频响函数用于转子振动信号诊断
振动试验共振频率的判定

振动试验共振频率的判定在振动试验中,通常会通过施加外力或者激励信号来激发被试物体的振动。
当被试物体的振动频率与激励信号的频率相同或者接近时,就会发生共振现象,此时物体的振幅会显著增大,振动现象也会变得非常明显。
共振频率是指在共振条件下被试物体的振动频率,可以通过振动试验来测量和判定。
判断共振频率的方法有很多种,下面我们将介绍一些常用的方法:1. 频率扫描法:这是一种比较常用的方法,通过改变激励信号的频率,观察被试物体的振动响应,当振幅显著增大时,可以认为共振频率已经达到。
这种方法简单直观,适用于较为简单的振动系统。
2. 模态分析法:对于复杂的振动系统,我们可以利用有限元方法进行模态分析,得到被试物体的振动模态和特征频率,通过比较振动模态和激励信号的频率,可以得到共振频率。
3. 频率响应函数法:该方法主要用于计算机辅助振动试验,通过对激励信号和被试物体振动响应信号进行傅里叶变换,得到频率响应函数,从而确定共振频率。
判断共振频率的准确性对于振动试验的结果具有至关重要的影响,因此在进行共振频率的判定时,需要注意以下几点:1. 实验条件的选择:在进行振动试验时,需要选择合适的激励信号和测量设备,确保能够准确地获取被试物体的振动响应信号。
2. 数据处理的准确性:在进行振动试验后,需要仔细分析和处理实验数据,确保得到的共振频率结果准确可靠。
3. 系统参数的识别:在进行振动试验之前,需要对被试物体的系统参数进行准确的识别和估计,以便更好地判断共振频率。
4. 实验结果的验证:为了验证共振频率的判定结果的准确性,可以采用不同的方法进行验证,例如改变激励信号的频率,观察共振现象的变化。
总的来说,共振频率的判定是振动试验中非常重要的一环,准确地判断共振频率可以帮助我们更好地了解物体的振动特性,优化设计和改进结构。
在进行共振频率的判定时,需要注意实验条件的选择、数据处理的准确性、系统参数的识别和实验结果的验证,确保得到准确可靠的结果。
故障诊断实验——转子实验台振动信号的时域、频域分析

故障诊断第一次实验报告——转子实验台振动信号的时域、频域分析1.由时域信号得出震动的平均值、方差、峭度信息程序代码如下:y=Data(1:6000,1);y=y';[a,b]=xcorr(y,'unbiased');figure(1);plot(b,a);grid;xlabel('位移信号自相关')figure(2);x=0:1/2560:1;plot(x,mean(y));gtext('平均值');hold on;figure(3);plot(x,var(y));gtext('方差');hold on;figure(4);plot(x,kurtosis(y));gtext('峭度');位移信号当转速为600r/min时当转速为1000r/min时当转速为1500r/min时速度信号速度为600速度1000速度15001.由频域信号得出信号的傅里叶变换、功率谱密度信息程序代码如下:t=0:1/2560:1;f=Data;f=f';y=fft(f,82944);m=abs(y);f1=(0:length(y)/2-1)'*2560/length(y); %计算变换后不同点对应的幅值figure(1);plot(f1,m(1:length(y)/2));ylabel('幅值的模');xlabel('时间(s)');title('原始信号傅里叶变换');grid;p=y.*conj(y)/82944; %计算功率谱密度ff=(0:length(y)/2-1)'*2560/length(y); %计算变换后不同点对应的频率值figure(2);plot(ff,p(1:length(y)/2));ylabel('幅值');xlabel('频率(Hz)');title('功率谱密度');grid;位移信号速度600速度1000速度1500速度信号速度600速度1000速度1500。
飞机发动机转子振动特征提取方法诊断

的信息熵由下式给出
公式中,是10500转/分。
图1
图1示意图显示了发动机外壳上传感器布置的5个横截面位置。
如图1所示,在五个十字架上测量水平和垂直方向的套管振动部分。
表1给出了五个横截面上传感器的数量,位置和方向的说明。
表1五个横截面上的传感器位置和方向
横截面数量横截面位置描述测量点和方向的描述
第1-1节
第2-2节
第3-3节
第4-4节
第5-5节
在水平方向和垂直方向上的风机
通过中间的套管
通过在水平方向和垂直方向上的
低压涡轮
通过外部附件单元
通过齿轮减速器单元
2前缘的前轴承
2中点水平和垂直方向
2后点的轴承
2水平和垂直方向的外点
1的水平方向上点在发动机的钻机测试中,在不同的操作条件下测量振
————————————————————
作者简介:尚坤(1993-),男,河南郑州人,
熵计算结果的一个例子。
143.12158.93157.81167.70170.31161.03
(a)IMF分量从1到4(b)IMF分量从5到8
图2正常发动机的EMD分析结果
(a)IMF分量从1到4(b)IMF分量从5到8
图3故障发动机的EMD分析结果。
浅析航空发动机叶片振动的影响

浅析航空发动机叶片振动的影响摘要航空发动机因为其工作环境的特殊性,对于叶片有着较高的要求。
在文中则主要是针对航空发动机叶片振动及频率测量展开分析,以期可以为航空发动机的设计提供借鉴。
关键词航空发动机;叶片;振动航空发动机是一项追求极限的系统工程,涉及材料、力学、热学等物理方面的理论。
随着现代发动机技术突飞猛进的发展,作为发动机核心部件的压气机压比被设计的越来越高,为了满足发动机整体的大推重比要求,对压气机的效率的要求也越来越高。
压气机工况极其复杂,复杂的工况主要对压气机叶片性能产生消极影响。
压气机转子叶片需要在高负荷、高转速、高振动的环境下工作。
复杂的工作环境造成压气机叶片疲劳失效故障的原因多样化,这一直是世界航空发动机研究者重点研究的方向。
通过对航空发动机压气机叶片失效的分析表明,导致压气机叶片失效的因素很多,颤振引起的失效是叶片故障的主要因素。
航空发动机颤振的机理以及错频装配技术已经获得了广泛深入的研究。
但面对复杂的错频装配工艺技术约束条件,航空发动机主机装配单位的叶片排频装配技术还很薄弱,尤其是面对批产机型的压气机装配,传统的依靠人力装配已经显得效率过于低下压气机转子叶片的装配已经成为整机装配的重要影响因素,所以全新依托于计算机技术手段并应用于装配生的压气机叶片排频技术研究意义更显重大。
1 叶片排频技术应用意义叶片排频技术通过对待装配叶片按照每个叶片的固有频率和质量,遵循装配工艺技术条件进行装配,达到叶片在频率上实现错频,在质量矩上达到平衡,防止发动机产生颤振的方法研究。
我国某型涡喷发动机通过对压气机转子装配工艺进行叶片排频技术改进,在长时间使用过程中,减少了发动机颤振的发生。
航空发动机领域的学者得出结论,航空发动机转子叶片按照频率差和静质量矩进行优化排序对于减小叶片装配造成的不平衡量以及防止发动机颤振具有积极的意义。
目前国内的叶片排频技术主要是基于单纯的计算机算法进行研究,比如:组合优化方法、一般遗传算法、混合遗传算法等。
旋转机械的振动故障检测与诊断

旋转机械的振动故障检测与诊断旋转机械是指主要功能是由于旋转而完成的机械。
如电动机,,离心风机,离心式水泵,汽轮机,发电机等都属于发电机的范围。
从力学的角度分析,转子系统分为刚性和柔性转子。
转动频率低于转子一阶横向固有频率的转子为刚性转子。
转动频率高于转子一阶横向固有频率的转子为柔性转子,如燃气轮机。
在工程学上对应转子一阶横向固有频率的转速成为临界转速。
在我们分析时候经常会遇到在各种各样的问题,比如在信号的分析上可以按照信号的处理方式的不同可以分为幅域分析,时域分析以及频域分析。
信号的早期分析只是在波形的幅值上进行,如计算波形的最大值,最小值,平均值,有效值等,后而进行波形的幅值的概率分布。
在幅值上的各种处理通常称为幅域分析,信号波形是某种物理量随时间变化的关系。
研究信号在时域内时域的变化或分布称为时域分析。
频域分析是确定信号的频域结构,即信号中包含哪些频率成分,分析的结果是以频率为自变量的各种物理量的谱线或是曲线。
不同的分析的方法是从不同的角度观察,分析信号,使信号的处理的结果更加丰富。
从某种意义上讲,振动故障的分析诊断的任务就是读谱图,把频谱上的每个频谱分量与监测的机器的零部件对照联系,给每条频谱以物理解释。
主要的内容包括:1 振动频谱中存在哪些频谱分量?2 每条频谱分量的幅值多大?3 这些频谱分量彼此之间存在什么关系?4 如果存在明显高幅值的频谱分量,它的准确的来源?它与机器的零部件对应关系如何?5如果测量相位,应该检查相位是否稳定?、工频成分突出,往往是不平衡所致。
2X频为主往往是平行不对中以及转子存在裂纹。
1/2分频过大,显示涡轮涡轮失稳。
0.5X~0.8X是流体旋转脱离。
特低频是喘振。
整数倍频是叶片流道振动。
啮合成分高是齿轮表面接触不良。
谐波丰富是松动。
边频是调制。
分频是流体激荡,摩擦等。
大型旋转机械常见的故障原因分类如下:1 设计原因;设计不当,运行时发生强迫振动或是自激振动;结构不合理,应力集中;设计工作转速接近或是落入临界转速区;热膨胀量计算不准,导致热态对中不良。
机械振动信号的特征提取与诊断

机械振动信号的特征提取与诊断机械振动信号是机械故障诊断中非常重要的参数之一,它可以反映机械设备的运行状态和故障情况。
因此,有效地提取机械振动信号的特征并进行诊断,对于机械故障预测和维护非常有意义。
一、机械振动信号的特征机械振动信号通常包括时间域信号、频率域信号和时频域信号。
通过这些信号可以得到许多与机械运行状态相关的特征。
1. 时间域信号时间域信号是指机械振动信号在时间轴上的变化过程。
