人教版数学九年级上册第22章二次函数复习测试试题
人教版九年级上册数学第22章复习题含答案

22.1 二次函数复习题(一)、学习反馈一、选择题: 1.在圆的面积公式 S =πr 2 中,s 与 r 的关系是( )A 、一次函数关系B 、正比例函数关系C 、反比例函数关系D 、二次函数关系2.已知函数 y =(m +2)22mx 是二次函数,则 m 等于( )A 、±2B 、2C 、-2D 、±3.已知 y =ax 2+bx + c 的图像如图所示,则 a 、b 、c 满足( )A 、a <0,b <0,c <0B 、a >0,b <0,c >0C 、a <0,b >0,c >0D 、a <0,b <0,c >04.苹果熟了,从树上落下所经过的路程 s 与下落时间 t 满足S =gt 2(g =9.8),则 s 与 t 的函数图像大致是( )A B C D 5.抛物线 y =-x 2 不具有的性质是( ) A 、开口向下B 、对称轴是 y 轴C 、与 y 轴不相交D 、最高点是原点6.抛物线 y =x 2-4x +c 的顶点在 x 轴,则 c 的值是( ) A 、0 B 、4C 、-4D 、2二、填空题:1.抛物线 y =-x 2+1 的开口向_________。
2.抛物线 y =2x 2 的对称轴是_________。
3.函数 y =2 (x -1)2 图象的顶点坐标为_________。
4.将抛物线 y =2x 2 向下平移 2 个单位,所得的抛物线的解析式 为__________________。
5.函数 y =x 2+bx +3 的图象经过点(-1, 0),则 b =_________。
6.二次函数 y =(x -1)2+2,当 x =_________时,y 有最小值。
212stOstOstOstOxyO三题图7.函数 y =(x -1)2+3,当 x_________时,函数值 y 随 x 的增大而增大。
8.将 y =x 2-2x +3 化成 y =a (x -h)2+k 的形式,则 y =_________。
人教版数学九年级上册第二十二章 二次函数达标测试卷(含答案)

二次函数自我评估(本试卷满分120分)一、选择题(本大题共10小题,每小题3分,共30分) 1. 下列函数中,属于二次函数的是( ) A. y =2x +lB. y =(x ﹣l )2﹣x 2C. y =5x 2D. y =22x 2. 在平面直角坐标系中,将二次函数y =x 2的图象先向右平移3个单位长度,再向上平移1个单位长度,所得新抛物线的解析式为( ) A. y =(x +3)2+1B. y =(x ﹣3)2﹣1C. y =(x +3)2﹣1D. y =(x ﹣3)2+13. 某抛物线的形状、开口方向与y =12x 2﹣4x +3相同,顶点坐标为(﹣2,1),则该抛物线的解析式为( ) A .y =12(x ﹣2)2+1 B .y =12(x +2)2﹣1C .y =12(x +2)2+1D .y =-12(x +2)2+14. 二次函数y =ax 2+bx +c 的部分图象如图所示,可知关于x 的方程ax 2+bx +c =0的所有根的积为( ) A .﹣4 B .4 C .﹣5 D .5第4题图 第8题图 第9题图 第10题图 5. 关于二次函数y =3(x +1)2﹣7的图象及性质,下列说法正确的是( ) A. 对称轴是x =1 B. 当x =﹣1时,y 取得最小值,且最小值为﹣7 C. 顶点坐标为(﹣1,7) D. 当x <﹣1时,y 随x 的增大而增大6. 某种商品每件的进价为30元,在某时间段内若以每件x 元出售,可卖出(100﹣x )件.若想获得最大利润,则售价x 应定为( )A .35元B .45元C .55元D .65元7. 一次函数y =bx +a (b ≠0)与二次函数y =ax 2+bx +c (a ≠0)在同一平面直角坐标系中的图象可能是( )A B C D8. 板球是以击球、投球和接球为主的运动,该项目主要锻炼手眼的协调能力,集上肢动作控制能力、技巧与力量为一体的综合性运动.如图是运动员击球过程中板球运动的轨迹示意图,板球在点A 处击出,落地前的点B 处被对方接住,已知板球经过的路线是抛物线,其解析式为y =132x 2+14x +1,则板球运行中离地面的最大高度为( )A. 1B.32C.83D. 49. 如图,在△ABC 中,∠B =90°,AB =4 cm ,BC =8 cm ,动点P 从点A 出发,沿边AB 向点B 以1 cm/s 的速度移动(不与点B 重合),同时动点Q 从点B 出发,沿边BC 向点C 以2 cm/s 的速度移动(不与点C 重合).当四边形APQC 的面积最小时,经过的时间为( ) A. 1 s B. 2 s C. 3 s D. 4 s 10. 已知抛物线y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)的顶点坐标是(﹣1,m ),与x 轴的一个交点在点(﹣3,0)和(﹣2,0)之间,其部分图象如图所示,有下列结论:①abc >0;②关于x 的方程ax 2+bx +c ﹣m =2没有实数根;③3a +c >0.其中正确的个数是( ) A .3 B .2 C .1 D .0二、填空题(本大题共6小题,每小题4分,共24分) 11. 抛物线y =x 2+2x +c 的对称轴是 . 12. 当a = 时,函数y =(a ﹣1)21a x+x ﹣3是二次函数.13. 若二次函数y =x 2﹣4x +n 的图象与x 轴只有一个公共点,则实数n = .14. 点P 1(1,y 1),P 2(3,y 2),P 3(5,y 3)均在二次函数y =﹣x 2+2x +c 的图象上,则y 1,y 2,y 3的大小关系是 .15. 如图,将抛物线y 1=(x +1)2﹣3向右平移2个单位长度得到抛物线y 2,则阴影部分的面积为 .第15题图 第16题图16. 圆形喷水池中心O 处有一雕塑OA ,从点A 向四周喷水,喷出的水柱为抛物线,且形状相同.如图,以水平方向为x 轴,O 为原点建立平面直角坐标系,点A 在y 轴上,x 轴上的C ,D 为水柱的落水点.已知雕塑OA 的高为116米,水柱最高点与OA 的水平距离为5米,落水点C ,D 之间的距离为22米,则喷出水柱的最大高度为 米.三、解答题(本大题共8小题,共66分)17.(6分)已知二次函数y =x 2﹣4x +c 的图象经过点(3,0). (1)求该二次函数的解析式;(2)点P (4,n )向上平移2个单位长度得到点P ',若点P ′落在该二次函数的图象上,求n 的值. 18.(6分)已知二次函数y =x 2-4mx +3m 2(m ≠0).(1)求证:该二次函数的图象与x 轴总有两个公共点; (2)若m>0,且两交点间的距离为2,求m 的值.19.(8分)购进一款防护PM 2.5的口罩,每件成本是5元,为了合理定价,投放市场试销,经调查可知,销售单价是10元时,每天的销量是50件,而销售单价每降低0.1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y (元)与销售单价x (元)之间的函数解析式; (2)求出销售单价定为多少元时,每天的利润最大,并求出最大利润. 20.(8分)如图,抛物线y =2x 2+bx ﹣2过点A (﹣1,m )和B (5,m ). (1)求b 和m 的值;(2)若抛物线与y 轴交于点C ,求△ABC 的面积.第20题图 第21题图 21.(8分)如图,已知抛物线L 1:y 1=34x 2,将抛物线平移后经过点A (﹣1,0),B (4,0)得到抛物线L 2,与y轴交于点C.(1)求抛物线L2的解析式;(2)已知P为抛物线L2上的动点,过点P作PD⊥x轴,与抛物线L1交于点D,是否存在PD=2OC,若存在,求点P的坐标;若不存在,请说明理由.22.(8分)已知抛物线y=﹣x2+bx+c的顶点坐标为(2,7).(1)求b,c的值;(2)已知点A,B落在抛物线上,点A在第二象限,点B在第一象限.若点B的纵坐标比点A的纵坐标大3,设点B的横坐标为m,求m的取值范围.23.(10分)图①是一座抛物线形拱桥侧面示意图,水面宽AB与桥长CD均为24 m,在到点D的距离为6米的E处,测得桥面到桥拱的距离EF为1.5 m.以桥拱顶点O为原点,桥面为x轴建立平面直角坐标系.(1)求桥拱顶部O离水面的距离;(2)如图②,桥面上方有3根高度均为4 m的支柱CG,OH,DI,过相邻两根支柱顶端的钢缆呈形状相同的抛物线,其最低点到桥面距离为1 m.①求出其中一条钢缆抛物线的解析式;②为庆祝节日,在钢缆和桥拱之间竖直装饰若干条彩带,求彩带长度的最小值.①②①②第23题图第24题图24.(12分)如图,已知抛物线与x轴交于A(﹣1,0),B两点,顶点为C(1,﹣1),E为对称轴上一点,D,F为抛物线上的点(点D位于对称轴左侧),且四边形CDEF为正方形.(1)求该抛物线的解析式;(2)如图①,求正方形CDEF的面积;(3)如图②,连接DF,与CE交于点M,与y轴交于点N.若P为抛物线上一点,Q为直线BN上一点,且P,Q两点均位于直线DF下方,当△MPQ是以点M为直角顶点的等腰直角三角形时,求点P的坐标.题报第②期 二次函数自我评估参考答案答案详解三、17. 解:(1)将(3,0)代入y =x 2﹣4x +c ,得9﹣12+c =0,解得c =3. 所以该二次函数的解析式为y =x 2﹣4x +3.(2)点P (4,n )向上平移2个单位长度得到点P '(4,n +2). 将P ′(4,n +2)代入y =x 2﹣4x +3,得16﹣16+3= n +2,解得n =1.18.(1)证明:令y =0,则x 2-4mx +3m 2=0(m ≠0).因为Δ=(-4m )2﹣4×3m 2=4m 2>0,所以方程x 2-4mx +3m 2=0(m≠0)有两个不等的实数根.所以无论m 取何值,该函数的图象与x 轴总有两个公共点. (2)解:解方程x 2-4mx +3m 2=0,得x 1=m ,x 2=3m .所以函数y =x 2-4mx +3m 2的图象与x 轴两个交点的坐标为(m ,0),(3m ,0).因为m >0,两交点间距离为2,所以3m-m =2,解得m =1. 19. 解:(1)根据题意,得y =(x ﹣5)105050.1x -⎛⎫+⨯⎪⎝⎭=﹣50x 2+800x ﹣2750(5≤x ≤10).所以每天的销售利润y (元)与销售单价x (元)之间的函数解析式是y =﹣50x 2+800x ﹣2750(5≤x ≤10). (2)由(1),知y =﹣50x 2+800x ﹣2750=﹣50(x ﹣8)2+450.因为﹣50<0,5≤x ≤10,所以当x =8时,y 有最大值,最大值为450. 所以销售单价定为8元时,每天的利润最大,最大利润是450元.20. 解:(1)因为A (﹣1,m ),B (5,m )是抛物线y =2x 2+bx ﹣2上的两点,所以对称轴为x=15222b -+-=⨯,得b =﹣8.所以抛物线的解析式为y =2x 2﹣8x ﹣2.将A (﹣1,m )代入y =2x 2﹣8x ﹣2,得m =2+8﹣2=8.(2)令x=0,得y =﹣2,所以点C 的坐标为(0,﹣2).所以OC =2. 因为A (﹣1,8),B (5,8),所以AB =6.所以S △ABC =12×6×(2+8)=30. 21. 解:(1)设抛物线L 2的解析式为y=34x 2+bx+c. 将A (﹣1,0),B (4,0)代入,得3041240b c b c ⎧-+=⎪⎨⎪++=⎩,,解得943.b c ⎧=-⎪⎨⎪=-⎩,所以抛物线L 2的解析式为y=34x 294-x-3.(2)存在PD =2OC . 理由:设P 239344a a a ⎛⎫-- ⎪⎝⎭,,D 234a a ⎛⎫⎪⎝⎭,,所以PD=223933444a a a ---=934a +,OC=3.由934a +=2OC=6,解得a=43或a=-4.所以点P 的坐标为41433⎛⎫ ⎪⎝⎭,-或(﹣4,18). 22. 解:(1)因为抛物线y =﹣x 2+bx +c 的顶点坐标为(2,7),所以对称轴为x=()21b-⨯-=2,解得b =4.所以y =﹣x 2+4x +c.将(2,7)代入y =﹣x 2+4x +c ,得﹣4+8+c =7,解得c =3.所以b 的值是4,c 的值是3. (2)因为y =﹣x 2+4x +3的顶点坐标为(2,7),所以抛物线开口向下,对称轴为x =2.令x =0,得y =3,所以抛物线与y 轴的交点坐标为(0,3).所以点(0,3)关于对称轴的对称点为(4,3). 因为点A ,B 落在抛物线上,点A 在第二象限,点B 在第一象限,点B 的纵坐标比点A 的纵坐标大3,所以将y =6代入y =﹣x 2+4x +3,得﹣x 2+4x +3=6,解得x =1或x =3.所以m 的取值范围是0<m <1或3<m <4.第22题图(共享2021-2022学年第二学期答案页第8期大报第20期“专项五”3题答案) 23. 解:(1)由题意,得F (6,-1.5). 设抛物线的解析式为y 1=a 1x 2.将F (6,-1.5)代入,得62·a 1=-1.5,解得a 1=124-. 所以抛物线的解析式为y 1=124-x 2.当12x =时,y 1=-6,所以桥拱顶部离水面的距离为6 m . (2)①由题意,得右侧抛物线的顶点为(6,1).设右侧抛物线的解析式为y 2=a 2(x-6)2+1.将H (0,4)代入,得a 2(0-6)2+1=4,解得a 2=112. 所以右侧抛物线的解析式为y 2=112(x-6)2+1. ②设彩带的长度为h m ,则h =y 2-y 1=112(x-6)2+1-2124x ⎛⎫-⎪⎝⎭=18x 2–x+4=18(x–4)2+2. 因为18>0,所以h 有最小值.当x=4时,h 取得最小值,为2.所以彩带长度的最小值是2 m .24. 解:(1)设抛物线的解析式为y =a (x ﹣1)2﹣1.将A (﹣1,0)代入,得a =14,所以y =14x 2-12x -34.(2)如图①,过点F 作FR ⊥EC 于点R . 设F 2113424t t t ⎛⎫-- ⎪⎝⎭,,则R 2113424t t ⎛⎫-- ⎪⎝⎭1,,所以RC =2111424t t -+,RF =t ﹣1. 因为四边形CDEF 是正方形,所以RF =RC .所以2111424t t -+=t ﹣1.所以t =1(舍去)或t =5.所以F (5,3).所以RF =4.所以CF 2=32.所以正方形CDEF 的面积是32. (3)令y=0,则14x 2-12x -34=0,解得x=-1或x=3.所以B (3,0). 由(2)可得N (0,3),M (1,3),所以直线BN 的解析式为y =﹣x +3.设Q (m ,3﹣m ),如图②,过点Q 作QG ⊥DF 于点G ,作PT ⊥DF 于点T .因为△MPQ 是以M 为直角顶点的等腰直角三角形,所以MP =QM ,∠TMP +∠GMQ =90°,∠TMP +∠TPM =90°.所以∠TPM =∠GMQ .所以△MTP ≌△QGM .所以PT =MG ,MT =QG .所以PT =MG =m ﹣1,MT =QG =m.所以P (1﹣m ,4﹣m ).因为点P 在抛物线上,所以4﹣m =14(1﹣m )2-12(1﹣m )-34,解得m =﹣2±因为m >0,所以m =﹣2+所以P (3--.所以当△MPQ 是以M 为直角顶点的等腰直角三角形时,点P 的坐标为(3--.① ② 第24题图。
