象Cauchy-Riemann方程它也给换了个名字,好象是Euler-D'Alembert 吧! 再说点西方的: 4.L.Alfors(阿尔福斯) "Complex Analysis(复分析)" 这应该是用英语写的最经典的复分析教材. Alfors是本世纪最重要的数学家之一(仅有的四个既得过Fields奖又得过Wolf 奖的人物之一),单复变及相关领域正好是他的专长. 他的这本课本从六十年代出第一版开始就好评如潮,总书库里面有英文的修订本, 理图里面是不是有中译本(好象是张驰译的) 记不清了,建议还是看英文的. 这里需要说明的是,复分析在十九世纪的三位代表人物分别对应三种处理方式:Cauchy --积分公式;Riemann--几何化的处理;Weierstrass --幂级数方法.这三种方法各有千秋,一半的课本多少在其中互有取舍.Alfors的书的处理可以说是相当好的. 5.H.Cartan(亨利.嘉当) "解析函数论引论" 这位Bourbaki学派硕果仅存的第一代人物在二十世纪复分析的发展史上也占有很重要的地位.他在多复变领域的很多工作是开创性的.这本课本内容不是很深,从处理方法上可以算是Bourbaki学派的上程之作(无论如何比那套"数学原理"好念多了:-)) 6.J.B.Conway "Functions of One Complex Variable"(GTM 11) "Functions of One Complex Variable,II"(GTM 159) (GTM=Graduate Mathematics Texts, 是Springer-Verlag的一套丛书,后面的数字是编号) 第一卷也是1.的参考书目之一.作者后来又写了第二卷.当然那里面讲述的内容就比较深一点了. 这本书第一卷基本上可以说是Cauchy+Weierstrass, 对于在1.中占了不少篇幅的Riemann的那套东西要到第二卷里面才能看到. 7.K.Kodaira(小平邦彦) "An Introduction to Complex Analysis" 这就是四年前张老师给我们94理基的7个人开课是用的课本.Kodaira也是一位复分析大师, 也是Fields+Wolf.这本书属于"不深,但该学的基本上都有了"的那种类型.总书库或系资料室有.需要注意的是这本书(英译本)的印刷错误相对多,250来页的书我曾经列出过100多处毛病. 由此我对此书的英译者 F.Beardon极为不满, 因为同样Beardon自己的一本"Complex Analysis" 我就找不出什么错. 偶记得国内的复变教材还有北大庄圻泰的<>, 不记得是不是和张南岳合写的。

数学专业书籍推荐

数学专业书籍推荐

1.课程号:课程名:高等代数-1课程英文名:Advanced Algebra-1学时:102 学分:5先修课程:高中数学考试方式:考试基本面向:数学数院各专业教材:《Linear Algebra》彭国华、李德琅,高等教育出版社,2006参考书:1。

《高等代数》北京大学数学系几何代数教研空编高等教育出版社 2.《高等代数》张禾瑞、郝锅新高等教育出版社3.《Linear Slgebra》B。

Jacob W.H.Freeman and Company 1990 课程简介:高等代数以研究线性方程组为出发点来讨论求解和解的结构和分类等问题,进而研究矩阵,行列式,线性空间,线性映射以及二次型的基本理论。