通过对时间域信号进行分析,我们可以得到以下特征:(1) 峰值信号: 时间域信号中的峰值表示机械振动的最大值或最小值,可以反映机械设备振动的强度。
(2) 均方根信号: 均方根信号反映了机械振动的整体能量水平。
(3) 自相关函数: 自相关函数可以用来分析信号的周期性,如果自相关函数呈现出周期性,则说明信号存在周期性振动。
2. 频率域信号频率域信号是指机械振动信号在频率轴上的分布情况。
通过对频率域信号进行分析,我们可以得到以下特征:(1) 频率谱: 频率谱是指机械振动信号在频率轴上的分布情况,可以用来判断是否存在故障频率。
(2) 峰值频率: 峰值频率是指频谱中最大振幅对应的频率,可以用来判断机械振动信号是否存在某个重要故障频率。
(3) 能量比: 能量比是指不同频段的信号能量之比,可以用来判断机械设备是否优化,或者是否存在故障。
3. 时频域信号时频域信号是指机械振动信号在时频平面上的分布情况。
通过对时频域信号进行分析,我们可以得到以下特征:(1) STFT谱图: STFT谱图可以用来分析机械振动信号的瞬时频率,通过确定峰值频率在时间轴上的分布情况,可以识别出一些故障。
(2) 小波变换: 小波变换可以将信号分解成多个频带,不同频带表现出的特征不同,可以用来判断不同故障类型。
(3) Wigner-Ville分布: Wigner-Ville分布是时频域分析中的一种重要方法,它可以提取出机械振动信号的瞬时频率和瞬时振幅,可以识别出一些瞬时故障。
振动故障诊断及其转子平衡

振动故障诊断及其转子平衡一、振动基础理论知识简介1、基本概念:▲振动:一个弹性体或弹性系统(几个弹性体连在一起)离开其平衡位置做周期性往复运动就叫振动。
其振动量有:极值(峰值),其中单峰值X m,峰-峰值X m-m,X m-=2X m平均值(X i)和均方根值(有效值-X S)。
m▲简谐振动:能用一项正弦或余弦函数表示其运动规律的周期性振动,现场发生的一些复杂振动均是几种不同频率的简谐振动的合成,因此一些资料或书籍均以简谐振动为主加以分析和研究。
X=A.cos(t+)▲通频振幅、基频振幅/基频相位:目前测量振动的仪表按功能来分有两种,一种只能测量振幅值,称为振动表;另一种除能测量幅值外,还能测量振动相位和不同频率下的振动分量,称作振动仪。
振幅有两个含义:1.振幅的表示方法;2.振幅中所含的频率成分。
描述振动的几个物理量:振动速度:X=A.sint振动位移:tsin(t+900)振动加速度:2tsin(t+1800)X、Y、Z:相同,A(最大位移),A,2A;Y比X矢量超前900;Z比X矢量超前1800。
表示振动强度,位移是最有效的;表示振动平均能量的振动速度是有效的;表示振动冲击强度,振动加速度是最有效的。
极值(幅值)、有效值、平均值的关系:36001Xi■Xm2,2◎极值(幅值):单峰值()1峰峰值—17平均值:()一1T x(t)dt■0.636AT0:1T均方根值(有效值):=亍・x2(t)dt■0.707A F o三者之间的关系:双振幅近似等于3倍的有效值或平均值。
轴承振动烈度是以振动速度的均方根值,我们现在一直沿用的是轴承振动位移峰峰值,国外和国内某些制造厂有用轴承烈度表示P-P振动,上述换算关系只是指单一频率的振动,如果是混频振动不能直接换算。
▲通频振幅:用普通振动表(不带滤波器)测得的振幅值是各种频率振动分量的叠加值,如果振幅是由几种不同频率的周期振动叠加而成,其叠加后的振动仍是周期振动,在各个周期内保持不变,仪表指示稳定,如果表记示值不稳定,说明由非周期成分存在。
物理实验技术中的频率响应与频谱分析方法

物理实验技术中的频率响应与频谱分析方法在物理实验中,我们常常需要研究材料或装置的频率响应,以了解其振动或信号传输的特性。
频率响应的研究可以帮助我们更好地理解物理系统的行为,并为实验设计和数据分析提供指导。
而频谱分析方法则是评估频率响应的重要工具之一。
频率响应是指一个系统或装置对输入信号在不同频率上的响应程度。
在物理实验中,这通常涉及到测量信号的振幅和相位随频率的变化。
例如,我们可能想了解一个材料对声波的传递特性,或者一个电子元件对电信号的传导情况。
频率响应可以帮助我们确定系统的共振频率,寻找系统的自然频率以及阻尼特性。
为了测量频率响应,我们通常需要使用一些仪器和技术来提供准确的信号发射和接收。
其中最常见的方法是使用函数发生器产生一个可变频率的信号,并通过一个传感器或探头测量输出信号的幅度和相位。
这样做可以得到一个频率响应曲线,显示出系统在不同频率上的响应。
频率响应曲线通常以图表的形式展示,横轴表示频率,纵轴表示幅度或相位。
曲线的形状可以给出有关系统特性的重要信息。
例如,当一个系统在某个频率上具有很高的响应时,我们可以说它处于共振状态。
而当幅度或相位随频率的变化不稳定或不连续时,我们可以怀疑系统存在失真或不稳定情况。
为了更详细地分析频率响应曲线,我们会使用频谱分析方法。
频谱分析是一种将时域信号转换为频域信号的技术,可以将信号分解成不同频率成分的能力。
这个技术在物理实验中广泛应用于研究波动现象、振动特性以及电信号的频率分布。
频谱分析方法涉及到信号的傅里叶变换,这是一种将信号从时域转换为频域的数学方法。
傅里叶变换可以将信号分解成一系列正弦和余弦函数的叠加,每个函数对应一个特定的频率。
通过傅里叶变换,我们可以看到信号中各个频率成分的幅度和相位信息。
在实际应用中,频谱分析常常使用快速傅里叶变换(FFT)算法来处理信号。
这种算法可以在较短的时间内计算出信号的频谱,使得频谱分析可以在实时或准实时的条件下进行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A frequency response function-based structuraldamage identification methodUsik Lee *,Jinho ShinDepartment of Mechanical Engineering,Inha University,253Yonghyun-Dong,Nam-Ku,Incheon 402-751,South KoreaReceived 9March 2001;accepted 9October 2001AbstractThis paper introduces an frequency response function (FRF)-based structural damage identification method (SDIM)for beam structures.The damages within a beam structure are characterized by introducing a damage distribution function.It is shown that damages may induce the coupling between vibration modes.The effects of the damage-induced coupling of vibration modes and the higher vibration modes omitted in the analysis on the accuracy of the predicted vibration characteristics of damaged beams are numerically investigated.In the present SDIM,two feasible strategies are introduced to setup a well-posed damage identification problem.The first strategy is to obtain as many equations as possible from measured FRFs by varying excitation frequency as well as response measurement point.The second strategy is to reduce the domain of problem,which can be realized by the use of reduced-domain method in-troduced in this study.The feasibility of the present SDIM is verified through some numerically simulated damage identification tests.Ó2002Elsevier Science Ltd.All rights reserved.Keywords:Structural damage;Damage identification;Beams;Frequency response function;Damage-induced modal coupling;Reduced-domain method1.IntroductionExistence of structural damages within a structure leads to the changes in dynamic characteristics of the structure such as the vibration responses,natural fre-quencies,mode shapes,and the modal dampings.Therefore,the changes in dynamic characteristics of a structure can be used in turn to detect,locate and quantify the structural damages generated within the structure.In the literature,there have been appeared a variety of structural damage identification methods (SDIM),and the extensive reviews on the subject can be found in Refs.