人教版九年级数学上册第二十二章 二次函数 章节测试题

第二十二章二次函数章节测试题一.选择题1.已知点(﹣1,2)在二次函数y=ax2的图象上,那么a的值是()A.1 B.﹣1 C.2 D.﹣22.关于抛物线y=﹣x2+2x﹣3的判断,下列说法正确的是()A.抛物线的开口方向向上B.抛物线的对称轴是直线x=﹣1C.抛物线对称轴左侧部分是下降的D.抛物线顶点到x轴的距离是23.已知点A(﹣2,a),B(2,b),C(4,c)是抛物线y=x2﹣4x上的三点,则a,b,c 的大小关系为()A.b>c>a B.b>a>c C.c>a>b D.a>c>b4.若点A(﹣2,m),B(3,n)都在二次函数y=ax2﹣2ax+5(a为常数,且a>0)的图象上,则m和n的大小关系是()A.m>n B.m=nC.m<n D.以上答案都不对5.圆环的内圆半径是x,外圆半径是R,圆环的面积是y,则y与x之间的函数关系式是()A.y=π(R2﹣x2)B.y=π(R﹣x)2C.y=πR2﹣x2D.y=π(2πR﹣2πx)26.二次函数y=ax2+bx+c的部分图象如图所示,有以下结论:①3a﹣b=0;②b2﹣4ac>0;③5a﹣2b+c>0;④4b+3c>0.其中正确结论的个数是()A.1 B.2 C.3 D.47.二次函数y =ax 2﹣8ax (a 为常数)的图象不经过第三象限,在自变量x 的值满足2≤x ≤3时,其对应的函数值y 的最大值为﹣3,则a 的值是( ) A .B .﹣C .2D .﹣28.如图是二次函数y =ax 2+bx +c (a ≠0)图象的一部分,对称轴为x =,且经过点(2,0).下列说法:①abc <0;②﹣2b +c =0;③4a +2b +c <0;④若(﹣,y 1),(,y 2)是抛物线上的两点,则y 1<y 2;⑤b >m (am +b )(其中m ≠). 其中说法正确的是( )A .①②④⑤B .①②④C .①④⑤D .③④⑤9.A (﹣,y 1),B (1,y 2),C (4,y 3)三点都在二次函数y =﹣(x ﹣2)2+k 的图象上,则y 1,y 2,y 3的大小关系为( ) A .y 1<y 2<y 3 B .y 1<y 3<y 2C .y 3<y 1<y 2D .y 3<y 2<y 110.抛物线向左平移1个单位,再向下平移1个单位后的抛物线解析式是( )A .B .C .D .11.对于二次函数y =2(x ﹣1)2﹣8,下列说法正确的是( ) A .图象开口向下B .当x >1时,y 随x 的增大而减小C .当x <1时,y 随x 的增大而减小D .图象的对称轴是直线x =﹣112.已知二次函数y =x 2﹣2ax +a 2﹣2a ﹣4(a 为常数)的图象与x 轴有交点,且当x >3时,y 随x 的增大而增大,则a 的取值范围是( )A .a ≥﹣2B .a <3C .﹣2≤a <3D .﹣2≤a ≤3二.填空题13.请写出一个函数表达式,使其图象的对称轴为y轴:.14.抛物线y=x2+bx+c的对称轴为直线x=1,且经过点(﹣1,0).若关于x的一元二次方程x2+bx+c﹣t=0(t为实数)在﹣1<x<4的范围内有实数根,则t的取值范围是.15.已知A(﹣1,6),B(4,1),抛物线y=x2+b与线段AB只有唯一公共点时,则b的取值范围是.16.若关于x的函数y=(a﹣3)x2﹣(4a﹣1)x+4a的图象与坐标轴只有两个交点,则a 的值为.17.已知实数a,b,c满足a≠0,且a﹣b+c=0,9a+3b+c=0,则抛物线y=ax2+bx+c图象上的一点(﹣2,4)关于抛物线对称轴对称的点为.三.解答题18.已知一个二次函数有最大值4.且x>5时,y随x的增大而减小,当x<5时,y随x 的增大而增大,且该函数图象经过点(2,1),求该函数的解析式.19.如图,在平面直角坐标系中,抛物线y=ax2﹣3x+c交x轴于点A、点B,交y轴于点C,直线BC的解析式为y=x﹣4.(1)求抛物线的解析式;(2)点E为x轴下方抛物线上一点,连接BE、CE,设点E的横坐标为t,△BEC的面积为S,求S与t之间的函数关系式,并写出自变量t的取值范围.(3)在(2)的条件下,当点E在第四象限抛物线上时,且△BEC的面积为6,在抛物线上取一点Q,连接BQ,若∠EBQ=45°,求点Q的坐标.20.金松科技生态农业养殖有限公司种植和销售一种绿色羊肚菌,已知该羊肚菌的成本是12元/千克,规定销售价格不低于成本,又不高于成本的两倍.经过市场调查发现,某天该羊肚菌的销售量y(千克)与销售价格x(元/千克)的函数关系如下图所示:(1)求y与x之间的函数解析式;(2)求这一天销售羊肚菌获得的利润W的最大值;(3)若该公司按每销售一千克提取1元用于捐资助学,且保证每天的销售利润不低于3600元,问该羊肚菌销售价格该如何确定.21.有一块矩形地块ABCD,AB=20米,BC=30米.为美观,拟种植不同的花卉,如图所示,将矩形ABCD分割成四个等腰梯形及一个矩形,其中梯形的高相等,均为x米.现决定在等腰梯形AEHD和BCGF中种植甲种花卉;在等腰梯形ABFE和CDHG中种植乙种花卉;在矩形EFGH中种植丙种花卉.甲、乙、丙三种花卉的种植成本分别为20元/米2、60元/米2、40元/米2,设三种花卉的种植总成本为y元.(1)当x=5时,求种植总成本y;(2)求种植总成本y与x的函数表达式,并写出自变量x的取值范围;(3)若甲、乙两种花卉的种植面积之差不超过120平方米,求三种花卉的最低种植总成本.22.如图,在平面直角坐标系中,已知二次函数y=﹣(x﹣m)2+4图象的顶点为A,与y 轴交于点B,异于顶点A的点C(1,n)在该函数图象上.(1)当m=5时,求n的值.(2)当n=2时,若点A在第一象限内,结合图象,求当y≥2时,自变量x的取值范围.(3)作直线AC与y轴相交于点D.当点B在x轴上方,且在线段OD上时,求m的取值范围.23.如图,在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C.已知A(﹣3,0),该抛物线的对称轴为直线x=﹣.(1)求该抛物线的函数表达式;(2)求点B、C的坐标;(3)假设将线段BC平移,使得平移后线段的一个端点在这条抛物线上,另一个端点在x 轴上,若将点B、C平移后的对应点分别记为点D、E,求以B、C、D、E为顶点的四边形面积的最大值.参考答案一.选择题1.解:∵点(﹣1,2)在二次函数y=ax2的图象上,∴2=a×(﹣1)2,解得a=2,故选:C.2.解:∵y=﹣x2+2x﹣3=﹣(x﹣1)2﹣2,∴抛物线开口向下,对称轴为x=1,顶点坐标为(1,﹣2),在对称轴左侧,y随x的增大而增大,∴A、B、C不正确;∵抛物线顶点到x轴的距离是|﹣2|=2,∴D正确,故选:D.3.解:∵抛物线y=x2﹣4x=(x﹣2)2﹣4,∴该抛物线的对称轴是直线x=2,当x>2时,y随x的增大而增大,当x<2时,y随x 的增大而减小,∵点A(﹣2,a),B(2,b),C(4,c)是抛物线y=x2﹣4x的三点,∵2﹣(﹣2)=4,2﹣2=0,4﹣2=2,∴a>c>b,故选:D.4.解:二次函数y=ax2﹣2ax+5(a为常数,且a>0)可知,抛物线开口向上,抛物线的对称轴为直线x=1,∵1+2>3﹣1∴m>n.故选:A.5.解:外圆的面积为πR2,内圆的面积为πx2,故y=πR2﹣πx2=π(R2﹣x2),故选:A.6.解:由图象可知a<0,c>0,对称轴为x=﹣,∴x=﹣=﹣,∴b=3a,①正确;∵函数图象与x轴有两个不同的交点,∴△=b2﹣4ac>0,②正确;当x=﹣1时,a﹣b+c>0,当x=﹣3时,9a﹣3b+c>0,∴10a﹣4b+2c>0,∴5a﹣2b+c>0,③正确;由对称性可知x=1时对应的y值与x=﹣4时对应的y值相等,∴当x=1时,a+b+c<0,∵b=3a,∴4b+3c=3b+b+3c=3b+3a+3c=3(a+b+c)<0,∴4b+3c<0,④错误;故选:C.7.解:∵二次函数y=ax2﹣8ax=a(x﹣4)2﹣16a,∴该函数的对称轴是直线x=4,又∵二次函数y=ax2﹣8ax(a为常数)的图象不经过第三象限,∴a>0,∵在自变量x的值满足2≤x≤3时,其对应的函数值y的最大值为﹣3,∴当x=2时,a×22﹣8a×2=﹣3,解得,a=,故选:A.8.解:①∵抛物线开口向下,∴a<0,∵抛物线对称轴为x=﹣=,∴b=﹣a>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①正确;②∵对称轴为x =,且经过点(2,0), ∴抛物线与x 轴的另一个交点为(﹣1,0), ∴=﹣1×2=﹣2, ∴c =﹣2a , ∴﹣2b +c =2a ﹣2a =0 所以②正确;③∵抛物线经过(2,0), ∴当x =2时,y =0, ∴4a +2b +c =0, 所以③错误;④∵点(﹣,y 1)离对称轴要比点(,y 2)离对称轴远, ∴y 1<y 2, 所以④正确;⑤∵抛物线的对称轴x =, ∴当x =时,y 有最大值,∴a +b +c >am 2+bm +c (其中m ≠). ∵a =﹣b ,∴b >m (am +b )(其中m ≠), 所以⑤正确.所以其中说法正确的是①②④⑤. 故选:A .9.解:二次函数y =﹣(x ﹣2)2+k 的图象开口向下,对称轴为x =2,点A (﹣,y 1),B (1,y 2)在对称轴的左侧,由y 随x 的增大而增大,有y 1<y 2,由x =﹣,x =1,x =4离对称轴x =2的远近可得,y 1<y 3,y 3<y 2,因此有y 1<y 3<y 2, 故选:B .10.解:由“左加右减、上加下减”的原则可知,把抛物线向左平移1个单位,再向下平移1个单位,则平移后的抛物线的表达式为y=﹣(x+1)2﹣1.故选:B.11.解:A、y=2(x﹣1)2﹣8,∵a=2>0,∴图象的开口向上,故本选项错误;B、当x>1时,y随x的增大而增大;故本选项错误;C、当x<1时,y随x的增大而减小,故本选项正确;D、图象的对称轴是直线x=1,故本选项错误.故选:C.12.解:∵二次函数y=x2﹣2ax+a2﹣2a﹣4(a为常数)的图象与x轴有交点,∴△=(﹣2a)2﹣4×1×(a2﹣2a﹣4)≥0解得:a≥﹣2;∵抛物线的对称轴为直线x=﹣=a,抛物线开口向上,且当x>3时,y随x的增大而增大,∴a≤3,∴实数a的取值范围是﹣2≤a≤3.故选:D.二.填空题(共5小题)13.解:∵图象的对称轴是y轴,∴函数表达式y=x2(答案不唯一),故答案为:y=x2(答案不唯一).14.解:∵抛物线y=x2+bx+c的对称轴为直线x=1,且经过点(﹣1,0).∴,得即抛物线解析式为y=x2﹣2x﹣3,当y=t时,t=x2﹣2x﹣3,即x2﹣2x﹣3﹣t=0,∵关于x的一元二次方程x2+bx+c﹣t=0(t为实数)在﹣1<x<4的范围内有实数根,∴t=x2﹣2x﹣3有实数根,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴当﹣1<x≤4时,x=1时,y有最小值﹣4,当x=4时,y取得最大值5,∴t的取值范围是﹣4≤t<5,故答案为:﹣4≤t<5.15.解:设直线AB的解析式为y=mx+n,把A(﹣1,6),B(4,1)代入得,解得,∴直线AB为y=﹣x+5,抛物线y=x2+b的开口向上,与线段AB:y=﹣x+5只有唯一公共点,需要x2+b=﹣x+5 △=12﹣4×1×(b﹣5)=0,∴b=,抛物线y=x2+b过A点,得b=5,抛物线y=x2+b过B点,得b=﹣15,∴﹣15≤b<5或b=16.解:①当a﹣3≠0时,图象与坐标轴只有两个交点,则与x轴只有一个交点,则△=(4a﹣1)2﹣4(a﹣3)×4a=0,解得:a=﹣,当抛物线过原点时,图象与坐标轴也只有两个交点,故a=0;②当a=3时,y=﹣11x+12,与坐标轴只有两个交点,故答案为:﹣或3或0.17.解:∵a﹣b+c=0和9a+3b+c=0,∴c=﹣3a,b=﹣2a,∴抛物线解析式为y=ax2﹣2ax﹣3a,∴对称轴为x=﹣=1,∴(﹣2,4)关于抛物线对称轴对称的点为(4,4).故答案是:(4,4).三.解答题(共6小题)18.解:由题意得,二次函数的顶点坐标为(5,4),设关系式为y=a(x﹣5)2+4,把(2,1)代入得,1=9a+4,解得,a=﹣,∴二次函数的关系式为y=﹣(x﹣5)2+4.19.解:(1)∵直线BC的解析式为y=x﹣4,∴当x=0时,y=﹣4;当y=0时,x=4,∴C(0,﹣4),B(4,0),将C(0,﹣4),B(4,0)代入抛物线y=ax2﹣3x+c,得,,解得,a=1,c=﹣4,∴抛物解析式为y=x2﹣3x﹣4;(2)当点E在直线BC下方时,如图1,过点E作EF∥y轴交直线BC于点F,设E(t,t2﹣3t﹣4),则F(t,t﹣4),∴EF =t ﹣4﹣(t 2﹣3t ﹣4)=﹣t 2+4t , ∴==﹣2t 2+8t ,自变量t 的取值范围是0<t <4, 当点E 在直线BC 上方时,如图2,过点E 作ED ∥y 轴交直线BC 于点D ,设E (t ,t 2﹣3t ﹣4),则D (t ,t ﹣4),∴ED =t 2﹣3t ﹣4﹣(t ﹣4)=t 2﹣4t ,∴=2t 2﹣8t ,自变量t 的取值范围是﹣1<t <0,∴S 与t 之间的函数关系式为.(3)∵点E 在第四象限抛物线上,∴0<t <4,∴S =﹣2t 2+8t =6,解得t 1=1,t 2=3,∴E (3,﹣4)或E (1,﹣6),①当E点坐标为(3,﹣4)时,如图3,连接CE,过点E作EN⊥BC,作∠EBQ=45°,∵OB=OC,∴∠OBC=45°,∴∠OBM=∠CBE,∵E(3,﹣4),C(0,﹣4),B(4,0),∴BC=4,CE=3,CE∥OB,∴∠BCE=∠OBC=45°,∴CN=EN=,BN=,∴tan∠NBE=,∴,∴OM=,∴M(0,﹣),设直线BQ的解析式为y=kx+b,∴,解得,∴直线BQ的解析式为y=x﹣,联立直线和抛物线解析式得,整理得5x2﹣18x﹣8=0,=4(舍去),解得,x2∴Q(﹣);②当E点坐标为(1,﹣6)时,如图4,作∠EBQ=45°,过点E作EG⊥BC于点G,连接CE,∵E(1,﹣6),C(0,﹣4),B(4,0),∴CE=,BC=4,BE=3,设CG=a,∴5﹣,解得a=,∴,BG=,∴tan,∴tan∠OBH=tan∠GBE=,∴OH=,∴H(0,﹣),同理求得直线BQ的解析式为y=x﹣,∴,解得,x2=4(舍去),∴Q(﹣,﹣).综合以上可得点Q的坐标为()或(﹣,﹣).20.解:(1)①当12≤x≤20时,设y=kx+b.代(12,2000),(20,400),得解得∴y=﹣200x+4400②当20<x≤24时,y=400.综上,y=(2)①当12≤x≤20时,W=(x﹣12)y=(x﹣12)(﹣200x+4400)=﹣200(x﹣17)2+5000当x=17时,W的最大值为5000;②当20<x≤24时,W=(x﹣12)y=400x﹣4800.当x=24时,W的最大值为4800.∴最大利润为5000元.(3)①当12≤x≤20时,W=(x﹣12﹣1)y=(x﹣13)(﹣2000x+4400)=﹣200(x﹣17.5)2+4050令﹣200(x﹣17.5)2+4050=3600x 1=16,x2=19∴定价为16≤x≤19②当20<x≤24时,W=400(x﹣13)=400x﹣5200≥3600∴22≤x≤24.综上,销售价格确定为16≤x≤19或22≤x≤24.21.