本课程分两个学期讲授。

高等代数-1的主要内容包括线性空间和线性映射,线性变换,欧氏空间,线性和双线性型。

2.课程号:课程名:高等代数-2课程英文名:Advanced Algebra-2学时:102 学分:5先修课程:高等代数-1考试方式:考试基本面向:数学学院各专业教材:《Linear Algebra》彭国华、李德琅,高等教育出版社,2006参考书:1.《高等代数》北京大学数学系几何代数教研空编高等教育出版社 2. L.W. Johnson, R.D. Riess and J.T. Arnold, Introduction to Linear Algebra (5th Edition), Prentice-Hall Inc. and China Machine Press, 2002 3. D.C. Lay, Linear Algebra and Its Applications (3rd Edition), Pearson Addison Wesley Asia Limited and Publishing House of Electronics Industry, 2003课程简介:一元与多元多项式、行列式、线性方程组,矩阵代数,二次型,线性空间,线性变换,矩阵法式,欧氏空间3.课程号:课程名:近世代数课程英文名:Abstract Algebra学时:68 学分:4先修课程:高等代数、数学分析考试方式:考试基本面向:数学学院教材:《近世代数基础》刘绍学编高等教育出版社第一版参考书:1.《近世代数引论》冯克勤、李尚志、查建国中国科学技术大学出版社 19882.《代数学引论》聂灵沼、丁石孙高等教育出版社 19883.《Basic Algebra(I)》N.Jacobso W.H.Freeman and Company 1985 课程简介:代数学是因解多项式方程而发展起来的,而方程解的结构往往是人们感兴趣的的问题,近世代数是研究具有良好代数结构的群,环域,模为主要内容的一门课程。

数学专业经典书籍

数学专业经典书籍

一、“数学分析”“数学分析”是数学或计算专业最重要的一门课,而且是今后数学专业大部分课程的基础,经常从一个知识点就能引申出今后的一门课,同时它也是初学时比较难的一门课。

这里的“难”主要是指对数学分析思想和方法的不适应(高等数学上的方法与初等数学的方法有很大不同),其实随着学习的深入,适应了方法后,会感觉一点一点地容易起来,比如当大四考研复习再看时会感觉轻松许多。

数学系的数学分析讲三个学期(各个院校应该一样吧),学的时间也够长的~本课程主要讲的是以集合为基础而发展起来的变量和函数中的数学规律、分析与计算,是通往高等数学领域的基础工具之一。

这么多年来,国内外出现了很多非常优秀的教材和习题集以及辅导书,而且很多高校一直使用着。

【教材】国内比较好的有(仅列出主要的,排列不分先后,下同):1《数学分析》(共两册) 华东师范大学数学系编著这应该是师范类使用最多的书,课后习题编排的还不错,同时这也是考研用得比较多的一本书。

书的最后讲了一些流形上的微积分。

虽然是师范类的书,不过还是值得一看的。

2《数学分析新讲》(共三册) 张筑生著很好的书,内容和高度在国内算得上是比较突出的。

值得一提的是,张老师文笔清晰详细,证明深入浅出,通俗易懂。

这个对初学者来说非常有帮助。

本书同时也被公认为是一本具有新观点的书,主要体现在一些经典问题处理方法上与一般的书有所不同:本书比较强调一般化,融入了一些更高的观点,如泛函、点集拓扑等。

尤其精彩的是,这本书里面提供了一些问题讨论的专题附录,如Stolz定理、正交曲线坐标系中的场论计算、二项式级数在收敛区间端点的敛散情况、布劳威尔不动点定理、斯通-维尔斯特拉斯逼近定理及其证明,等等。

本书书在证明过程中通过技术化处理,降低了难度,容易被一般人理解。

遗憾的是书中没有课后习题,又由于书写的早,有的符号以现在的观点来看,不是很标准(按照张老师本人的说法,北大出版社找了家根本不懂怎么印数学书的印刷厂,所以版面不是很好看);另外感觉实数理论部分和含参数广义积分那章的内容写得不太全面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学数学要多看书,但是初学者很难知道那些书好,我从网上收集并结合自己的经验进行了整理:从数学分析开始讲起:数学分析是数学系最重要的一门课,经常一个点就会引申出今后的一门课,并且是今后数学系大部分课程的基础。