[1–3].The finite element model (FEM)update techniques have been proposed in the literature [4–9].As a draw-back of FEM-update techniques,the requirement of reducing FEM degrees of freedom or extending the measured modal parameters may result in the loss of physical interpretability and the errors due to the stiff-ness diffusion that smears the damage-induced localized changes in stiffness matrix into the entire stiffness matrix.Thus,various experimental-data-based SDIM have been proposed in the literature as the alternatives to the FEM-update techniques.The experimental-data-based SDIM depends on the type of data used to detect,locate,and/or quantify structural damages.They include the changes in modal data [10–18],the strain energy [19,20],the transfer function parameters [21],the flexibility matrix [22,23],the residual forces [24,25],the wave characteristics [26],the mechanical impedances [27,28],and the frequency response functions (FRFs)[29–31].Most of existing modal-data-based SDIM have been derived from FEM model-based eigenvalue problems.As discussed by Banks et al.[32],the modal-data-based SDIM have some shortcomings.First,themodal*Corresponding author.Tel.:+82-32-860-7318;fax:+82-32-866-1434.E-mail address:ulee@inha.ac.kr (U.Lee).0045-7949/02/$-see front matter Ó2002Elsevier Science Ltd.All rights reserved.PII:S 0045-7949(01)00170-5data can be contaminated by measurement errors as well as modal extraction errors because they are indirectly measured test data.Second,the completeness of modal data cannot be met in most practical cases because they often require a large number of sensors.On the other hand,using measured FRFs may have certain advan-tages over using modal data.First,the FRFs are less contaminated because they are directly measured from structures.Second,the FRFs can provide much more information on damage in a desired frequency range than modal data are extracted from a very limited number of FRF data around resonance[30].Thus,the use of FRFs seems to be very promising for structural damage identification.How to minimize the experimental measurement errors,structure model errors,and the damage identifi-cation analysis errors has been an important issue in most structural damage identification researches.To develop or to choose a proper reliable SDIM,one needs to well understand the degree of damage effects on the dynamics of a structure as well as the aforementioned errors.Some researchers[13,16,32–37]have investigated the damage-induced changes in natural frequencies, mode shapes,and curvature mode shapes with varying the location and severity of a damage.However,very few attentions have been given to the effects of the damage-induced coupling of vibration modes(simply, damage-induced modal coupling)and the higher vibra-tion modes omitted in the analysis on the accuracy of predicted vibration characteristics of the damaged beam, from a damage identification viewpoint.The purposes of the present paper are:to develop an FRF-based SDIM,in which an efficient reduced-domain method of damage identification can be used,to inves-tigate the effects of the damage-induced modal coupling and the omitted higher vibration modes on the accuracy of predicted vibration characteristics of the damaged beam,andfinally to verify the feasibility of the present SDIM through some numerically simulated damage identification tests.2.Dynamics of damaged beams2.1.Dynamic equation of motion for damaged beamsThough the FRF-based SDIM developed in this paper can be readily extended to the higher order structures including Timoshenko beams and plate structures,the Bernoulli–Euler beam is considered in this paper as an example structure,for simplicity.The beam has the length L,the mass density per length q A, and the intact Young’s modulus E.For small amplitude vibrations,the dynamic equation of motion for the beams in an intact state is given by[38]o2o x2EIo2wo x2þq A€w¼fðx;tÞð1Þwhere wðx;tÞis theflexural deflection,fðx;tÞthe external force,and EI is the bending stiffness for the intact beam. In Eq.