解:(1)当x=5时,EF=20﹣2x=10,EH=30﹣2x=20,y=2×(EH+AD)×20x+2×(GH+CD)×x×60+EF•EH×40=(20+30)×5×20+(10+20)×5×60+20×10×40=22000;(2)EF=(20﹣2x)米,EH=(30﹣2x)米,参考(1),由题意得:y=(30+30﹣2x)•x•20+(20+20﹣2x)•x•60+(30﹣2x)(20﹣2x)•40=﹣400x+24000(0<x<10);=2×(EH+AD)×x=(30﹣2x+30)x=﹣2x2+60x,(3)S甲=﹣2x2+40x,同理S乙∵甲、乙两种花卉的种植面积之差不超过120米2,∴﹣2x2+60x﹣(﹣2x2+40x)≤120,解得:x≤6,故0<x≤6,而y=﹣400x+24000随x的增大而减小,故当x=6时,y的最小值为21600,即三种花卉的最低种植总成本为21600元.22.解:(1)当m=5时,y=﹣(x﹣5)2+4,当x=1时,n=﹣×42+4=﹣4.(2)当n=2时,将C(1,2)代入函数表达式y=﹣(x﹣m)2+4,得2=﹣(1﹣m)2+4,解得m=3或﹣1(舍去),∴此时抛物线的对称轴x=3,根据抛物线的对称性可知,当y=2时,x=1或5,∴x的取值范围为1≤x≤5.(3)∵点A与点C不重合,∴m≠1,∵抛物线的顶点A的坐标是(m,4),∴抛物线的顶点在直线y=4上,当x=0时,y=﹣m2+4,∴点B的坐标为(0,﹣m2+4),抛物线从图1的位置向左平移到图2的位置前,m逐渐减小,点B沿y轴向上移动,当点B与O重合时,﹣m2+4=0,解得m=2或﹣2(不合题意舍去),当点B与点D重合时,如图2,顶点A也与B,D重合,点B到达最高点,∴点B(0,4),∴﹣m2+4=4,解得m=0,当抛物线从图2的位置继续向左平移时,如图3点B不在线段OD上,∴B点在线段OD上时,m的取值范围是:0≤m<1或1<m<2.23.解:(1)所求抛物线的对称轴为直线x =﹣,且过点A (﹣3,0),∴,解得,,∴该抛物线的函数表达式为y =x 2+x ﹣6;(2)令x =0,得y =﹣6,∴C (0,﹣6),令y =0,得x 2+x ﹣6=0,解得x 1=2,x 2=﹣3(舍去),∴B (2,0);(3)由平移的性质可知,BC ∥DE 且BC =DE ,∴四边形BCED 为平行四边形, 如图,符合条件的四边形有三个,▱BCE 1D 1,▱BCE 2D 2,▱BCE 3D 3.∴=OC •BD 1,=OC •BE 2,=OC•BE 3,∵BE 3>BD 1,BE 2>BE 3,∴▱BCE 2D 2的面积最大,令y =6,得x 2+x ﹣6=6,解得x 1=3,x 2=﹣4,∴D 2(﹣4,6),E 2(﹣6,0), ∴BE 2=2﹣(﹣6)=8,∴=OC ×BE 2=48. ∴四边形BCED 面积的最大值为48.。
人教版九年级数学上册 第22章 《二次函数》检测题 (含答案)

《二次函数》检测题一.选择题1.已知二次函数y=a(x﹣h)2+k,其图象过点A(0,2),B(6,2),则h的值是()A.6 B.5 C.4 D.3),B(1,y2),C(,y3)三2.若二次函数y=x2﹣6x+9的图象,经过A(﹣1,y点,y1,y2,y3大小关系正确的是()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.y3>y1>y2 3.如果将抛物线y=x2+2向下平移1个单位,向右平移1个单位,那么所得新抛物线的表达式是()A.y=(x﹣1)2+1 B.y=(x+1)2+1 C.y=(x﹣1)2+3 D.y=(x+1)2﹣3 4.有一个矩形苗圃园,其中一边靠墙,另外边用长为20m的篱笆围成.已知墙长为15m,若平行于墙的一边长不小于8m,则这个苗圃园面积的最大值和最小值分别为()A.48m2,37.5m2B.50m2,32m2C.50m2,37.5m2D.48m2,32m25.二次函数y=2x2﹣3的二次项系数、一次项系数和常数项分別是()A.2、0、﹣3 B.2、﹣3、0 C.2、3、0 D.2、0、36.若二次函数y=x2+3x+a﹣1的图象经过原点,则a的值为()A.0 B.1 C.﹣1 D.1或﹣17.二次函数y=a2x2+bx+c(a≠0)的图象的顶点为P(m,k)且有一点Q(k,m)也在该函数图象上,则下列结论一定正确的是()A.m=k B.m>k C.m≥k D.m<k8.在同一坐标系中,一次函数y=ax+2与二次函数y=x2+a的图象可能是()A.B.C.D.9.加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.在特定条件下,可食用率p与加工时间t(单位:分钟)满足的函数关系p=at2+bt+c(a、b、c是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为()A.3.50分钟B.3.75分钟C.4.00分钟D.4.25分钟10.如图,已知抛物线y=x2+bx+c与直线y=x交于(1,1)和(3,3)两点,现有以下结论:①b2﹣4c>0;②3b+c+6=0;③当x2+bx+c>时,x>2;④当1<x<3时,x2+(b﹣1)x+c<0,其中正确的序号是()A.①②④B.②③④C.②④D.③④11.抛物线y=2x2﹣x﹣1与y轴的交点坐标为.12.抛物线y=﹣2(x+1)2﹣3开口,对称轴是,顶点坐标是,如果y随x的増大而减小,那么x的取值范围是.13.点P1(﹣1,y1),P2(4,y2),P3(5,y3)均在二次函数y=﹣x2+2x+c的图象上,则y1,y2,y3的大小关系是.(用“<”连接)14.数学综合实践课,老师要求同学们利用直径为6cm的圆形纸片剪出一个如图所示的展开图,再将它沿虚线折叠成一个无盖的正方体形盒子(接缝处忽略不计).若要求折出的盒子体积最大,则正方体的棱长等于.15.已知二次函数y=ax2﹣ax﹣x﹣t(t为实数)的对称轴是直线x=1,函数图象的顶点在x轴上,则t=;把抛物线k1:y=mx2﹣mx﹣x(m是一常数,且m<0)向上平移一个单位得到新的抛物线k2,则k2落在x轴上方的部分对应的x的取值范围是.16.若二次函数y=x2﹣x﹣(m2+m),以下结论:①抛物线与坐标轴有三个交点;②当x≥时,y随x的增大而增大;③函数交x轴于A,B两点,若AB=1,则m=0或m=1;④若直线y=x﹣1与抛物线没有交点,则m<1;其中正确的是.17.在平面直角坐标系xOy中,直线y=2x+2与x轴,y轴分别交于点A,B,抛物线y =ax2+bx﹣3a经过点A,将点B向右平移4个单位长度,得到点C.(1)求点C的坐标;(2)求抛物线的对称轴;(3)若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值范围.18.用长为36米的篱笆围成一个矩形养鸡场,设围成矩形一边长为x米,面积为y平方米.(1)求y关于x函数解析式;(2)当x为何值时,围成的养鸡场面积为45平方米?19.已知二次函数y=(1)把函数表达式配方成y=a(x﹣h)2+k的形式为.(2)函数图象的开口方向向,顶点坐标为,对称轴为直线,函数图象与x轴的交点坐标为,与y轴的交点坐标为.(3)函数y=的图象可由抛物线y=﹣向平移个单位长度,再向平移个单位长度得到;(4)根据图象,写出y>0时,x的取值范围是.(5)当y随x的增大而增大时,x的取值范围是.20.某商场将每台进价为3000元的彩电以3900元的销售价售出,每天可销售出6台,这种彩电每台降价100x(x为整数且0<x<9)元,每天可以多销售出3x台.(1)降价后每台彩电的利润是元,每天销售彩电台,设商场每天销售这种彩电获得的利润为y元,试写出y与x之间的函数关系式.(2)为了使顾客得到实惠,每台彩电的销售价定为多少时,销售该品牌彩电每天获得的利润最大,最大利润是多少?21.如图,已知抛物线y=ax2+2x+c与y轴交于点A(0,6),与x轴交于点B(6,0),点P是线段AB上方抛物线上的一个动点.(1)求这条抛物线的表达式及其顶点坐标;(2)点M在抛物线上,点N在x轴上,是否存在以点A,B,M,N为顶点的四边形是平行四边形?若存在,求出所有符合条件的点M的坐标:若不存在,请说明理由;(3)当点P从A点出发沿线段AB上方的抛物线向终点B移动时,点P到直线AB的距离为d,求d最大时点P的坐标.22.已知抛物线y=ax2+bx+3与x轴交于A(﹣1,0)、B(3,0)两点.(1)求抛物线解析式;(2)抛物线与y轴交于点C,在抛物线上存在点P,使S△BAP=S△CAP,求P点坐标;(3)已知直线l:y=2x﹣1,将抛物线沿y=2x﹣1方向平移,平移过程中与l相交于E、F两点.设平移过程中抛物线的顶点的横坐标为m,在x轴上存在一点P,使∠EPF=90°,求m的范围.23.已知抛物线y=ax2﹣2ax﹣2(a≠0).(1)当抛物线经过点P(1,0)时,求抛物线的顶点坐标;(2)若该抛物线开口向上,当0≤x≤4时,抛物线的最高点为M,最低点为N,点M 的纵坐标为6,求点M和点N的坐标;(3)点A(x1,y1)、B(x2,y2)为抛物线上的两点,设t≤x1≤t+1,当x2≥3且a<0时,均有y1≥y2,求t的取值范围.24.二次函数y=ax2+bx+2的图象交x轴于点A(﹣1,0),点B(4,0)两点,交y轴于点C,动点M从A点出发,以每秒2个单位长度的速度沿AB方向运动,过点M作MN⊥x轴交直线BC于点N,交抛物线于点D,连接AC,设运动时间为t秒.(1)求二次函数y=ax2+bx+2的表达式;(2)直线MN上存在一点P,当△PBC是以∠BPC为直角等腰三角形时,求此时点D 的坐标;(3)当t=时,在直线MN上存在一点Q,使得∠AQC+∠OAC=90°,求点Q的坐标.参考答案一.选择题1.解:由解析式可知抛物线的对称轴为直线x=h,∵点A(0,2),B(6,2),它们的纵坐标相同,∴对称轴为直线x==3∴h=3.故选:D.2.解:∵二次函数y=x2﹣6x+9=(x﹣3)2,∴对称轴为直线x=3,3﹣(﹣1)=4,3﹣1=2,4+﹣3=1+,∵4>1+>2,∴y1>y3>y2.故选:B.3.解:抛物线y=x2+2向下平移1个单位后的解析式为:y=x2+2﹣1=x2+1.再向右平移1个单位所得抛物线的解析式为:y=(x﹣1)2+1.故选:A.4.解:设平行于墙的一边长为xm,苗圃园面积为Sm2,则S=x×(20﹣x)=﹣(x2﹣20x)=﹣(x﹣10)2+50∵﹣<0∴S有最大值,x=10>8时,S最大=50∵墙长为15m∴当x=15时,S最小S=15××(20﹣15)=37.5最小∴这个苗圃园面积的最大值和最小值分别为50m2,37.5m2.故选:C.5.解:二次函数y=2x2﹣3的二次项系数是2,一次项系数是0,常数项是﹣3,故选:A.6.解:把(0,0)代入y=x2+3x+a﹣1得a﹣1=0,解得a=1,所以a的值为1.故选:B.7.解:∵二次函数y=a2x2+bx+c(a≠0),∴a2>0,∴该函数开口向上,函数有最小值,∵二次函数y=a2x2+bx+c(a≠0)的图象的顶点为P(m,k)且有一点Q(k,m)也在该函数图象上,∴m≥k,故选:C.8.解:∵二次函数y=x2+a∴抛物线开口向上,∴排除B,∵一次函数y=ax+2,∴直线与y轴的正半轴相交,∴排除A;∵抛物线得a<0,∴排除C;故选:D.9.解:根据题意,将(3,0.7)、(4,0.8)、(5,0.5)代入p=at2+bt+c,得:,解得:,即p=﹣0.2t2+1.5t﹣2,当t=﹣=3.75时,p取得最大值,故选:B.10.解:∵函数y=x2+bx+c与x轴无交点,∴b2﹣4ac<0;∴b2﹣4c<0故①不正确;当x=3时,y=9+3b+c=3,即3b+c+6=0;故②正确;把(1,1)(3,3)代入y=x2+bx+c,得抛物线的解析式为y=x2﹣3x+3,当x=2时,y=x2﹣3x+3=1,y==1,抛物线和双曲线的交点坐标为(2,1)第一象限内,当x>2时,x2+bx+c>;或第三象限内,当x<0时,x2+bx+c>;故③错误;∵当1<x<3时,二次函数值小于一次函数值,∴x2+bx+c<x,∴x2+(b﹣1)x+c<0.故④正确;故选:C.二.填空题(共6小题)11.解:把x=0代入抛物线y=2x2﹣x﹣1得:y=﹣1,∴抛物线y=2x2﹣x﹣1与y轴的交点坐标是(0,﹣1),故答案为:(0,﹣1).12.解:抛物线y=﹣2(x+1)2﹣3的开口向下,对称轴是直线x=﹣1,顶点坐标是(﹣1,﹣3),当x>﹣1时,y随x的增大而减小,故答案为:向下,x=﹣1,(﹣1,﹣3),x>﹣1.13.解:∵y=﹣x2+2x+c=﹣(x﹣1)2+1+c,∴图象的开口向下,对称轴是直线x=1,A(﹣1,y)关于对称轴的对称点为(3,y1),1∵3<4<5,∴y3<y2<y1,故答案为y3<y2<y1.14.解:根据题意AB=6cm,设正方体的棱长为xcm,则AC=x,BC=3x,根据勾股定理,AB2=AC2+BC2,即62=x2+(3x)2,解得x=故答案为cm.15.解:对称轴是直线x=1=,解得:a=1,△=(﹣a﹣1)2+4at=0,解得:t=﹣1,故答案为:﹣1;k的表达式为:y=mx2﹣mx﹣x﹣1,2△=(﹣m﹣1)2+4m=(m﹣1)2,函数与x轴的交点坐标为:(,0)和(1,0),故k2落在x轴上方的部分对应的x的取值范围:<x<1,故答案为:<x<1.16.解:①△=1﹣4(﹣m2+m)=(2m﹣1)2≥0,即抛物线与坐标轴有2﹣3个交点,故不符合题意;②函数的对称轴为:x=,函数开口向上,故当x≥时,y随x的增大而增大,符合题意;③函数交x轴于A,B两点,则两个点的坐标分别为:(m+1,0)、(﹣m,0),则AB=|m+1+m|=1,则m=0或m=﹣1,故不符合题意;④若直线y=x﹣1与抛物线没有交点,即:x2﹣x﹣(m2+m)=x﹣1,化简为:x2﹣2x ﹣(m2+m﹣1)=0,△=4+4(m2+m﹣1)<0,解得:0<m<1,故m<1,不符合题意;故答案为:②三.解答题(共8小题)17.解:(1)与y轴交点:令x=0代入直线y=2x+2得y=2,∴B(0,2),∵点B向右平移4个单位长度,得到点C,∴C(4,2);(2)与x轴交点:令y=0代入直线y=2x+2得x=﹣1,∴A(﹣1,0),将点A(﹣1,0)代入抛物线y=ax2+bx﹣3a中得0=a﹣b﹣3a,即b=﹣2a,∴抛物线的对称轴x=﹣=﹣=1;(3)∵抛物线y=ax2+bx﹣3a经过点A(﹣1,0)且对称轴x=1,由抛物线的对称性可知抛物线也一定过A的对称点(3,0),①a>0时,如图1,将x=0代入抛物线得y=﹣3a,∵抛物线与线段BC恰有一个公共点,∴﹣3a<4,a>﹣,将x=4代入抛物线得y=5a,∴5a≥4,a≥,∴a≥;②a<0时,如图2,将x=0代入抛物线得y=﹣3a,∵抛物线与线段BC恰有一个公共点,∴﹣3a>4,a<﹣;③当抛物线的顶点在线段BC上时,则顶点为(1,4),如图3,将点(1,4)代入抛物线得4=a﹣2a﹣3a,解得a=﹣1.综上所述,a≥或a<﹣或a=﹣1.18.解:(1)由题意可得,y=x•=x(18﹣x)=﹣x2+18x,即y关于x的函数关系式是:y=﹣x2+18x(0<x<18);(2)令y=45,则45=﹣x2+18x,解得x1=3,x2=15.即当x为3米或15米时,围成的养鸡场面积为45平方米.19.