也是初学时比较难的一门课,这里的难主要是对数学分析思想和方法的不适应,其实随着课程的深入会一点点容易起来。

当大四考研复习再看时会感觉轻松许多。

数学系的数学分析讲三个学期共计15学分270学时。

将《数学分析》中较难的一部分删去再加上常微分方程的一些最简单的内容就是中国非数学专业的《高等数学》,或者叫数学一的高数部分。

记住以下几点:1,对于数学分析的学习,勤奋永远比天分重要。

2,学数学分析不难,难得是长期坚持做题和不遗余力的博览群书。

3,别指望第一遍就能记住和掌握什么,请看第二遍,第三遍,…,第阿列夫遍。

4,看得懂的仔细看,看不懂的硬着头皮看。

5,课本一个字一个字的看完,至少再看一本参考书,尽量做一本习题集。

6,开始前三遍,一本书看三遍效果好于三本书看一遍;第四遍开始相反。

7,经常回头看看自己走过的路以上几点请在学其他课程时参考。

数学分析书:初学从中选一本教材,一本参考书就基本够了。

我强烈推荐11,推荐1,2,7,8。

另外建议看一下当不了教材的16,20。

中国人自己写的:1《数学分析》陈传璋,金福临,朱学炎,欧阳光中著(新版作者顺序颠倒)应该是来自辛钦的《数学分析简明教程》,是数学系用的时间最长,用的最多的书,大部分学校考研分析的指定教材。

我大一用第二版,现在出了第三版,但是里面仍有一些印刷错误,不过克可以一眼看出来。

网络上可以找到课后习题的参考答案,不过建议自己做。

不少经济类工科类学校也用这一本书。

里面个别地方讲的比较难懂,而且比其他书少了一俩个知识点,比如好像没有讲斯托尔滋(stolz)定理,实数的定义也不清楚。

不过仍然不失为一本好书。

能广泛被使用一定有它自己的一些优势。

2《数学分析》华东师范大学数学系著师范类使用最多的书,课后习题编排的不错,也是考研用的比较多的一本书。

课本最后讲了一些流形上的微积分。

虽然是师范类的书,难度比上一本有一些降低,不过还是值得一看的。

3《数学分析》陈纪修等著以上三本是考研用的最多的三本书。

4《数学分析》李成章,黄玉民是南开大学一个系列里的数学分析分册,这套教材里的各本都经常被用到,总体还是不错的,是为教学改革后课时数减少后的数学系各门课编写的教材。