(1),dot(Á)indicates the partial derivative with respect to time t.For most practical vibration monitoring problems,it might be difficult to assign a definitive representation for the stiffness of damaged area because the location,sizes, and geometry of the damage are not known in prior. Thus,one of the simplest approaches is to represent the damage-induced change in stiffness at damage location by the degradation of elastic modulus as follows[16, 32,35]:E dðxÞ¼E1½ÀdðxÞ ð2Þwhere E d is the effective Young’s modulus in the dam-aged state,and dðxÞis the damage distribution function which may characterize the state of damage.The case dðxÞ¼0indicates the intact state,while dðxÞ¼1indi-cates the complete rupture of material due to damage.It seems to be reasonable to assume that the damage-in-duced changes in mass distribution are negligible be-cause the damage does not result in complete breakage with a loss of mass[13,17,18,35].Assume that the damages in a beam are uniform through the thickness of beam(i.e.,thickness-through damages).Then,the intact Young’s modulus E in Eq.(1)can be replaced with the effective Young’s modulusE d to derive the dynamic equation of motion for the beams in the damaged state as follows:o2o x2EIo2wo x2Ào2o x2EI Do2wo x2þq A€w¼fðx;tÞð3Þwhere EI D is the effective reduction of bending stiffness due to the presence of damages:EI DðxÞ¼ZAEdðxÞy2d Að4ÞThe second term in the left side of Eq.(3)should vanish for the intact state.In this study,it is assumed that there are no damages on the boundaries of beam. Thus,the boundary conditions applied to a beam in the intact state can be equally applied to the beam in the damaged state.2.2.Dynamic response of the intact beamThe dynamic equation of motion for uniform intact beams(i.e.,EI¼constant)is reduced from Eq.(1)as118U.Lee,J.Shin/Computers and Structures80(2002)117–132EI o4wo x4þq A€w¼fðx;tÞð5ÞForced vibration response can be obtained by su-perposing M normal modes aswðx;tÞ¼X MmW mðxÞq mðtÞð6Þwhere q mðtÞare the modal(or generalized)coordinates and W mðxÞare the normal modes satisfying the eigen-value problemEIW0000m Àq A X2mW m¼0ðm¼1;2;...;MÞð7Þand the orthogonality propertyZ Lq AW m W n d x¼d mnð8ÞZ L 0EIW00mW00nd x¼X2md mnð9Þwhere X m are the natural frequencies for the intact beam and d mn is the Kronecker symbol.Substituting Eq.(6)into Eq.(5)and then applying Eqs.(8)and(9)yields the modal equations as€q mþX2mq m¼f mðtÞðm¼1;2;...;MÞð10Þwhere f mðtÞare the modal(or generalized)forces defined byf mðtÞ¼Z Lfðx;tÞW m d xð11ÞAssume that a harmonic point force is applied at x¼x F asfðx;tÞ¼F0d xðÀx FÞe i x tð12Þwhere F0is the amplitude of the harmonic point force and x is the excitation(circular)frequency.Substituting Eq.(12)into Eq.(11)givesf mðtÞ¼W mðx FÞF0e i x tð13ÞSolving Eq.(10)for q m yieldsq mðtÞ¼W mðx FÞX2mÀx2F0e i x t Q m e i x tð14ÞThe vibration response of the intact beam can be readily obtained by substituting Eq.(14)into Eq.(6).2.3.Dynamic response of the damaged beamThe dynamic equation of motion for damaged uni-form beams can be reduced from Eq.(3)as EIo4wo x4Ào2o x2EI Do2wo x2þq A€w¼fðx;tÞð15ÞBy using the normal modes of the intact beam,the general solution of Eq.(15)can be assumed aswðx;tÞ¼X MmW mðxÞ q mðtÞð16ÞSubstituting Eq.(16)into Eq.(15)and then applying Eqs.(8)and(9)yields the modal equations for the damaged beam as follows:€ qmþX2mq mÀX Mnk mn q n¼f mðtÞðm¼1;2;...;MÞð17ÞThe third term in the left side of Eq.(17)reflects the influence of damage,which is characterized by the symmetric matrix k mn defined byk mn¼EIZ LdðxÞW00mW00nd x DIMð18ÞThe matrix k mn,which is called‘damage influence matrix (DIM)’herein,depends on the mode curvatures as well as the damage distribution function.Eq.(18)shows that the off-diagonal terms of DIM induce the coupling be-tween modal coordinates,which is called herein‘dam-age-induced modal coupling(DIMC)’.To the authors’knowledge,the DIMC has not been discussed in the existing literatures on SDIM.The natural frequencies of the damaged beam(X m) can be obtained fromdet X2mjÀX2md mnÀk mnk¼0ðno sumÞð19ÞFor the harmonic point force acting at x¼x F,the general solutions of Eq.