解:(1)y==﹣(x+1)2+2;故答案为:y=﹣(x+1)2+2;(2)﹣0,故函数图象的开口方向向下,顶点坐标为(﹣1,2),对称轴为直线x =﹣1,y=,令x=0,则y=,令y=0,则x=1或﹣3,故:函数图象与x轴的交点坐标为(1,0)或(﹣3,0),与y轴的交点坐标为(0,),故答案为:下,(﹣1,2),x=1,(1,0)或(﹣3,0),(0,);(3)函数y=的图象可由抛物线y=﹣向上平移2个单位,向左平移1个单位得到,故答案为:上,2,左,1;(4)根据图象,写出y>0时,x的取值范围是:﹣1<x<3,故答案为:﹣1<x<3;(5)函数的对称轴为:x=﹣1,故当y随x的增大而增大时,x的取值范围是x<﹣1,故答案为:x<﹣1.20.解:(1)由题意得:每台彩电的利润是(3900﹣100x﹣3000)元,即(900﹣100x)元,每天销售(6+3x)台,则y=(900﹣100x)(6+3x)=﹣300x2+2100x+5400故答案为:(900﹣100x),(6+3x);y与x之间的函数关系式为:y=﹣300x2+2100x+5400.(2)y=﹣300x2+2100x+5400.=﹣300(x﹣3.5)2+9075当x=3或x=4时,y最大值=9000.当x=3时,彩电销售单价为3600元,每天销售15台,营业额为3600×15=54000元,当x=4时,彩电销售单价为3500元,每天销售18台,营业额为3500×18=63000元,∴为了使顾客得到实惠,每台彩电的销售价定为3500元时,销售该品牌彩电每天获得的利润最大,最大利润是9000元.21.解:(1)物线y=ax2+2x+c与y轴交于点A(0,6),则c=6,将点B(6,0)代入函数表达式得:0=36a+12+6,解得:a=﹣,故抛物线的表达式为:y=﹣x2+2x+6,∴函数的对称轴为:x=2,顶点坐标为(2,8);(2)设点P(m,n),n=﹣m2+2m+6,点N(s,0),①当AB是平行四边形的一条边时,点A向右、向下均平移6个单位得到B,同理点N右、向下均平移6个单位得到M,故:s+6=m,0﹣6=n,解得:m=2±2,故点M的坐标为(2﹣2,﹣6)或(2+2,﹣6);②当AB是平行四边形的对角线时,则AB的中点即为MN的中点,则s+m=6,n+0=6,解得:m=4,故点M的坐标为(4,6),综上,点M的坐标为(2﹣2,﹣6)或(2+2,﹣6)或(4,6).(3)如下图,过点P作PG∥y轴交AB于点G,作PH⊥AB交于点H,∵OA=OB=6,则∠OAB=∠OBA=45°,∵PG∥y轴,则∠PGH=∠OAB=45°,直线AB的表达式为:y=﹣x+6,设点P(x,﹣x2+2x+6),则G(x,﹣x+6),d=PH=PG=(﹣x2+2x+6+x﹣6)=(﹣x2+3x),当x=3时,d取得最大值,此时点P(3,).22.解:(1)抛物线的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),故﹣3a=1,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x+3…①;(2)①当点P在第一象限时,如下图左图:过点C作AP的平行线,过点B作AP的平行线交y轴于点H,当GH=CG时,即点G是CH的中点时,则S△BAP=S△CAP,设点P(m,﹣m2+2m+3),将点P、A的坐标代入一次函数表达式:y=kx+b并解得:直线PA的表达式为:y=(3﹣m)x+(3﹣m),则点G(0,3﹣m),.同理BH的表达式为:y=(3﹣m)x﹣9(3﹣m),则点H(0,9m﹣27),点G是CH的中点,则2(3﹣m)=3+9m﹣27,解得:m=,故点P(,);②当点P在第四象限时,如上图右侧图,S=S△CAP,则点B、C到直线AP的距离相等,△BAP则CB∥AP即满足条件,同理可得:直线BC的表达式为:y=﹣x+3,同理可得:直线AP的表达式为:y=﹣x﹣1…②,联立①②并解得:x=4,故点P(4,﹣5),③当点P在二、三象限时,点B、C到直线AP的距离不相等,故点P不存在;综上,点P的坐标为:(,)或(4,﹣5);(3)当以EF为直径的⊙R与x轴相切时,直线x上存在点P即切点,使∠EPF=90°,当⊙R与x轴相交时,在x轴上存在点P(即交点),使∠EPF=90°,当⊙R与x轴相离时,不存在点P.如下图,⊙R与x轴相切时,切点为P,设:点E、F的坐标分别为:(x1,y1)、(x2,y2),当平移后的抛物线顶点横坐标为m时,则抛物线向右平移了m﹣1个单位,相应纵坐标向上平移了2(m﹣1)个单位,则平移后抛物线的表达式为:y=﹣(x﹣m+1)2+2m ﹣2,将上式与y=2x﹣1联立并整理得:x2﹣(2m﹣4)x+m2﹣2=0,则x1+x2=2m﹣4,x1x2=m2﹣2,则y1+y2=2(x1+x2)﹣2,则点R(m﹣2,2m﹣5),则(x1﹣x2)2=(x1+x2)2+4x1x2=24﹣16m,PR=EF,即:EF2=4PR2,EF2=(x﹣x2)2+(y1﹣y2)2=5(x1﹣x2)2=5×(24﹣16m)=4PR2=4(2m﹣5)12,化简得:4m2=5,解得:m=±,故m的范围是:m≥或m≤﹣.23.解:(1)∵该二次函数图象的对称轴为:x=﹣=1又∵抛物线经过点P(1,0),∴抛物线的顶点坐标为(1,0).(2)∵该抛物线开口向上,对称轴为x=1,∴当0≤x≤4时,点M的纵坐标为6,∴抛物线的最高点M的坐标为(4,6),∴将(4,6)代入y=ax2﹣2ax﹣2得:6=a×16﹣2a×4﹣2解得:a=1∴y=x2﹣2x﹣2∴最低点N在x=1时取得∴N(1,﹣3)∴点M和点N的坐标分别为(4,6)和(1,﹣3).(3)当a<0时,该抛物线开口向下,对称轴为x=1,∵点A(x1,y1)、B(x2,y2)为抛物线上的两点,t≤x≤t+1,当x2≥3时,均有y1≥y2,1∴解得:﹣1≤t≤2∴t的取值范围是﹣1≤t≤2.24.解:(1)函数的表达式为:y=a(x+1)(x﹣4)=a(x2﹣3x﹣4),则﹣4a=2,解得:a=﹣,故抛物线的表达式为:y=﹣x2+x+2;(2)过点M作x轴的平行线交y轴于点E,过点B作y轴的平行线交EM的延长线于点F,∵∠BMF+∠MBF=90°,∠MBF+∠CME=90°,∴∠CME=∠MBF,MB=MC,∠MFB=∠CEM=90°,∴△MFB≌△CEM(AAS),∴ME=t﹣1=BF=OE,EC=MB=5﹣t,CO=CE﹣OE=5﹣t﹣(t﹣1)=2,解得:t=2,则OM=2﹣1=1,当x=1时,y=﹣x2+x+2=3,故点D(1,3);(3)如图2,∠ACO+∠CAO=90°,∠AQC+∠OAC=90°,∴∠ACO=∠CQA,同理∠CQ′A=∠ACO,则A、C、Q、Q′四点公圆,且圆心R在x轴上,连接QR、RC,设圆的半径为r,则在△COR中,AO=1,OR=r﹣1,CO=2,MO=﹣1=,则(r﹣1)2+4=r2,解得:r=3,在△AQM中,MR=3﹣=,QM==,故点Q的坐标为:(,)或(,﹣).。
人教版初中九年级数学上册第二十二章《二次函数》经典测试题(含答案解析)

一、选择题1.已知抛物线()20y ax bx c a =++<过()30A -,、()1,0O 、()15,B y -、()25,C y 四点,则1y 与2y 的大小关系是( ) A .12y y >B .12y y <C .12y y =D .不能确定2.将抛物线22y x =平移,得到抛物线22(4)1y x =-+,下列平移方法正确的是( ) A .先向左平移4个单位,在向上平移1个单位 B .先向左平移4个单位,在向下平移1个单位 C .先向右平移4个单位,在向上平移1个单位 D .先向右平移4个单位,在向下平移1个单位3.已知2(0)y ax bx c a =++≠的图象如图所示,则点(,)A ac bc 在( )A .第一象限B .第二象限C .第三象限D .第四象限4.如图,一抛物线型拱桥,当拱顶到水面的距离为2米时,水面宽度为4米;那么当水位下降1米后,水面的宽度为( )A .26B .3C .6D .425.若()14,A y -,()21,B y -,()30,C y 为二次函数2(2)3y x =-++的图象上的三点,则1y ,2y ,3y 的大小关系是( ) A .123y y y <=B .312y y y =<C .312 y y y <<D .123y y y =<6.如图1,是某次排球比赛中运动员垫球时的动作,垫球后排球的运动路线可近似地看作抛物线,在图2所示的平面直角坐标系中,运动员垫球时(图2中点A )离球网的水平距离为5米,排球与地面的垂直距离为0.5米,排球在球网上端0.26米处(图2中点B )越过球网(女子排球赛中球网上端距地面的高度为2.24米),落地时(图2中点C )距球网的水平距离为2.5米,则排球运动路线的函数表达式为( ).A .2148575152y x x =--+ B .2148575152y x x =-++ C .2148575152y x x =-+ D .2148575152y x x =++ 7.在平面直角坐标系中抛物线2y x =的图象如图所示,已知点A 坐标为(1,1),过点A 作1//AA x 轴交抛物线于点A ,过点1A 作12//A A OA 交抛物线于点2A ,过点2A 作23//A A x 轴交抛物线于点3A 过点3A 作34//A A OA 交抛物线于点4A ,……则点2020A 的坐标为( )A .(1011, 21011)B .(-1011, 21011)C .(-1010, 21011)D .(1010, 21011)8.已知二次函数()()2y x p x q =---,若m ,n 是关于x 的方程()()20x p x q ---=的两个根,则实数m ,n ,p ,q 的大小关系可能是( )A .m <p <q <nB .m <p <n <qC .p <m <n <qD .p <m <q <n9.已知抛物线y =ax 2+bx +c 上部分点的横坐标与纵坐标的对应值如下表,给出下列结论:①抛物线y =ax 2+bx +c 经过原点;②2a +b =0;③当y >0时,x 的取值范围是x <0或x >2;④若点P (m ,n )在该抛物线上,则am 2+bm ≤a +b .其中正确结论的个数是( ) x … ﹣1 0 1 2 3 … y…3﹣13…A .4个B .3个C .2个D .1个10.我校门口道路的隔离栏通常会涂上醒目的颜色,呈抛物线形状(如图1),图2是一个长为2米,宽为1米的矩形隔离栏,中间被4根栏杆五等分,每根栏杆的下面一部分涂上醒目的蓝色,颜色的分界处(点E ,点P )以及点A ,点B 落上同一条抛物线上,若第1根栏杆涂色部分(EF )与第2根栏杆未涂色部分(PQ )长度相等,则EF 的长度是( )A .13米 B .12米 C .25米 D .35米 11.如图是抛物线y 1=ax 2+bx +c (a ≠0)图象的一部分,抛物线的顶点坐标是A (1,3),与x 轴的一个交点B (4,0),直线y 2=mx +n (m ≠0)与抛物线交于A 、B 两点.下列结论:①2a +b =0;②abc >0;③方程ax 2+bx +c =3有两个相等的实数根;④抛物线与x 轴的另一个交点是(﹣1,0);⑤当1<x <4时,有y 2<y 1;⑥a +b ≥m (am +b )(m 实数)其中正确的是( )A .①②③⑥B .①③④C .①③⑤⑥D .②④⑤12.如图是二次函数2(,,y ax bx c a b c =++是常数,0a ≠)图象的一部分,与x 轴的交点A 在点()2,0和()3,0之间,对称轴是1x =.对于下列说法:①0abc <;②20a b +=;③30a c +>;④()(a b m am b m +≥+为实数)﹔⑤当13x时,0y >,其中正确的是( )A .①②⑤B .①②④C .②③④D .③④⑤13.抛物线()2512y x =--+的顶点坐标为( ) A .()1,2-B .()1,2C .()1,2-D .()2,114.已知点1(1,)y -,(,)23y ,31(,)2y 在函数22y x x m =++的图象上,则1y ,2y ,3y 的大小关系是( )A .123y y y >>B .213y y y >>C .231y y y >>D .312y y y >>15.已知二次函数2y ax bx c =++的图象如图所尔,对称轴为直线x=1,则下列结论正确的是( )A .0ac >B .方程20ax bx c ++=的两根是1213x x =-=, C .20a b -=D .当x>0时,y 随x 的增大而减小.二、填空题16.在ABC 中,A ∠,B 所对的边分别为a ,b ,30C ∠=︒.若二次函数2()()()y a b x a b x a b =+++--的最小值为2a-,则A ∠=______︒. 17.抛物线y =﹣12(x +1)2+3的顶点坐标是_____. 18.如图,正方形OABC 的边长为2,OA 与x 负半轴的夹角为15°,点B 在抛物线()20y ax a =<的图象上,则a 的值为_.19.二次函数223y x =的图象如图所示,点0A 位于坐标原点,点1A ,2A ,3A ,…,2013A 在y 轴的正半轴上,点1B ,2B ,3B ,…,2013B 在二次函数223y x =位于第一象限的图象上,若011A B A △,122A B A △,233A B A △,…,201220132013A B A △都为等边三角形,则201220132013A B A △的边长=________.20.已知函数y =ax 2﹣(a ﹣1)x +1,当0<x <2时,y 随x 的增大而增大,则实数a 的取值范围是_____.21.学校公益伞深受师生欢迎,如图为公益伞骨架结构,点A 为伞开关位置,图1完全收拢状态,图2中间状态,图3完全打开状态,撑伞整个过程中,63AB cm =,10CE cm =,2EF DE =,5BF DF =+,DF 长度保持不变,滑动环扣C 、D 相对距离会变化.(1)图1中,A 、G 重合,此时8AC cm =,则DF =______cm .(2)图3中,90EDC ∠=︒,因支架、伞布等作用,弹性钢丝BG 近似变形为抛物线2164y x bx c =-++一部分,则AC =______cm .22.如图,抛物线()()13y a x x =+-与x 轴交于A ,B 两点(点A 在B 的左侧),点C 为抛物线上任意一点....(不与A ,B 重合),BD 为ABC 的AC 边上的高线,抛物线顶点E 与点D 的最小距离为1,则抛物线解析式为______.23.已知点P (m ,n )在抛物线2y ax x a =--上,当1m 时,总有1n ≥-成立,则实数a 的取值范围是_______.24.将抛物线y =2(x ﹣1)2+3绕着点A (2,0)旋转180°,则旋转后的抛物线的解析式为_____.25.如图,将抛物线y=−12x 2平移得到抛物线m .抛物线m 经过点A (6,0)和原点O ,它的顶点为P ,它的对称轴与抛物线y=−12x 2交于点Q ,则图中阴影部分的面积为______.26.如图,抛物线2yx 与直线y x =交于O ,A 两点,将抛物线沿射线OA 方向平移42个单位.在整个平移过程中,抛物线与直线3x =交于点D ,则点D 经过的路程为______.三、解答题27.某工厂大门是抛物线形水泥建筑,大门地面宽AB 为4m ,顶部C 距离地面的高度为4.4m ,现有一辆货车,其装货宽度为2.4m ,高度2.8米,请通过计算说明该货车能否通过此大门?28.已知:二次函数2y x bx c =++过点(0,-3),(1,-4) (1)求出二次函数的表达式;(2)在给定坐标系中画出这个二次函数的图像;(3)根据图像回答:当0≤x <3时,y 的取值范围是 .29.某超市经销一种商品,每千克成本为40元,经试销发现,该种商品的每天销售量y (千克)与销售单价x (元/千克)满足一次函数关系,其每天销售单价,销售量的四组对应值如下表所示: 销售单价x (元/千克) 45 50 55 60 销售量y (千克)70605040y x(2)为了尽可能提高销量且保证某天获得600元的销售利润,则该天的销售单价应定为多少?(3)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少? 30.已知关于x 的方程222(1)2()10a x a b x b +-+++=. (1)若2b =,且2x =是此方程的根,求a 的值;(2)若此方程有实数根,当51a -<<-时,求函数242y a a ab =++的取值范围.。