5《数学分析讲义》刘玉链我的数学分析老师推荐的一本书,不过我没有看,最近应该出了新版,貌似是第五?版,最初是一本函授教材,写的应该比较详细易懂。

不要因为是函授教材就看不起,事实上最初的函授工作都是由最好的教授做的。

细说就远了,总之可以看看。

6《数学分析》曹之江等著内蒙古大学数理基地的教材,偏重于物理的实现,会打一个很好的基础,不会盲目的向n维扩展。

适合初学者。

国家精品课程的课本。

7《数学分析新讲》张筑生公认是一本新观点的书,课后没有习题。

材料的处理相当新颖。

作者已经去世。

8《数学分析教程》常庚哲,史济怀著中国科学技术大学教材,课后习题极难。

9《数学分析》徐森林著与上面一本同出一门,清华大学教材。

程度好的同学可以试着看一看。

书很厚,看起来很慢。

10《数学分析简明教程》邓东翱著也是一本可以经常看到的书,作者已经去世。

国家精品课程的课本。

11许绍浦《数学分析教程》南京大学出版社这些书应该够了,其他书不一一列举。

从中选择一本当作课本就可以了。

外国数学分析教材:11《微积分学教程》菲赫金格尔茨著数学分析第一名著,不要被它的大部头吓到。

我大四上半年开始看,发现写的非常清楚,看起来很快的。

强烈推荐大家看一下,哪怕买了收藏。

买书不建议看价格,而要看书好不好。

一本好的教科书能打下坚实的基础,影响今后的学习。

12《数学分析原理》菲赫金格尔茨著上本书的简写,不提倡看,要看就看上本。

13《数学分析》卓立奇观点很新,最近几年很流行,不过似乎没有必要。

14《数学分析简明教程》辛钦课后没有习题,但是推荐了《吉米多维奇数学分析习题集》里的相应习题。

但是随着习题集的更新,题已经对不上号了,不过辛钦的文笔还是不错的。

15《数学分析讲义》阿黑波夫等著莫斯科大学的讲义,不过是一本讲义,看着极为吃力,不过用来过知识点不错。

16《数学分析八讲》辛钦大师就是大师,强烈推荐。

17《数学分析原理》rudin中国的数学是从前苏联学来的,和俄罗斯教材比较像,看俄罗斯的书不会很吃力。

不过这本美国的书还是值得一看的。

写的简单明了,可以自己试着把上面的定理推导一遍。

18《微积分与分析引论》库朗又一本美国的经典数学分析书。

有人认为观点已经不流行了,但是数学分析是一门基础课目的是打下一个好的基础。

19《流形上的微积分》斯皮瓦克分析的进一步。

中国的数学分析一般不讲流形上的微积分,不过流形上的微积分是一种潮流,还是看一看的好。

20《在南开大学的演讲》陈省身从中会有一些领悟,不过可惜好像网络上流传的版本少了一些内容。

21华罗庚《高等数学引论》科学出版社数学分析习题集不做题就如同没有学过一样。

希望将课本后的习题一道道自己做完,不要看答案。

买习题集也要买习题集,不买习题集的答案。

1《吉米多维奇数学分析习题集》最近几年人们人云亦云的说这本书多么不好,批评计算题数目过多,不适合数学系等等。

但这本习题集不再被广泛使用的原因是那本习题解答的出现,学生对答案的抄袭使这部书失去了价值。

如果你不看答案的话它依然是数学分析第一习题集。

不要没有做过就盲目的批评。

有没有做过自己心里知道,并会影响自己今后的学习。

2《数学分析习题课教材》第一版或《数学分析解题指南》第二版,林源渠,方企勤等两本书一样的,再版换了名字。

第一版网上有电子版,第二版可以买纸版。

和3成一套。

3《数学分析习题集》林源渠,方企勤等由于《吉米多维奇数学分析习题集》答案的出现使这本书得到的评价变高了,原因是这本书没有答案。

只能自己做。

4《数学分析习题精解》科学出版社版,还有裴礼文或者钱吉林的书过考试不错,要学数学分析不提倡。

5各种教材的答案书一堆垃圾。

毁人不倦。

解析几何:解析几何有被代数吃掉的趋势,不过就数学系的学生而言,还是应该好好学一下,我大一没有好好学,后来学别的课时总感觉哪里有些不太对劲,后来才发现是自己的数学功底尤其是几何得功底没有打好。

1吴光磊《解析几何简明教程》高等教育出版社写的简单明了,我基础没有打好,快速翻了一下这本书收获还是不少的。

不过打基础的时候还是从下面三本选一本看,把这本当参考书。

2《解析几何》丘维声,北京大学出版社我大一时的课本3《解析几何》吕根林,许子道4《解析几何》尤承业2,3,4写的大同小异习题集有巴赫瓦洛夫的《解析几何习题集》不过不是那么容易找的到了代数前面说过代数有吃掉几何的倾向,所以有许多与时俱进的《代数与几何》。