(17)can be assumed asq mðtÞ¼q mðtÞþD q mðtÞð20Þwhere q mðtÞare the modal coordinates for the intact beam satisfying Eq.(10),and D q mðtÞare the damage-induced small perturbed solutions.Substituting Eq.(20) into Eq.(17)givesD€q mþX2mD q mÀX Mnk mn D q n¼X Mnk mn q nðm¼1;2;...;MÞð21ÞOn applying Eq.(14)into the right side of Eq.(21) and solving for D q mðtÞgivesD q mðtÞ¼X MnX MlX2mÀÂÀx2Ád mlÀk mlÃÀ1k mn Q n e i x tð22ÞThe third term in the left side of Eq.(21)is so small that it can be neglected.Then,Eq.(22)can be approximated in a simplified form asU.Lee,J.Shin/Computers and Structures80(2002)117–132119D q mðtÞ¼X Mnk mn Q nX2mÀx2e i x tð23ÞOn substituting Eqs.(14)and(23)into Eq.(20)and substituting the result into Eq.(16)may yield the forced vibration response of the damaged beam as follows:wðx;tÞ¼X Mm W mðxÞW mðx FÞXmÀx2"þX Mm X Mnk mnW mðxÞX2mÀx2W nðx FÞX2nÀx2#F e i x tWðxÞe i x tð24Þwhere M indicates the number of normal modes super-posed in the analysis.The structural damping can be taken into account in Eq.(24)by simply replacing the natural frequencies X m in Eq.(24)with X m(1þi g m)1=2, where g m is the m th modal loss factor.2.4.Damage influence matrixThe DIM depends on how the structural damage is distributed along the beam.Once the damage distribu-tion function dðxÞis given,the DIM can be readily computed from Eq.(18).As shown in Fig.1,consider a thickness-through damage of magnitude06D61, which is uniformly distributed over the small span2 x, with its midpoint at x¼x D.The‘piecewise uniform’thickness-through damage can be represented bydðxÞ¼D f H½xÀðx DÀ xÞ ÀH½xÀðx Dþ xÞ gð25Þwhere HðxÞis the Heviside’s unit function.Substituting Eq.(25)into Eq.(18)yields the DIM as follows:k mn¼EIZ x Dþ xx DÀ x W00mW00nd x!D k mn Dð26ÞIf there exist many damages,say N local damages,Eq.(26)can be further generalized as follows:k mn¼X Nj¼1EIZ x Djþ x jx DjÀ x jW00mW00nd x!D jX Nj¼1k jmnD jð27Þwhere N is the number of damage detection zones (DDZs),and D j,x Dj,and2 x j represent the magnitude, location,and size of the piecewise uniform damage over the j th DDZ,respectively.Here,the‘DDZs’indicate the finite beam segments that are suspected of damages. It can be observed from Eq.(27)that the damage-free zones in which D j¼0can be removed from the domain of integration without degrading the accuracy of DIM. This may drastically reduce the domain of problem or the number of DDZs for which damage identification analysis should be conducted.Based on this observa-tion,the reduced-domain method of damage identifica-tion is introduced in Section3.3.Development of damage identification methodIf the DIMC is negligible,Eq.(27)can be approxi-mated ask mnffiK m d mnð28ÞwhereK m¼X Nj¼1EIZ x Djþ x jx DjÀ x jW00m2d x!D jX Nj¼1kmjD jð29ÞApplying Eq.(28)into Eq.(19)may yield a set of linear algebraic equations for unknown D j as½ k mj f D j g¼X2mnÀX2moðm¼1;2;...;M and j¼1;2;...;NÞð30ÞOnce the modal data(i.e.,natural frequencies and mode shapes)for a beam in both intact and damaged states are provided by modal testing or theoretical vibration analysis,Eq.(30)can be solved for unknown D j to lo-cate and quantify many local damages at a time,which implies the structural damage identification.Thus,Eq.(30)can be used as a means of structural damage iden-tification.The SDIM derived from Eq.(30)is found to be the same as the modal-data-based SDIM introduced by Luo and Hanagud[16].However,as discussed in Section1,the modal-data-based SDIM may have some important limitations.Thus,this study aims to develop an FRF-based SDIM as an alternative to the modal-data-based SDIM derived Eq.(30).It might be relatively cheap and easy to use accel-erometers to measure vibration responses of a structure. The vibration signals measured by accelerometers can be readily processed to obtain FRFs.There are several different definitions of FRF[39].Though any ofthemcan be used to develop an FRF-based SDIM,the ‘in-ertance’FRF is adopted in this paper.The inertance FRF generated by the harmonic point force applied at a point x F can be measured at a point x as follows:A ðx ;x Þ¼€w ðx ;t Þf ðx F ;t Þ¼Àx 2W ðx ÞF 0ð31ÞSubstituting Eqs.