人教版 九年级数学上册 第22章复习测试题带答案

人教版 九年级数学上册 第22章复习测试题带答案22.1 二次函数的图象和性质一、选择题1. 对于二次函数y =-(x -1)2+2的图象与性质,下列说法正确的是( ) A. 对称轴是直线x =1,最小值是2 B. 对称轴是直线x =1,最大值是2 C. 对称轴是直线x =-1,最小值是2 D. 对称轴是直线x =-1,最大值是22. 二次函数y =x 2-2x +4化为y =a (x -h )2+k 的形式,下列正确的是( ) A. y =(x -1)2+2 B. y =(x -1)2+3 C. y =(x -2)2+2 D. y =(x -2)2+43. 二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论:①b <0;②c >0;③a +c <b ;④b 2-4ac >0,其中正确的个数是( ) A. 1 B. 2 C. 3 D. 44. 已知二次函数y =ax 2-bx -2(a ≠0)的图象的顶点在第四象限,且过点(-1,0),当a -b 为整数时,ab 的值为( ) A. 34或1 B. 14或1 C. 34或12 D. 14或345. (2019•雅安)在平面直角坐标系中,对于二次函数22()1y x =-+,下列说法中错误的是A .y 的最小值为1B .图象顶点坐标为(2,1),对称轴为直线2x =C .当2x <时,y 的值随x 值的增大而增大,当2x ≥时,y 的值随x 值的增大而减小D .它的图象可以由2y x 的图象向右平移2个单位长度,再向上平移1个单位长度得到6. 海滨广场中心标志性建筑处有高低不同的各种喷泉,其中一支高度为1米的喷水管喷出的水的最大高度为3米,此时喷水的水平距离为12米.在如图所示的平面直角坐标系中,这支喷泉喷出的水在空中划出的曲线满足的函数解析式是( )A .y =-⎝ ⎛⎭⎪⎫x -122+3B .y =3⎝ ⎛⎭⎪⎫x -122+1C .y =-8⎝ ⎛⎭⎪⎫x -122+3D .y =-8⎝ ⎛⎭⎪⎫x +122+37. 二次函数y =ax 2+bx +c (a ,b ,c 为常数且a ≠0)的图象如图所示,则一次函数y =ax +b 与反比例函数y =cx 的图象可能是( )8. 已知抛物线y =ax 2+bx +c (b >a >0)与x 轴最多有一个交点.现有以下四个结论:①该抛物线的对称轴在y 轴左侧;②关于x 的方程ax 2+bx +c +2=0无实数根;③a -b +c ≥0;④a +b +cb -a的最小值为3.其中,正确结论的个数为( ) A. 1个 B. 2个 C. 3个 D. 4个9. (2019•泸州)已知二次函数(1)(1)37y x a x a a =---+-+(其中x 是自变量)的图象与x 轴没有公共点,且当1x <-时,y 随x 的增大而减小,则实数a 的取值范围是 A .2a < B .1a >- C .12a -<≤D .12a -≤<10. 如图,△ABC是等腰直角三角形,∠A =90°,BC =4,点P 是△ABC 边上一动点,沿B →A →C 的路径移动.过点P 作PD ⊥BC 于点D ,设BD =x ,△BDP 的面积为y ,则下列能大致反映y 与x 函数关系的图象是( )二、填空题11.抛物线y =-8x 2的开口向________,对称轴是________,顶点坐标是________;当x >0时,y 随x 的增大而________,当x <0时,y 随x 的增大而________.12. 如图为二次函数y =ax 2+bx +c 的图象,在下列说法中:①ac<0;②方程ax 2+bx +c =0的根是x 1=-1,x 2=3;③a +b +c>0;④当x>1时,y 随着x 的增大而增大.正确的说法有________.(请写出所有正确说法的序号)13. (2019•襄阳)如图,若被击打的小球飞行高度h (单位:m)与飞行时间t (单位:s)之间具有的关系为2205h t t =-,则小球从飞出到落地所用的时间为__________s .14. (2019•徐州)已知二次函数的图象经过点(2,2)P ,顶点为(0,0)O 将该图象向右平移,当它再次经过点P 时,所得抛物线的函数表达式为__________.15. 如图,抛物线y=-x2+2x+3与y轴交于点C,点D(0,1),点P在抛物线上,且△PCD是以CD为底的等腰三角形,则点P的坐标为________.16. 已知点(x1,-7)和点(x2,-7)(x1≠x2)均在抛物线y=ax2上,则当x=x1+x2时,y的值是________.17. 如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(1,0)和B(3,2),不等式x2+bx+c>x+m的解集为____________.三、解答题18. 如图,已知二次函数y=x2+bx+c的图象过点A(1,0),C(0,-3).(1)求此二次函数的解析式;(2)设抛物线与x轴的另一交点为B,在抛物线上存在一点P,使△ABP的面积为10,请直接写出点P的坐标.19. 2018·南京已知二次函数y=2(x-1)(x-m-3)(m为常数).(1)求证:不论m为何值,该函数的图象与x轴总有公共点;(2)当m取什么值时,该函数的图象与y轴的交点在x轴的上方?20. 已知二次函数y=ax2-2ax+c(a>0)的图象与x轴的负半轴和正半轴分别交于A、B两点,与y轴交于点C,它的顶点为P,直线CP与过点B且垂直于x轴的直线交于点D,且CP∶PD=2∶3.(1)求A、B两点的坐标;(2)若tan∠PDB=54,求这个二次函数的关系式.21. 在平面直角坐标系中,设二次函数y1=(x+a)(x-a-1),其中a≠0.(1)若函数y1的图象经过点(1,-2),求函数y1的表达式;(2)若一次函数y2=ax+b的图象与y1的图象经过x轴上同一点,探究实数a,b 满足的关系式;(3)已知点P(x0,m)和Q(1,n)在函数y1的图象上.若m<n,求x0的取值范围.22. 如图,已知抛物线经过A(-3,0),B(0,3)两点,且其对称轴为直线x=-1.(1)求此抛物线的解析式;(2)若P是抛物线上点A与点B之间的动点(不包括点A,B),求△PAB的面积的最大值,并求出此时点P的坐标.人教版九年级22.1 二次函数的图象和性质培优训练-答案一、选择题1. 【答案】B 【解析】由二次函数y =-(x -1)2+2可知,对称轴为直线x =1排除C ,D ,函数开口向下,有最大值,最大值为当x =1时y =2,故排除A 选B .2. 【答案】B 【解析】将二次函数的一般式经过配方转化成顶点式,可以加上一次项系数的一半的平方来凑完全平方式.y =x 2-2x +4=x 2-2x +1+3=(x -1)2+3.3. 【答案】C 【解析】∵图象开口向下,∴a <0,∵对称轴在y 轴右侧,∴a ,b 异号,∴b >0,故①错误;∵图象与y 轴交于x 轴上方,∴c >0,故②正确;当x =-1时,a -b +c <0,则a +c <b ,故③正确;图象与x 轴有两个交点,则b 2-4ac >0,故④正确.4. 【答案】A 【解析】由二次函数过点(-1,0)可得a +b =2,把x =1代入y =ax 2-bx -2得y =a -b -2,即a -b =2+y.由a +b =2和a -b =2+y 得a =2+12y ,由题意得a >0,b >0,所以2+12y >0,解得y >-4,又由顶点在第四象限,可得y =-3或-2或-1.当y =-3时,可得a =12,b =32,则ab =34;当y =-2时,可得a =1,b =1,则ab =1;当y =-1时,可得a =32,b =12,则ab =34,综上ab 的值为34或1.5. 【答案】C【解析】二次函数22()1y x =-+,10a =>,∴该函数的图象开口向上,对称轴为直线2x =,顶点为(2,1),当2x =时,y 有最小值1,当2x >时,y 的值随x 值的增大而增大,当2x <时,y 的值随x 值的增大而减小;故选项A 、B 的说法正确,C 的说法错误; 根据平移的规律,2yx 的图象向右平移2个单位长度得到2(2)y x =-,再向上平移1个单位长度得到22()1y x =-+, 故选项D 的说法正确, 故选C .6. 【答案】C7. 【答案】C【解析】抛物线开口向上,所以a >0,对称轴在y 轴右侧,所以a 、b 异号,所以b <0,抛物线与y 轴交于负半轴,所以c <0,所以直线y =ax +b过第一、三、四象限,反比例函数y =cx 位于第二、四象限,故答案为C.8. 【答案】D 【解析】 序号 逐项分析 正误① ∵b >a >0,∴对称轴-b2a <0,即对称轴在y 轴左侧√ ② ∵抛物线y =ax 2+bx +c 与x 轴最多有一个交点,且抛物线开口向上,∴y =ax 2+bx +c ≥0,∴方程ax 2+bx +c +2=0即ax 2+bx +c =-2无实数根√③ 由②得y =ax 2+bx +c ≥0,∴当x =-1时,a -b +c ≥0 √④∵当x =-2时,y =4a -2b +c ≥0,∴a +b +c ≥3b -3a ,a +b +c ≥3(b -a ),∵b >a ,∴a +b +cb -a≥3 √9. 【答案】D【解析】(1)(1)37y x a x a a =---+-+22236x ax a a =-+-+, ∵抛物线与x 轴没有公共点,∴22(2)4(36)0a a a ∆=---+<,解得2a <, ∵抛物线的对称轴为直线22ax a -=-=,抛物线开口向上, 而当1x <-时,y 随x 的增大而减小, ∴1a ≥-,∴实数a 的取值范围是12a -≤<, 故选D .10. 【答案】B【解析】∵△ABC 是等腰直角三角形,∴∠A =90°,∠B =∠C =45°.(1)当0≤x ≤2时,点P 在AB 边上,△BDP 是等腰直角三角形,∴PD =BD =x ,y =12x 2 (0≤x ≤2),其图象是抛物线的一部分; (2)当2<x ≤4时,点P 在AC 边上,△CDP 是等腰直角三角形,∴PD =CD =4-x ,∴y =12BD ·PD =12x (4-x ) (2<x ≤4),其图象也是抛物线的一部分.综上所述,两段图象均是抛物线的一部分,因此选项B 的图象能大致反映y 与x 之间的函数关系.二、填空题11. 【答案】下 y 轴 (0,0) 减小 增大12. 【答案】①②④【解析】由于二次函数开口向上,且与y 轴的交点在负半轴上,∴a >0,c <0,∴ac <0,即①正确;又由于二次函数与x 轴交点的横坐标为-1,3.∴方程ax 2+bx +c =0的根是x 1=-1,x 2=3即②正确;当x =1时,二次函数上的点在第四象限,即a +b +c <0即③错误;由于(-1,0),(3,0)两点关于二次函数的对称轴为轴对称,∴此二次函数的对称轴方程为:x =1,因为二次函数开口向上,所以当x >1时y 随x 的增大而增大,即④正确. 故①②④正确.13. 【答案】4【解析】依题意,令0h =得: ∴20205t t =-, 得:(205)0t t -=, 解得:0t =(舍去)或4t =,∴即小球从飞出到落地所用的时间为4s , 故答案为:4.14. 【答案】21(4)2y x =- 【解析】设原来的抛物线解析式为:2y ax =(0)a ≠, 把(2,2)P 代入,得24a =, 解得12a =, 故原来的抛物线解析式是:212y x =, 设平移后的抛物线解析式为:21()2y x b =-, 把(2,2)P 代入,得212(2)2b =-,解得0b =(舍去)或4b =, 所以平移后抛物线的解析式是:21(4)2y x =-, 故答案为:21(4)2y x =-.15. 【答案】(1+2,2)或(1-2,2) 【解析】抛物线y =-x 2+2x +3与y 轴交于点C ,则点C 坐标是(0,3),∵点D(0,1),点P 在抛物线上,且△PCD 是以CD 为底的等腰三角形,∴易得点P 的纵坐标是2,当y =2时,∴-x 2+2x+3=2,则x 2-2x -1=0,解得方程的两根是x =2±222=1±2,∴点P 的坐标是(1+2,2)或(1-2,2).16. 【答案】0 [解析]依题意可知已知两点关于y 轴对称,∴x 1与x 2互为相反数,即x 1+x 2=0.当x =0时,y =a·02=0.17. 【答案】x<1或x>3 【解析】∵直线y =x +m 和抛物线y =x 2+bx +c 都经过点A(1,0)和B(3,2),∴根据图象可知,不等式x 2+bx +c >x +m 的解集为x <1或x >3.三、解答题18. 【答案】解:(1)∵二次函数y =x 2+bx +c 的图象过点A(1,0),C(0,-3),∴⎩⎨⎧1+b +c =0,c =-3,解得⎩⎨⎧b =2,c =-3.∴此二次函数的解析式为y =x 2+2x -3. (2)∵当y =0时,x 2+2x -3=0,解得x 1=-3,x 2=1,∴B(-3,0),∴AB =4. 设点P 的坐标为(m ,n). ∵△ABP 的面积为10, ∴12AB·|n|=10,解得n =±5. 当n =5时,m 2+2m -3=5,解得m =-4或m =2,∴P(-4,5)或P(2,5); 当n =-5时,m 2+2m -3=-5,此方程无解.故点P 的坐标为(-4,5)或(2,5).19. 【答案】解:(1)证明:当y =0时,2(x -1)(x -m -3)=0, 解得x 1=1,x 2=m +3.当m +3=1,即m =-2时,方程有两个相等的实数根; 当m +3≠1,即m ≠-2时,方程有两个不相等的实数根. 综上,不论m 为何值,该函数的图象与x 轴总有公共点. (2)当x =0时,y =2(x -1)(x -m -3)=2m +6, ∴该函数的图象与y 轴交点的纵坐标为2m +6,∴当2m +6>0,即m >-3时,该函数的图象与y 轴的交点在x 轴的上方.20. 【答案】解:(1)y =ax 2-2ax +c=a(x 2-2x)+c =a(x -1)2+c -a ∴P 点坐标为(1,c -a).(2分)如图,过点C 作CE ⊥PQ ,垂足为E ,延长CE 交BD 于点F ,则CF ⊥BD. ∵P(1,c -a), ∴CE =OQ =1. ∵PQ ∥BD ,∴△CEP ∽△CFD , ∴CP CD =CE CF .