不过还是建议分开学,一门一门的打好基础。

许多所谓的简明教程,还有将代数与解析几何合在一起的课本目前都还不是非常成熟。

不建议使用。

1《高等代数》北京大学数学系代数与几何教研室代数小组目前国内各大学尤其是综合大学数学系广泛采用的代数教材,有着悠久的传统。

目前通常使用的是第三版。

也是各大学的考研指定用书。

这本书更多以教师为主,给了教师以很大的发挥空间,受到教师的普遍欢迎。

不过对基础不好的学生在某些地方有一定的难度。

讲到了所有应该讲的内容。

2《高等代数》张禾瑞,郝鈵新被各个师范大学的数学系广泛使用,和1同分天下。

张禾瑞已经去世,但书已经出到第五版。

3《线性代数》李烔生,中国科学技术大学出版社中科大的书一向比较难。

4《线性空间引论》叶明训,武汉大学出版社5《高等代数学》张贤科,清华大学出版社6《线性代数与矩阵论》许以超,高等教育出版社以上三本是一份书单上写的,拿了过来,不过我知道5还是不错的7《代数学引论》柯斯特利金一本和菲赫金戈尔茨的《微积分学教程》齐名的伟大数学著作。

一本传世经典,没有什么可多说的。

最近刚刚有新译本出版,共分了三册,但都不是很厚,也不贵。

8《线性代数习题集》普罗斯库列柯夫9《高等代数习题集》法捷耶夫,索明斯基8,9是前苏联的经典代数习题集分别有两千道和一千道题,做完会打下非常好的基本功。

10《高等代数》丘维声著书写的不错,不过是北京大学数学系用书,北京大学的教学内容和重点一贯与国内其他大学的不太一样,而且邱维声采用了与其他教材完全不同的编排方式,所以用这本书研也许有一些不适应。

建议用来作参考书而不是教材。

11《高等代数习题集》杨子胥著相对8,9很容易买到,很多人用来做考研的参考书,而且符合所谓的教学或考研大纲。

12《线性代数》蒋尔雄,高锟敏,吴景琨著名为线性代数,实际上是一本高等代数教材。

是一本非常老的为当时计算数学专业编写的书。

市面上根本找不到,但各大学的藏书中肯定会有。

近世代数:不光是数学系最重要的几门课,而且在计算机方面有很多应用,通常的离散数学第二部分就是近世代数内容,也叫抽象代数。

1《近世代数引论》冯克勤2《近世代数》熊全淹3《代数学》莫宗坚4《代数学引论》聂灵沼5《近世代数》盛德成分析的后继课程有常微分方程,偏微分方程,实变函数,复变函数,泛函分析。

下面一一介绍:常微分方程:1《常微分方程教程》丁同仁、李承治,高等教育出版社公认的国内写的最好的教材。

2《常微分方程》王高雄等使用相当广泛的教材。

初学建议从1,2中选3《常微分方程》V.I.Arnold常微分不可不读的书。

4《常微分方程》庞特里亚金前苏联教材,作者是数学奇才,因为化学实验的一次事故导致双目失明,不得已转而学数学,成为一代数学大师。

5常微分方程习题集》菲利波夫很简单,打通这本书。

不是题目简单,是对你的要求简单。

复变函数:1《简明复分析》龚昇写的非常有特色的一本书。

2《Complex Analysis 》L.V.Ahlfors学数学还是提倡多看大师的著作3《复变函数》余家荣4《复变函数》钟玉泉上面两本是国内数学系用的最多的书,不过通常会剩下一到两章讲不完。

5《解析函数论初步》H.嘉当6《应用复分析》任尧福7《复变函数论习题集》沃尔科维斯实变函数:1《实变函数与泛函分析概要》郑维行很好的入门书。

2《实变函数论》周民强普遍认为是一本非常好的书,不过个人认为对基础不是很好的人来说比较难懂。

写法和其他几本不太一样。

3《实变函数》江泽坚,吴志泉我初学时用的书,和2相比我更愿意用这本和44《实变函数与泛函分析》夏道行,伍卓人,严绍宗,舒五昌上世纪八十年代中国大学数学系的标准课本,2009年3月会出新版。

强烈推荐这本和上一本。

虽然厚,但是相当详细。

5《实变函数论的定理与习题》鄂强6《实变函数论习题集》捷利亚科夫斯基和分析一样要多做题。

泛函分析:1《泛函分析讲义》张恭庆个人感觉写的比较混乱,不过各个大学数学系都在用。

相关文档
最新文档