(12)and (24)into Eq.(31)and applying Eq.(27)may yieldÀx 2X N j X M m X M n W m ðx ÞX 2m Àx 2k j mn W n ðx F ÞX 2nÀx 2D j ¼A ðx ;x Þþx2X M mW m ðx ÞW m ðx F ÞX m Àx2ð32ÞBecause Eq.(32)provides the relationship between un-known damage information (i.e.,damage location andmagnitude)and known vibration data,it can be used to develop an algorithm for structural damage identifica-tion.In Eq.(32),the mode shapes (W m )and natural frequencies (X m )of the intact beam are considered as known quantities because they are provided in advance by the modal testing or theoretical vibration analysis.The inertance FRF,A ðx ;x Þ,is also considered as known quantity because it is measured directly from the dam-aged beam.However,the damage magnitudes D j are the unknown quantities to be determined.In Eq.(32),the (response,FRF)measurement point x and the excitation frequency x can be chosen arbi-trary.For a specific set of x and x ,Eq.(32)may yield a linear algebraic equation for N unknown D j .Thus,choosing N different sets of excitation frequency and measurement point may yield N linear algebraic equa-tions for N unknown D j in the form of b X ij cf D j g ¼f Y i g ði ;j ¼1;2;...;N Þð33ÞwhereX ij ¼Àx 2qW m ðx p ÞX m Àx 2q()Tk j mnÂÃW n ðx F ÞX n Àx 2q()ð34ÞY i ¼A x p ;x q ÀÁþx 2qX m W m ðx p ÞW m ðx F ÞX m Àx 2qð35Þk jmn¼EIZx Dj þ x j x Dj À x jW 00m W 00n d xð36Þi ¼p þðq À1ÞPðp ¼1;2;...;P ;q ¼1;2;...;Q ;PQ P N Þð37Þwhere x p ðp ¼1;2;...;P Þdenote the measurement points and x q ðq ¼1;2;...;Q Þdenote the excitation frequencies.Solving Eq.(33)for N unknown D j simplyimplies the location and quantification of damages at atime.Thus,Eq.(33)provides a new algorithm for FRF-based SDIM.The present FRF-based SDIM requires the following data only:1.natural frequencies of intact beam,i.e.,X m ;2.modes shapes of intact beam,i.e.,W m ;3.FRF of damaged beam,i.e.,A ðx p ;x q Þ.The damage identification problem is a sort of in-verse problem.Thus,if the number of useful data (or equations)is not equal to the number of unknown quantities to be determined,a proper optimization solution technique is required.One of traditional approaches is to minimize a suitable norm of the dis-crepancy between measured and computed quantities,which is usually a quadratic form associated to the in-verse of the covariance matrix.The minimization pro-cedure may smear the damage over intact zones,which results in the incorrect damage identification.Thus,to avoid this sort of problem,how to setup a well-posed damage identification problem has been an important research issue in the subject of damage identification.To cope with this issue,two feasible strategies are intro-duced in the following.The first strategy is to obtain a sufficient number of equations from Eq.(32)by choosing as many sets of excitation frequency and (response)measurement point as needed.The use of FRFs may help realize this strategy.Because it is not always easy or practical to increase the number of measurement points over a cer-tain number,it seems to be much simple and easy first to fix the measurement points and then to vary the exci-tation frequency until a sufficient number of equations are derived.The second strategy is to reduce the (spatial)domain of problem.From Eqs.(33)and (36),one may find that the number of unknown quantities is equal to that ofDDZs and the matrix k jmn requires definite integrals only over the zones with damages.Thus,instead of examin-ing whole domain of problem to search out damages (i.e.,full-domain method),one can reduce the domain of problem in advance by removing the zones that are found out to be damage-free to examine only the reduced domain of problem (i.e.,reduced-domain method).The reduced-domain method will not degrade the accuracy of damage identification results at all.To realize the reduced-domain method,however one should know the locations and sizes of damage-free zones in advance.Unfortunately,this is impracticable for most cases.Thus,one needs a method to search out damage-free zones in the process of damage identification analysis.In this paper,a three-steps method is introduced and its feasibility is numerically verified in Section 4.The first step:Divide the domain of problem into N DDZs and use Eq.