又∵CP ∶PD =2∶3, ∴CE CF =CP CD =22+3=25,∴CF =2.5,(4分) ∴OB =CF =2.5,∴BQ =OB -OQ =1.5, ∴AQ =BQ =1.5,∴OA =AQ -OQ =1.5-1=0.5, ∴A(-0.5,0),B(2.5,0).(5分)(2)∵tan ∠PDB =54,∴CFDF=5 4,∴DF=45CF=45×2.5=2,(6分)∵△CFD∽△CEP,∴PEDF=CE CF,∴PE=DF·CECF=2×12.5=0.8.∵P(1,c-a),C(0,c),∴PE=PQ-OC=c-(c-a)=a,∴a=0.8,(8分)∴y=0.8x2-1.6x+c.把A(-0.5,0)代入得:0.8×(-0.5)2-1.6×(-0.5)+c=0,解得c=-1.(9分)∴这个二次函数的关系式为:y=0.8x2-1.6x-1.(10分)21. 【答案】【思维教练】由图象过点(1,-2),将其带入y1的函数表达式中,解方程即可;(2)由y1=(x+a)(x-a-1)可得出y1过x轴上的两点的坐标,然后分两种情况讨论即可;(3)先求出y1=(x+a)(x-a-1)的对称轴,根据开口向上的二次函数,离对称轴越近,函数值越小即可得解.解:(1)∵函数y1=(x+a)(x-a-1)图象经过点(1,-2),∴把x=1,y=-2代入y1=(x+a)(x-a-1)得,-2=(1+a)(-a),(2分)化简得,a2+a-2=0,解得,a1=-2,a2=1,∴y1=x2+x-2;(4分)(2)函数y1=(x+a)(x-a-1)图象在x轴的交点为(-a,0),(a+1,0),①当函数y2=ax+b的图象经过点(-a,0)时,把x=-a,y=0代入y2=ax+b中,得a2=b;(6分)②当函数y2=ax+b的图象经过点(a+1,0)时,把x=a+1,y=0代入y2=ax+b中,得a2+a=-b;(8分)(3)∵抛物线y1=(x+a)(x-a-1)的对称轴是直线x=-a+a+12=12,m<n,∵二次项系数为1,∴抛物线的开口向上,∴抛物线上的点离对称轴的距离越大,它的纵坐标也越大,∵m<n,∴点Q离对称轴x=12的距离比P离对称轴x=12的距离大,(10分)∴|x0-12|<1-12,∴0<x0<1.(12分) 22. 【答案】解:(1)设抛物线的解析式为y =ax 2+bx +c. 根据题意,得⎩⎪⎨⎪⎧9a -3b +c =0,c =3,-b2a =-1,解得⎩⎨⎧a =-1,b =-2,c =3. 所以抛物线的解析式为y =-x 2-2x +3.(2)易知直线AB 的表达式为y =x +3,设P(m ,-m 2-2m +3),过点P 作PC ∥y 轴交AB 于点C ,则C(m ,m +3),PC =(-m 2-2m +3)-(m +3)=-m 2-3m , 所以S △PAB =12×(-m 2-3m)×3=-32(m 2+3m)=-32(m +32)2+278, 所以当m =-32时,S △PAB 有最大值278,此时点P 的坐标为(-32,154).22.2 二次函数与一元一次方程一、选择题(本大题共10道小题)1. 抛物线y =-x 2+4x -4与坐标轴的交点个数为( ) A .0B .1C .2D .32. 根据下列表格中的数值,判断方程ax 2+bx +c =0(a ,b 为常数)根的情况是( )A.B .有两个相等的实数根 C .只有一个实数根 D .无实数根3. 已知二次函数y =ax 2+bx +c 的图象如图所示,则一元二次方程ax 2+bx +c =0的解是( )A.x1=-3,x2=1 B.x1=3,x2=1C.x=-3 D.x=-24. 从地面竖直向上抛出一个小球,小球的上升高度h(单位:m)与小球运动时间t(单位:s)之间的关系式为h=24t-4t2,那么小球从抛出至回落到地面所需的时间是()A.6 s B.4 s C.3 s D.2 s5. 若A(-1,0)为抛物线y=-3(x-1)2+c上一点,则当y≥0时,x的取值范围是()A.-1<x<3 B.x<-1或x>3C.-1≤x≤3 D.x≤-1或x≥36. 函数y=ax2+2ax+m(a<0)的图象过点(2,0),则使函数值y<0成立的x的取值范围是()A.x<-4或x>2 B.-4<x<2C.x<0或x>2 D.0<x<27. 若二次函数y=ax2-2ax+c的图象经过点(-1,0),则方程ax2-2ax+c=0的解为()A. x1=-3,x2=-1B. x1=1,x2=3C. x1=-1,x2=3D. x1=-3,x2=18. 根据下列表格中的对应值,判断方程ax2+bx+c=0(a≠0)的一个根x的取值范围是()A.1.23<x<1.24 B.1.24<x<1.25C.1.25<x<1.26 D.1<x<1.239. 如图,抛物线y =12x 2-7x +452与x 轴交于点A ,B ,把抛物线在x 轴及其下方的部分记作C 1,将C 1向左平移得到C 2,C 2与x 轴交于点B ,D ,若直线y =12x +m 与C 1,C 2共有3个不同的交点,则m 的取值范围是( )A .-458<m <-52B .-298<m <-12C .-298<m <-52D .-458<m <-1210. 已知二次函数y =-x 2+x +6及一次函数y =-x +m ,将该二次函数在x 轴上方的图象沿x 轴翻折到x 轴下方,图象的其余部分不变,得到一个新函数图象(如图),当直线y =-x +m 与新图象有4个交点时,m 的取值范围是( )A .-254<m<3 B .-254<m<2 C .-2<m <3D .-6<m <-2二、填空题(本大题共7道小题)11. 飞机着陆后滑行的距离y (单位:m)关于滑行时间t (单位:s)的函数解析式是y =60t -32t 2,在飞机着陆滑行中,最后2 s 滑行的距离是________m.12. 如图,已知抛物线y =x 2+2x -3与x 轴的两个交点分别是A ,B (点A 在点B的左侧).(1)点A 的坐标为__________,点B 的坐标为________; (2)利用函数图象,求得当y <5时x 的取值范围为________.13. 已知二次函数y=kx2-6x-9的图象与x轴有两个不同的交点,则k的取值范围为____________.14. 设A,B,C三点分别是抛物线y=x2-4x-5与y轴的交点以及与x轴的两个交点,则△ABC的面积是________.15. 如图,抛物线y=ax2与直线y=bx+c的两个交点分别为A(-2,4),B(1,1),则方程ax2=bx+c的解是____________.16. 二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①b>0;②a-b +c=0;③一元二次方程ax2+bx+c+1=0(a≠0)有两个不相等的实数根;④当x <-1或x>3时,y>0.上述结论中正确的是________.(填上所有正确结论的序号)17. 已知实数x,y满足x2+3x+y-3=0,则x+y的最大值为________.三、解答题(本大题共4道小题)18. 已知二次函数y=x2+mx+n的图象经过点P(-3,1),对称轴是直线x=-1.(1)求m,n的值;(2)当x取何值时,y随x的增大而减小?19. 已知二次函数y=-x2+2x+m.(1)如果二次函数的图象与x轴有两个公共点,求m的取值范围;(2)如图,二次函数的图象过点A(3,0),与y轴交于点B,直线AB与这个二次函数图象的对称轴交于点P,求点P的坐标;(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.20. 某班“数学兴趣小组”对函数y=x2-2|x|的图象和性质进行了探究,探究过程如下,请补充完整.(2)根据上表数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分;(3)观察函数图象,写出两条函数的性质;(4)进一步探究函数图象发现:①函数图象与x轴有________个交点,所以对应的方程x2-2|x|=0有________个实数根;②方程x2-2|x|=2有________个实数根;③关于x的方程x2-2|x|=a有4个实数根时,a的取值范围是________.21. 利用图象解一元二次方程x2-2x-1=0时,我们采用的一种方法是在直角坐标系中画出抛物线y=x2和直线y=2x+1,两图象交点的横坐标就是该方程的解.(1)请你再给出一种利用图象求方程x2-2x-1=0的解的方法;(2)已知函数y=x3的图象(如图),求方程x3-x-2=0的解(精确到0.1).人教版九年级数学22.2 二次函数与一元一次方程同步训练-答案一、选择题(本大题共10道小题)1. 【答案】C[解析] 当x=0时,y=-x2+4x-4=-4,则抛物线与y轴的交点坐标为(0,-4);当y=0时,-x2+4x-4=0,解得x1=x2=2,则抛物线与x轴的交点坐标为(2,0),所以抛物线与坐标轴有2个交点.故选 C.2. 【答案】A【解析】当x=2时,方程ax2+bx+c=0,因此方程有一个实数根为2.当x 由-1增大到0时,ax 2+bx +c 的值由-3增大到2,因此可以推断当x 在-1与0之间取某一值时,必有ax 2+bx +c =0,说明方程ax 2+bx +c =0必有一个根在-1与0之间.3. 【答案】A[解析] ∵抛物线与x 轴的一个交点的坐标是(1,0),对称轴是直线x =-1,∴抛物线与x 轴的另一个交点的坐标是(-3,0).故一元二次方程ax 2+bx +c =0的解是x 1=-3,x 2=1.故选A.4. 【答案】A5. 【答案】C6. 【答案】A[解析] 抛物线的对称轴是直线x =-2a2a =-1,∴抛物线与x 轴的另一个交点坐标是(-4,0).∵a <0,∴抛物线开口向下,∴使y <0成立的x 的取值范围是x <-4或x >2.故选A.7. 【答案】C【解析】∵图象过点(-1,0),∴将点(-1,0)代入方程得a +2a+c =0,即3a +c =0.当x =3时,将(3,0)代入方程也得到3a +c =0成立,当x =-3时,将(-3,0)代入方程也得到15a +c =0(与3a +c =0不相符),∴方程的两个根为x 1=-1,x 2=3.8. 【答案】B9. 【答案】C【解析】 如图.∵抛物线y =12x 2-7x +452与x 轴交于点A ,B ,∴B (5,0),A (9,0).∴抛物线C 1向左平移4个单位长度得到C 2,∴平移后抛物线的解析式为y =12(x -3)2-2.当直线y =12x +m 过点B 时,有2个交点, ∴0=52+m ,解得m =-52;当直线y =12x +m 与抛物线C 2只有一个公共点时,令12x +m =12(x -3)2-2,∴x 2-7x +5-2m = 0,∴Δ=49-20+8m =0,∴m =-298,此时直线的解析式为y =12x -298,它与x 轴的交点为(294,0),在点A 左侧,∴此时直线与C 1,C 2有2个交点,如图所示.∴当直线y =12x +m 与C 1,C 2共有3个不同的交点时,-298<m <-52.10. 【答案】D【解析】 如图,当y =0时,-x 2+x +6=0,解得x 1=-2,x 2=3,则A (-2,0),B (3,0).将该二次函数在x 轴上方的图象沿x 轴翻折到x 轴下方的部分图象的解析式为y =(x +2)(x -3),即y =x 2-x -6(-2≤x ≤3).当直线y =-x +m 经过点A (-2,0)时,2+m =0,解得m =-2;当直线y =-x +m 与抛物线y =x 2-x -6有唯一公共点时,方程x 2-x -6=-x +m 有两个相等的实数根,解得m =-6.所以当直线y =-x +m 与新图象有4个交点时,m 的取值范围为-6<m <-2.二、填空题(本大题共7道小题)11. 【答案】6 【解析】 当y 取得最大值时,飞机停下来, 则y =60t -32t 2=-32(t -20)2+600,此时t =20,飞机着陆后滑行600米停下来, 因此t 的取值范围是0≤t ≤20. 当t =18时,y =594, 所以600-594=6(米). 故答案是:6.12. 【答案】(1)(-3,0)(1,0) (2)-4<x <2【解析】(1)当x2+2x-3=0时,解得x1=-3,x2=1,∴A(-3,0),B(1,0).(2)当y=5时,x2+2x-3=5,x2+2x-8=0,解得x1=-4,x2=2.由函数图象可得,当-4<x<2时,y<5.13. 【答案】k>-1且k≠014. 【答案】15[解析] 当x=0时,y=-5,∴点A的坐标为(0,-5);当y=0时,x2-4x-5=0,解得x1=-1,x2=5,不妨设点B在点C的左侧,∴点B的坐标为(-1,0),点C的坐标为(5,0),则BC=6,∴△ABC的面积为12×6×5=15.15. 【答案】x1=-2,x2=1[解析] 方程ax2=bx+c的解即抛物线y=ax2与直线y=bx+c交点的横坐标.∵交点是A(-2,4),B(1,1),∴方程ax2=bx+c的解是x1=-2,x2=1.16. 【答案】②③④[解析] 由图可知,抛物线的对称轴为直线x=1,与x轴的一个交点坐标为(3,0),∴b=-2a,抛物线与x轴的另一个交点坐标为(-1,0).①∵a>0,∴b<0,∴①错误;②当x=-1时,y=0,∴a-b+c=0,∴②正确;③一元二次方程ax2+bx+c+1=0的解是函数y=ax2+bx+c的图象与直线y=-1的交点的横坐标,由图象可知函数y=ax2+bx+c的图象与直线y=-1有两个不同的交点,∴一元二次方程ax2+bx+c+1=0(a≠0)有两个不相等的实数根,∴③正确;④由图象可知,y>0时,x<-1或x>3,∴④正确.17. 【答案】4[解析] x+y=-x2-2x+3=-(x+1)2+4,∴当x=-1时,x+y有最大值,最大值是4.三、解答题(本大题共4道小题)18. 【答案】解:(1)∵二次函数y =x 2+mx +n 的图象经过点P (-3,1),对称轴是直线x =-1,∴⎩⎪⎨⎪⎧1=9-3m +n ,-m 2=-1,解得⎩⎨⎧m =2,n =-2. (2)由(1)知二次函数的解析式为y =x 2+2x -2.∵a =1>0,∴抛物线的开口向上,∴当x ≤-1时,y 随x 的增大而减小.19. 【答案】解:(1)∵二次函数的图象与x 轴有两个公共点,∴Δ=b 2-4ac =22+4m >0,∴m >-1.(2)∵二次函数的图象过点A(3,0),∴0=-9+6+m ,∴m =3,∴二次函数的解析式为y =-x 2+2x +3.令x =0,则y =3,∴B(0,3).设直线AB 的解析式为y =kx +b ,∴⎩⎨⎧3k +b =0,b =3,解得⎩⎨⎧k =-1,b =3,∴直线AB 的解析式为y =-x +3.∵抛物线y =-x 2+2x +3的对称轴为直线x =1,∴把x =1代入y =-x +3,得y =2,∴P(1,2).(3)根据函数图象可知:使一次函数值大于二次函数值的x 的取值范围是x <0或x >3.20. 【答案】解:(1)m =0.(2分)(2)如解图所示:(4分)(3)①函数图象有两个最低点,坐标分别是(-1,-1)以及(1,-1).②函数图象是轴对称图形,对称轴是直线x=0(y轴).(6分)③从图象信息直接看出:当x<-1或0<x<1时,函数值随自变量的增大而减小;当-1<x<0或x>1时,函数值随自变量的增大而增大.