(33)to predict N unknown damagesU.Lee,J.Shin /Computers and Structures 80(2002)117–132121D j for N DDZs.Thefirst prediction results are repre-sented by D j(first step)ðj¼1;2;...;NÞ.The second step:Divide each DDZ at thefirst step into M sub-DDZs to have total(MÂN)sub-DDZs and use Eq.(33)to re-predict(MÂN)unknown damages for (MÂN)sub-DDZs.The second prediction results arerepresented by D ij (second step)(i¼1;2;...;M andj¼1;2;...;N).The third step:If D ij ðsecond stepÞ<D jðfirst stepÞ,conclude that the i th sub-DDZ within the j th DDZ is damage-free.Otherwise,the sub-DDZ is suspected of damage.Once damage-free zones are searched out and re-moved from the domain of problem by using the present three-steps method,it is possible to put D¼0for all removed damage-free zones and to conduct damage identification only for the reduced domain,which is the reduced-domain method of damage identification in-troduced in the present study.By iteratively using the reduced-domain method,all damage-free zones can be removed from the original domain of problem to leave damaged zones only,which simply implies the location of damages.The damage magnitudes are quantified from Eq.(33)every iteration.In summary,an FRF-based SDIM is introduced based on the damage identification algorithm of Eq.(33).In the present SDIM,the reduced-domain method can be iteratively used to reduce the domain of problem. The present SDIM can locate and quantify many local damages at a time by using the FRFs experimentally measured from the damaged beam.The appealing fea-tures of the present SDIM may include the followings: (1)the modal data of damaged beam are not required in the analysis;(2)as many equations as required to setup a well-posed damage identification problem can be gen-erated from the measured FRFs by varying the excita-tion frequency as well as the measurement point;(3)the reduced-domain method based on the three-steps pro-cess of domain reduction can be iteratively used to effi-ciently reduce the domain of problem andfinally to identify many local damages just within a few iterations.4.Vibration characteristics of damaged beamsMany researchers[13,16,32–37]have investigated the damage-induced changes in natural frequencies,mode shapes,and curvature mode shapes varying the location and severity of damage.However,there have been very few investigations,from a damage identification view-point,on the effects of the DIMC as well as the higher vibration modes omitted in the analysis(simply the omitted higher modes)on the accuracy of predicted vi-bration characteristics of the damaged beam.Thus,in this section,some numerical investigations are given to the DIMC and the omitted higher modes.As a repre-sentative problem,a uniform beam of length L¼1:2m is considered herein.The beam has the intact bending stiffness EI¼11:2N m2and the mass density per length q A¼0:324kg/m.4.1.Effects of damage-induced model couplingThe DIM for the cantilevered beam with a piecewise uniform damage at the midpoint of beam,i.e.,x D¼0:6 m,is shown in Table1.Similarly,the DIM for the cantilevered beam with three identical piecewise uniform damages at x D¼0:3,0.6,and0.9m is given in Table2. The piecewise uniform damages considered for Tables1 Table1Damage influence matrixðk mn=k refÞfor the cantilevered beam with one piecewise uniform damage:D¼0:5;x D¼0:6m;2 x¼0:133m;k ref¼3:87Table2Damage influence matrixðk mn=k refÞfor the cantilevered beam with three piecewise uniform damages:D1¼D2¼D3¼0:5; x D1¼0:3m,x D2¼0:6m,x D3¼0:9m;2 x1¼2 x2¼2 x3¼0:133 m;k ref¼3:87122U.Lee,J.Shin/Computers and Structures80(2002)117–132and2have the same magnitude D¼0:5and the samesize2 x¼0:133m.Tables1and2show that,as a general rule,the di-agonal terms of DIM(i.e.,the direct effects of damage)increase in magnitude as the mode number increases.However,they decrease momentary at certain vibrationmodes if a node of the modes is located in damagedzones.For instance,k33and k55in Table1are smallerthan k22and k44,respectively,because a node of the thirdandfifth modes is located in the damaged zone.Eq.