④在x<-2或x>2时,函数值大于0,在-2<x<0或0<x<2时,函数值小于0等.(答案不唯一,合理即可)(4)①3,3;②2; ③-1<a<0.(10分)【解法提示】①观察图象可知函数图象与x轴有3个交点,∴方程x2-2|x|=0有3个不相等的实数根;②把抛物线y=x2-2|x|向下平移2个单位,得抛物线y=x2-2||x-2,则抛物线y=x2-2|x|-2与x轴只有2个交点,∴方程x2-2|x|-2=0有2个不相等的实数根;③把抛物线y=x2-2|x|向上平移0<h<1时,抛物线与x轴有4个交点,∴抛物线解析式y=x2-2|x|-a中,0<-a<1,∴-1<a<0.21. 【答案】解:(1)答案不唯一,如在直角坐标系中画出抛物线y=x2-1和直线y=2x,其交点的横坐标就是方程的解.(2)在图中画出直线y=x+2,与函数y=x3的图象交于点B,得点B的横坐标x≈1.5,∴方程的解为x≈1.5.22.3【实际问题与二次函数】一.选择题1.一小球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足下面函数关系式:h=﹣6(t﹣2)2+7,则小球距离地面的最大高度是()A.2米B.5米C.6米D.7米2.正方形的边长为3,如果边长增加x,那么面积增加y,则y与x之间的函数表达式是()A.y=3x B.y=(3+x)2C.y=9+6x D.y=x2+6x3.对于二次函数y=﹣(x﹣2)2﹣3,下列说法中正确的是()A.当x=﹣2时,y的最大值是﹣3B.当x=2时,y的最小值是﹣3C.当x=2时,y的最大值是﹣3D.当x=﹣2时,y的最小值是﹣34.一台机器原价50万元,如果每年的折旧率是x,两年后这台机器的价格为y万元,则y 与x的函数关系式为()A.y=50(1﹣x)2B.y=50(1﹣2x)C.y=50﹣x2D.y=50(1+x)2 5.若二次函数y=ax2+bx+c的图象开口向下、顶点坐标为(2,﹣3),则此函数有()A.最小值2B.最小值﹣3C.最大值2D.最大值﹣36.若抛物线y=x2﹣2x+m的最低点的纵坐标为n,则m﹣n的值是()A.﹣1B.0C.1D.27.已知二次函数y=a(x﹣1)2+b(a≠0)有最大值,则a,b的大小比较为()A.a>b B.a<b C.a=b D.不能确定8.二次函数y=﹣x2+6x﹣7,当x取值为t≤x≤t+2时,y=﹣(t﹣3)2+2,则t的取值最大值范围是()A.t=0B.0≤t≤3C.t≥3D.以上都不对9.已知二次函数y=a(x﹣1)2+b(a≠0)有最大值2,则a、b的大小比较为()A.a>b B.a<b C.a=b D.不能确定10.用一段20米长的铁丝在平地上围成一个长方形,求长方形的面积y(平方米)和长方形的一边的长x(米)的关系式为()A.y=﹣x2+20x B.y=x2﹣20x C.y=﹣x2+10x D.y=x2﹣10x 二.填空题11.已知x2﹣3x+y﹣5=0,则y﹣x的最大值为.12.加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.在特定条件下,可食用率y与加工时间x(单位:min)满足函数表达式y=﹣0.2x2+1.5x﹣2,则最佳加工时间为min.13.如图,有一个矩形苗圃园、其中一边靠墙(墙长为15m),另外三边用长为16m的篱笆围成,则这个苗圃园面积的最大值为.14.某工厂今年一月份生产防疫护目镜的产量是20万件,计划之后两个月增加产量,如果月平均增长率为x,那么第一季度防疫护目镜的产量y(万件)与x之间的关系应表示为.15.如图,P是抛物线y=x2﹣x﹣4在第四象限的一点,过点P分别向x轴和y轴作垂线,垂足分别为A、B,则四边形OAPB周长的最大值为.三.解答题16.龙眼是同安的特产,远销国内外.现有一个龙眼销售点在经销时发现:如果每箱龙眼盈利10元,每天可售出50箱.若每箱龙眼涨价1元,日销售量将减少2箱.若该销售点单纯从经济角度考虑,每箱龙眼应涨价多少元才能获利最高?17.心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间满足函数关系y=﹣0.1x2+2.6x+43(0≤x≤30).y值越大,表示接受能力越强.(1)x在什么范围内,学生的接受能力逐步增强?(2)某同学思考10分钟后提出概念,他的接受能力是多少?18.某超市销售一种水果,进价为每箱40元,规定售价不低于进价.现在的售价为每箱72元,每月可销售60箱.经市场调查发现:若这种水果的售价每降低2元,则每月的销量将增加10箱,设每箱水果降价x元(x为偶数),每月的销量为y箱.(1)写出y与x之间的函数关系式和自变量x的取值范围.(2)若该超市在销售过程中每月需支出其他费用500元,则如何定价才能使每月销售水果的利润最大?最大利润是多少元?19.用长12m的一根铁丝围成长方形.(1)如果长方形的面积为5m2,那么此时长方形的较长的边是多少?(2)能否围成面积是10m2的长方形?为什么?(3)能围成的长方形的最大面积是多少?20.生产商对在甲、乙两地生产并销售的某产品进行研究后发现如下规律:每年年产量为x (吨)时所需的全部费用y(万元)与x满足关系式y=x2+5x+90,投人市场后当年能全部售10出,且在甲、乙两地每吨的售价P甲P乙(万元)均与x满足一次函数关系.(注:年利润=年销售额﹣全部费用)(1)当在甲地生产并销售x吨时,满足P甲=﹣x+14,求在甲地生成并销售20吨时利润为多少万元;(2)当在乙地生产并销售x吨时,P乙=﹣x+15,求在乙地当年的最大年利润应为多少万元?参考答案一.选择题1.解:∵h=﹣6(t﹣2)2+7,∴a=﹣6<0,∴抛物线的开口向下,函数由最大值,∴t=2时,h最大=7.故选:D.2.解:∵新正方形的边长为x+3,原正方形的边长为3,∴新正方形的面积为(x+3)2,原正方形的面积为9,∴y=(x+3)2﹣9=x2+6x,故选:D.3.解:对于二次函数y=﹣(x﹣2)2﹣3,由于﹣1<0,所以,当x=2时,y取得最大值,最大值为﹣3,故选:C.4.解:二年后的价格是为:50×(1﹣x)×(1﹣x)=50(1﹣x)2,则函数解析式是:y=50(1﹣x)2.故选:A.5.解:因为抛物线开口向下和其顶点坐标为(2,﹣3),所以该抛物线有最大值是﹣3.故选:D.6.解:∵y=x2﹣2x+m,∴==n,即m﹣1=n,∴m﹣n=1.故选:C.7.解:∵y=a(x﹣1)2+b有最大值,∴抛物线开口向下a<0,b=,∴a<b.故选:B.8.解:∵y=﹣x2+6x﹣7=﹣(x﹣3)2+2,当t≤3≤t+2时,即1≤t≤3时,函数为增函数,y max=f(3)=2,与y max=﹣(t﹣3)2+2矛盾.当3≥t+2时,即t≤1时,y max=f(t+2)=﹣(t﹣1)2+2,与y max=﹣(t﹣3)2+2矛盾.当3≤t,即t≥3时,y max=f(t)=﹣(t﹣3)2+2与题设相等,故t的取值范围t≥3,故选:C.9.解:∵二次函数y=a(x﹣1)2+b(a≠0)有最大值2,∴a<0,b=2,则a、b的大小比较为:a<b.故选:B.10.解:∵长方形一边的长度为x米,周长为20米,∴长方形的另外一边的长度为(10﹣x)米,则长方形的面积y=x(10﹣x)=﹣x2+10x,故选:C.二.填空题11.解:∵x2﹣3x+y﹣5=0,∴y=﹣x2+3x+5,∴y﹣x=﹣x2+2x+5=﹣(x﹣1)2+6,∴y﹣x的最大值为6,故答案为6.12.解:根据题意:y=﹣0.2x2+1.5x﹣2,当x=﹣=3.75时,y取得最大值,则最佳加工时间为3.75min.故答案为:3.75.13.解:设垂直于墙面的长为xm,则平行于墙面的长为(16﹣2x)m,由题意可知:y=x(16﹣2x)=﹣2(x﹣4)2+32,且x<8,∵墙长为15m,∴16﹣2x≤15,∴0.5≤x<8,∴当x=4时,y取得最大值,最大值为32m2;故答案为:32m2.14.解:y与x之间的关系应表示为:y=20+20(x+1)+20(x+1)2.故答案为:y=20+20(x+1)+20(x+1)2.15.解:设P(x,x2﹣x﹣4),四边形OAPB周长=2PA+2OA=﹣2(x2﹣x﹣4)+2x=﹣2x2+4x+8=﹣2(x﹣1)2+10,当x=1时,四边形OAPB周长有最大值,最大值为10.故答案为10.三.解答题16.解:设每箱龙眼应涨价x元,总利润为y,根据题意可得:y=(10+x)(50﹣2x)=﹣2x2+30x+500=﹣2(x﹣)2+612.5,答:每箱龙眼应涨价元才能获利最高.17.解:(1)∵y=﹣0.1(x2﹣26x+169)+16.9+43=﹣0.1(x﹣13)2+59.9∴对称轴是:直线x=13即当(0≤x≤13)提出概念至(13分)之间,学生的接受能力逐步增强;(2)当x=10时,y=﹣0.1×102+2.6×10+43=59.18.解:(1)根据题意知y=60+5x,(0≤x≤32,且x为偶数);(2)设每月销售水果的利润为w,则w=(72﹣x﹣40)(5x+60)﹣500=﹣5x2+100x+1420=﹣5(x﹣10)2+1920,当x=10时,w取得最大值,最大值为1920元,答:当售价为62元时,每月销售水果的利润最大,最大利润是1920元.19.解:设长方形的宽为xm,则长为(12﹣2x)m,即为(6﹣x)m,则6﹣x≥x,得0<x≤3,(1)根据题意,得x(6﹣x)=5,即x2﹣6x+5=0,x1=5,x2=1(舍去),∴此时长方形较长的边为5m.(2)当面积为10m2时,x(6﹣x)=10,即x2﹣6x+10=0,此时b2﹣4ac=36﹣40=﹣4<0,故此方程无实数根.所以这样的长方形不存在.(3)设围成的长方形面积为k,则有x(6﹣x)=k.即x2﹣6x+k=0,要使该方程有解,必须(﹣6)2﹣4k≥0,即k≤9,∴最大的k只能是9,即最大的面积为9m2,此时x=3m,6﹣x=3m,这时所围成的图形是正方形.20.解:(1)甲地当年的年销售额为(﹣x+14)•x=(﹣x2+14x)万元;w=(﹣x2+14x)﹣(x2+5x+90)=﹣x2+9x﹣90.甲=﹣×202+9×20﹣90=30,当x=20时,w甲所以在甲地生成并销售20吨时利润为30万元;(2)在乙地区生产并销售时,年利润:w=﹣x2+15x﹣(x2+5x+90)乙=﹣x2+10x﹣90=﹣(x﹣25)2+35.∴当x=25时,w有最大值35万元,乙∴在乙地当年的最大年利润应为35万元.。
人教版数学九年级上册 第22章 《二次函数》章末复习题(含答案)
第22章《二次函数》章末复习题限时:120分钟满分:120分一.选择题(每题3分,共36分)1.抛物线y=x2﹣6x+5的顶点坐标为()A.(3,﹣4)B.(3,4)C.(﹣3,﹣4)D.(﹣3,4)2.若二次函数y=x2﹣6x+c的图象过A(﹣1,y1),B(2,y2),C(,y3),则y1,y 2,y3的大小关系是()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.y3>y1>y23.对抛物线:y=﹣x2+2x﹣3而言,下列结论正确的是()A.与x轴有两个交点B.开口向上C.与y轴的交点坐标是(0,3)D.顶点坐标是(1,﹣2)4.一小球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足下面函数关系式:h=﹣5(t﹣1)2+6,则小球距离地面的最大高度是()A.1米B.5米C.6米D.7米5.已知函数y=(k﹣3)x2+2x+1的图象与x轴有交点,则k的取值范围是()A.k<4 B.k≤4 C.k<4且k≠3 D.k≤4且k≠3 6.已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是()A.a>0B.当x>1时,y随x的增大而增大C.c<0D.3是方程ax2+bx+c=0的一个根7.在平面直角坐标系中,将抛物线y=x2+2x+3绕着它与y轴的交点旋转180°,所得抛物线的解析式是()A.y=﹣(x+1)2+2 B.y=﹣(x﹣1)2+4 C.y=﹣(x﹣1)2+2 D.y=﹣(x+1)2+48.若x1,x2(x1<x2)是方程(x﹣a)(x﹣b)=1(a<b)的两个根,则实数x1,x2,a,b的大小关系为()A.x1<x2<a<b B.x1<a<x2<b C.x1<a<b<x2D.a<x1<b<x29.已知二次函数y=ax2的图象开口向上,则直线y=ax﹣1经过的象限是()A.第一、二、三象限B.第二、三、四象限C.第一、二、四象限D.第一、三、四象限10.下列图象中,能反映函数y随x增大而减小的是()A.B.C.D.11.已知拋物线y=﹣x2+2,当1≤x≤5时,y的最大值是()A.2 B.C.D.12.小明从如图所示的二次函数y=ax2+bx+c的图象中,观察得出了下面五条信息:①c<0,②abc>0,③a﹣b+c>0,④2a﹣3b=0,⑤4a+2b+c>0,你认为其中正确信息的个数有()A.2个B.3个C.4个D.5个二.填空题(每题4分,共,20分)13.已知关于x的一元二次方程x2+bx﹣c=0无实数解,则抛物线y=﹣x2﹣bx+c经过象限.14.若点(1,5),(5,5)是抛物线y=ax2+bx+c上的两个点,则此抛物线的对称轴是.15.请你写出一个二次函数,其图象满足条件:①开口向下;②与y轴的交点坐标为(0,3).此二次函数的解析式可以是.16.飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是y=60t﹣t2,在飞机着陆滑行中,最后2s滑行的距离是m.17.如图,抛物线y=ax2+bx+c(a≠0)过点(﹣1,0)和点(0,﹣3),且顶点在第四象限.设m=a+b+c,则m的取值范围是.三.解答题(共64分)18.在平面直角坐标系xOy中,抛物线y=ax2﹣4ax与x轴交于A,B两点(A在B的左侧).(1)求点A,B的坐标;(2)已知点C(2,1),P(1,﹣a),点Q在直线PC上,且Q点的横坐标为4.①求Q点的纵坐标(用含a的式子表示);②若抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围.19.为倡导节能环保,降低能源消耗,提倡环保型新能源开发,造福社会.某公司研发生产一种新型智能环保节能灯,成本为每件40元.市场调查发现,该智能环保节能灯每件售价y(元)与每天的销售量为x(件)的关系如图,为推广新产品,公司要求每天的销售量不少于1000件,每件利润不低于5元.(1)求每件销售单价y(元)与每天的销售量为x(件)的函数关系式并直接写出自变量x的取值范围;(2)设该公司日销售利润为P元,求每天的最大销售利润是多少元?(3)在试销售过程中,受国家政策扶持,毎销售一件该智能环保节能灯国家给予公司补贴m(m≤40)元.在获得国家每件m元补贴后,公司的日销售利润随日销售量的增大而增大,则m的取值范围是(直接写出结果).20.如图,在平面直角坐标系中,已知抛物线y=ax2+bx+2(a≠0)与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)求该抛物线的解析式;(2)如图①,若点D是抛物线上一个动点,设点D的横坐标为m(0<m<3),连接CD、BD、BC、AC,当△BCD的面积等于△AOC面积的2倍时,求m的值;(3)若点N为抛物线对称轴上一点,请在图②中探究抛物线上是否存在点M,使得以B,C,M,N为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点M的坐标;若不存在,请说明理由.21.