(27)shows that,in general,DIM becomes larger as thedamage magnitudes increase.The off-diagonal terms ofDIM(i.e.,the indirect effects of damage or the DIMC)are relatively smaller than the diagonal terms.The off-diagonal terms vanish completely when the damage isuniformly distributed over the whole beam,regardless ofits magnitude,which can be readily proved from Eq.(27)by using the orthogonality property for normalmodes.Fig.2shows the effects of DIMC on the damage-induced changes in natural frequencies of the cantile-vered beam depending on the magnitude of a piecewiseuniform damage.Fig.3is for the simply supportedbeam.Neglecting the DIMC tends to underestimatethe damage-induced changes in natural frequencies.Ingeneral,the effects of DIMC on the changes in naturalfrequencies are found to be negligible,especially whenthe damage is very weak.However,it will be desirable toinclude the DIMC in the damage identification analysisbecause damages are not known in prior for mostpractical cases.From Figs.2and3,one may observe the followings.First,in general,the percent changes in natural fre-quencies at the lower modes are larger than those at thehigher modes,and vice versa for the absolute changes innatural frequencies.Second,the percent changes innatural frequencies highly depend on mode number anddamage location.If damages are located at or very nearthe nodes of a mode,the percent change in the naturalfrequency of the corresponding mode is very small.Forinstance,the percent changes in natural frequencies arevery small for the odd(e.g.,third andfifth)modes ofcantilevered beam and for the even(e.g.,second and fourth)modes of simply supported beam.Very similar results have been experimentally observed by Capecchi and Vestroni[40].Third,the percent changes in natural frequencies converge to a certain steady state value as the mode number increases.For instance,about1% when D¼0:5and about0.1%when D¼0:05for the cantilevered beam.Similarly,about0.5%when D¼0:5 and about0.05%when D¼0:05for the simply sup-ported beam.Fig.4compares the inertance FRFs of damaged beam,calculated with and without including the DIMC, with that of intact beam.In general,the effects of DIMC on the changes in inertance FRFs are found to be neg-ligible.One notes that the third andfifth resonance peaks are not appeared in Fig.4because the FRFmeasurement point(x¼0:6)coincides with a node of the third andfifth modes.4.2.Effects of the omitted higher modesA sufficiently large number of normal modes and natural frequencies of the intact beam are required for accurate damage identification.However,in practice, only a limited number of the lower normal modes and natural frequencies can be provided by modal testing or theoretical modal analysis.Thus,the errors due to the omission of the higher normal modes are inevitable.Fig.5shows the ratios between the omitted higher modes-induced errors in natural frequencies and the damage-induced changes in natural frequencies for the cantilevered beam with a piecewise uniform damage. Similarly,Fig.6shows the results for the simply sup-ported beam.The omitted higher modes-induced error in natural frequency,denoted by D X(omitted modes)in Figs.5and6,is defined by the difference between the exact and approximate natural frequencies of the dam-aged beam.The approximate natural frequencies are calculated by using afinite number of normal modes.On the other hand,the damage-induced change in natural frequency,denoted by D X(damage)in Figs.5and6,is defined by the difference between the exact natural fre-quency of the intact beam and that of the damaged beam.The important thing here is that the omitted higher modes-induced errors should be much smaller than the damage-induced changes for very reliable damage identification.From Figs.5and6,one may observe the followings.First,if damages are located at or very near the nodes of a normal mode,the omitted higher modes-induced errors become very significant for the natural frequency corresponding to the normal mode.For example,the damage considered herein is located at a node of the third andfifth modes of the cantilevered beam.Thus, when totalfive normal modes are used to calculate natural frequencies,for instance,the omittedhigher。