如图,抛物线经过A(﹣1,0),B(5,0),C(0,﹣)三点(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,则点P的坐标为;(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,直接写出点N的坐标;若不存在,请说明理由.22.若二次函数y=ax2+bx+c(a≠0)中,函数值y与自变量x的部分对应值如表:x…﹣2 ﹣1 0 1 2 …y…0 ﹣2 ﹣2 0 4 …(1)求该二次函数的表达式;(2)当y≥4时,求自变量x的取值范围.23.如图,直线y=与x轴,y轴分别交于点A,C,经过点A,C的抛物线y=ax2+bx ﹣3与x轴的另一个交点为点B(2,0),点D是抛物线上一点,过点D作DE⊥x轴于点E,连接AD,DC.设点D的横坐标为m.(1)求抛物线的解析式;(2)当点D在第三象限,设△DAC的面积为S,求S与m的函数关系式,并求出S的最大值及此时点D的坐标;(3)连接BC,若∠EAD=∠OBC,请直接写出此时点D的坐标.参考答案一.选择1.解:∵y=x2﹣6x+5,=x2﹣6x+9﹣9+5,=(x﹣3)2﹣4,∴抛物线y=x2﹣6x+5的顶点坐标为(3,﹣4).故选:A.2.解:根据题意,得y 1=1+6+c=7+c,即y1=7+c;y 2=4﹣12+c=﹣8+c,即y2=﹣8+c;y3=9+2+6﹣18﹣6+c=﹣7+c,即y3=﹣7+c;∵7>﹣7>﹣8,∴7+c>﹣7+c>﹣8+c,即y1>y3>y2.故选:B.3.解:A、∵△=22﹣4×(﹣1)×(﹣3)=﹣8<0,抛物线与x轴无交点,本选项错误;B、∵二次项系数﹣1<0,抛物线开口向下,本选项错误;C、当x=0时,y=﹣3,抛物线与y轴交点坐标为(0,﹣3),本选项错误;D、∵y=﹣x2+2x﹣3=﹣(x﹣1)2﹣2,∴抛物线顶点坐标为(1,﹣2),本选项正确.故选:D.4.解:∵高度h和飞行时间t满足函数关系式:h=﹣5(t﹣1)2+6,∴当t=1时,小球距离地面高度最大,∴h=﹣5×(1﹣1)2+6=6米,故选:C.5.解:①当k﹣3≠0时,(k﹣3)x2+2x+1=0,△=b2﹣4ac=22﹣4(k﹣3)×1=﹣4k+16≥0,k≤4;②当k﹣3=0时,y=2x+1,与x轴有交点.故选:B .6.解:∵抛物线开口向下,∴a <0,故A 选项错误; ∵抛物线与y 轴的正半轴相交,∴c >0,故C 选项错误;∵对称轴x =1,∴当x >1时,y 随x 的增大而减小;故B 选项错误; ∵对称轴x =1,∴另一个根为1+2=3,故D 选项正确. 故选:D .7.解:由原抛物线解析式可变为:y =(x +1)2+2,∴顶点坐标为(﹣1,2),与y 轴交点的坐标为(0,3), 又由抛物线绕着它与y 轴的交点旋转180°,∴新的抛物线的顶点坐标与原抛物线的顶点坐标关于点(0,3)中心对称, ∴新的抛物线的顶点坐标为(1,4), ∴新的抛物线解析式为:y =﹣(x ﹣1)2+4. 故选:B .8.解:用作图法比较简单,首先作出y =(x ﹣a )(x ﹣b )图象,任意画一个(开口向上的,与x 轴有两个交点),再向下平移一个单位,就是y =(x ﹣a )(x ﹣b )﹣1,这时与x 轴的交点就是x 1,x 2,画在同一坐标系下,很容易发现: 答案是:x 1<a <b <x 2. 故选:C .9.解:∵二次函数y=ax2的图象开口向上,∴a>0;又∵直线y=ax﹣1与y轴交于负半轴上的﹣1,∴y=ax﹣1经过的象限是第一、三、四象限.故选:D.10.解:A、根据图象可知,函数在实数范围内是增函数,即函数y随x增大而增大;故本选项错误;B、根据图象可知,函数在对称轴的左边是减函数,函数y随x增大而减小;函数在对称轴的右边是增函数,即函数y随x增大而增大;故本选项错误;C、根据图象可知,函数在两个象限内是减函数,但是如果不说明哪个象限内是不能满足题意的;故本选项错误;D、根据图象可知,函数在实数范围内是减函数,即函数y随x增大而减小;故本选项正确.故选:D.11.解:∵拋物线y=﹣x2+2的二次项系数a=﹣<0,∴该抛物线图象的开口向下;而对称轴就是y轴,∴当1≤x≤5时,拋物线y=﹣x2+2是减函数,=﹣+2=.∴当1≤x≤5时,y最大值故选:C.12.解:①由二次函数y=ax2+bx+c的图象开口向上可知a>0,图象与y轴交点在负半轴,c<0,正确;②由图象可知x=﹣1时,y=a﹣b+c>0,正确;③对称轴x=﹣>0,a>0,b<0,abc>0,正确;④对称轴x=﹣=,﹣3b=2a,2a﹣3b=﹣6b,错误;⑤由图象可知x=2时,y=4a+2b+c>0,正确.所以①②③⑤四项正确.故选:C.二.填空题(共5小题)13.解:∵关于x的一元二次方程x2+bx﹣c=0无实数解,∴△=b2+4c<0,∵抛物线y=﹣x2﹣bx+c中,二次项系数﹣1<0,∴抛物线的开口向下,∵判别式=(﹣b)2﹣4×(﹣1)×c=b2+4c<0,∴抛物线与x轴无交点,∴抛物线在x轴的下方,∴抛物线y=﹣x2﹣bx+c经过第三、四象限;故答案为:三、四.14.解:∵点(1,5),(5,5)是抛物线y=ax2+bx+c上的两个点,且纵坐标相等.∴根据抛物线的对称性知道抛物线对称轴是直线x==3.故答案为:x=3.15.解:设二次函数的解析式为y=ax2+bx+c.∵抛物线开口向下,∴a<0.∵抛物线与y轴的交点坐标为(0,3),∴c=3.取a=﹣1,b=0时,二次函数的解析式为y=﹣x2+3.故答案为:y=﹣x2+3(答案不唯一).16.解:当y取得最大值时,飞机停下来,则y=60t﹣1.5t2=﹣1.5(t﹣20)2+600,此时t=20,飞机着陆后滑行600米才能停下来.因此t的取值范围是0≤t≤20;即当t=18时,y=594,所以600﹣594=6(米)故答案是:6.17.解:∵二次函数y=ax2+bx+c(a>0)的图象与坐标轴分别交于点(0,﹣3)、(﹣1,0),∴c =﹣3,a ﹣b +c =0, 即b =a ﹣3, ∵顶点在第四象限, ∴﹣>0,<0,又∵a >0, ∴b <0,∴b =a ﹣3<0,即a <3,b 2﹣4ac =(a +c )2﹣4ac =(a ﹣c )2>0∵a ﹣b +c =0, ∴a +b +c =2b <0, ∴a +b +c =2b =2a ﹣6, ∵0<a <3,∴a +b +c =2b =2a ﹣6>﹣6, ∴﹣6<a +b +c <0. ∴﹣6<m <0. 故答案为:﹣6<m <0. 三.解答题(共6小题)18.解:(1)令y =0,即0=ax 2﹣4ax , 解得x 1=0,x 2=4, ∴A (0,0),B (4,0).答:点A 、B 的坐标为:(0,0),(4,0); (2)①设直线PC 解析式为y =kx +b , 将点C (2,1),P (1,﹣a )代入解得:k =1+a ,b =﹣3a ﹣1,∴直线PC 解析式为y =(1+a )x ﹣3a ﹣1, 当x =4时,y =3a +3, 所以点Q 的纵坐标为3a +3.②∵当点Q 在B 上方或与点B 重合时,抛物线与线段PQ 恰有一个公共点,3a+3≥0,∴a≥﹣1∴当a<0时,抛物线开口向下,抛物线只能与点Q相交,∴﹣1≤a<0当a>0时,抛物线开口向上,只能与点P相交,当x=1时,y=﹣a,y=﹣3a,所以抛物线与点P不相交.综上:a的取值范围是:﹣1≤a<019.解:(1)设每件销售单价y(元)与每天的销售量为x(件)的函数关系式为y=kx+b,把(1500,55)与(2000,50)代入y=kx+b得,,解得:,∴每件销售单价y(元)与每天的销售量为x(件)的函数关系式为y=﹣x+70,当y≥45时,﹣x+70≥45,解得:x≤2500,∴自变量x的取值范围1000≤x≤2500;(2)根据题意得,P=(y﹣40)x=(﹣x+70﹣40)x=﹣x2+30x=﹣(x ﹣1500)2+22500,∵﹣<0,P有最大值,当x<1500时,P随x的增大而增大,∴当x=1500时,P的最大值为22500元,答:每天的最大销售利润是22500元;(3)由题意得,P=(﹣x+70﹣40+m)x=﹣x2+(30+m)x,∵对称轴为x=50(30+m),∵1000≤x≤2500,∴x的取值范围在对称轴的左侧时P随x的增大而增大,50(30+m)≥2500,解得:m≥20,∴m的取值范围是:20≤m≤40.故答案为:20≤m≤40.20.解:(1)把A(﹣1,0),B(3,0)代入y=ax2+bx+2中,得:,解得:,∴抛物线解析式为;(2)过点D作y轴平行线交BC于点E,把x=0代入中,得:y=2,∴C点坐标是(0,2),又B(3,0)∴直线BC的解析式为,∵∴∴=,由S△BCD =2S△AOC得:∴,整理得:m2﹣3m+2=0解得:m1=1,m2=2∵0<m<3∴m的值为1或2;(3)存在,理由:设:点M的坐标为:(m,n),n=﹣x2+x+2,点N(1,s),点B(3,0)、C(0,2),①当BC是平行四边形的边时,当点C向右平移3个单位,向下平移2个单位得到B,同样点M(N)向右平移3个单位,向下平移2个单位N(M),故:m+3=1,n﹣2=s或m﹣3=1,n+2=s,解得:m=﹣2或4,故点M坐标为:(﹣2,﹣)或(4,﹣);②当BC为对角线时,由中点公式得:m+1=3,n+3=2,解得:m=2,故点M(2,2);综上,M的坐标为:(2,2)或(﹣2,)或(4,).21.解:(Ⅰ)设抛物线的解析式为y=ax2+bx+c(a≠0),∵A(﹣1,0),B(5,0),C(0,﹣)三点在抛物线上,∴,解得:∴抛物线解析式为:y=x2﹣2x﹣;(2)连接BC,如图1所示,∵抛物线的解析式为:y=x2﹣2x﹣,∴其对称轴为直线x=﹣=﹣=2,连接BC,如图1所示,设直线BC的解析式为y=kx+b(k≠0),且过B(5,0),C(0,﹣)∴,解得,∴直线BC的解析式为y=x﹣,当x=2时,y=1﹣=﹣,∴P(2,﹣),故答案为:(2,﹣);(3)存在点N ,使以A ,C ,M ,N 四点构成的四边形为平行四边形.如图2所示,①当点N 在x 轴下方时, ∵抛物线的对称轴为直线x =2,C (0,﹣),∴N 1(4,﹣);②当点N 在x 轴上方时,如图,过点N 2作N 2D ⊥x 轴于点D ,在△AN 2D 与△M 2CO 中,∴△AN 2D ≌△M 2CO (ASA ), ∴N 2D =OC =,即N 2点的纵坐标为.∴x 2﹣2x ﹣=,解得x =2+或x =2﹣, ∴N 2(2+,),N 3(2﹣,).综上所述,符合条件的点N 的坐标为(4,﹣)或(2+,)或(2﹣,). 22.解:(1)根据表中可知:点(﹣1,﹣2)和点(0,﹣2)关于对称轴对称, 即对称轴是直线x =﹣,设二次函数的表达式是y =a (x +)2+k ,把点(﹣2,0)和点(0,﹣2)代入得:,解得:a=1,k=﹣,y=(x+)2﹣=x2+x﹣2,所以该二次函数的表达式是y=x2+x﹣2;(2)当y=4时,y=x2+x﹣2=4,解得:x=﹣3或2,所以当y≥4时,自变量x的取值范围是x≤﹣3或x≥2.23.解:(1)在y=﹣x﹣3中,当y=0时,x=﹣6,即点A的坐标为:(﹣6,0),将A(﹣6,0),B(2,0)代入y=ax2+bx﹣3得:,解得:,∴抛物线的解析式为:y=x2+x﹣3;(2)设点D的坐标为:(m,m2+m﹣3),设DE交AC于F,则点F的坐标为:(m,﹣m﹣3),∴DF=﹣m﹣3﹣(m2+m﹣3)=﹣m2﹣m,∴S△ADC =S△ADF+S△DFC=DF•AE+•DF•OE=DF•OA=×(﹣m2﹣m)×6 =﹣m2﹣m=﹣(m+3)2+,∵a=﹣<0,∴抛物线开口向下,存在最大值,∴当m=﹣3时,S△ADC又∵当m=﹣3时,m2+m﹣3=﹣,∴存在点D(﹣3,﹣),使得△ADC的面积最大,最大值为;(3)①当点D与点C关于对称轴对称时,D(﹣4,﹣3),根据对称性此时∠EAD=∠ABC.②作点D(﹣4,﹣3)关于x轴的对称点D′(﹣4,3),直线AD′的解析式为y=x+9,由,解得或,此时直线AD′与抛物线交于D(8,21),满足条件,综上所述,满足条件的点D坐标为(﹣4,﹣3)或(8,21)。
九年级数学上册第二十二章《二次函数》测试卷-人教版(含答案)
九年级数学上册第二十二章《二次函数》测试卷-人教版(含答案)考试范围:全章综合测试 参考时间:120分钟 满分:120分一、选择题(每小题3分,共30分)1.对于函数y =5x 2,下列结论正确的是( )A . y 随x 的增大而增大B . 图象开口向下C .图象关于y 轴对称D .无论x 取何值,y 的值总是正的 【答案】C .详解:a =5>0,开口向上,对称轴为y 轴,在y 轴左侧,y 随x 的增大而减小,在y 轴的右侧, y 随x 的增大而增大,当x =0时,y =0. 故A 错,B 错,C 对,D 错,∴答案选C . 2.二次函数y =x 2-4x 的图象的对称轴是( )A . x =4B . x =-4C . x =-2D . x =2 【答案】D .详解:a =1,b =-4,由对称轴公式,对称轴为x =-2ba=2,故选D . 3.二次函数y =2(x +1)2-3的图象的顶点坐标是( )A . (1,3)B . (-1,3)C . (1,-3)D .(-1,-3) 【答案】D .详解:知识点:抛物线的顶点式为y =a (x -h )2+k ,顶点坐标为(h ,k ).4.进入夏季后,某电器商场为减少库存,对电热取暖器连续进行两次降价. 若设平均每次降价的 百分率是x ,降价后的价格为y 元,原价为a 元,则y 与x 之间的函数关系式为( ) A . y =2a (x -1) B . y =2a (1-x ) C . y =a (1-x 2) D . y =a (1-x )2 【答案】D .详解:第一次降价后的价格为a (1-x )元,第二次降价后的价格为a (1-x )2,故选D . 5.用配方法将函数y =x 2-2x +2写成y =a (x -h )2+k 的形式是( )A . y =(x -1)2+1B . y =(x -1)2-1C . y =(x -1)2-3D . y =(.x +1)2-1 【答案】A .详解:y =x 2-2x +2=(x 2-2x +1)+1=(x -1)2+1,故选A .6.把抛物线y =2x 2绕原点旋转180°,再向右平移1个单位长度,向下平移2个单位长度,所得 的抛物线的函数表达式为( )A . y =2(x -1)2-2B . y =2(x +1)2-2C . y =-2(x -1)2-2D . y =-2(.x +1)2-2 【答案】C .详解:原抛物线的顶点为(0,0),旋转180°后,开口向下,顶点为(0,0),两次平移后的 顶点为(1,-2),故答案为y =-2(x -1)2-2.7. 在比赛中,某次羽毛球的运动路线可以看作是抛物线y=-14x2+bx+c的一部分(如图),其中出球点B离地面O点的距离是1m,球落地点A到O点的距离是4m,那么这条抛物线的解析式是()A. y=-14x2+34x+1 B. y=-14x2+34x-1C. y=-14x2-34x+1 D. y=-14x2-34x-1【答案】A.详解:依题意,点B的坐标为(0,1),点A的坐标为(4,0),把A( 4,0),B(0,1)代入y=-14x2+bx+c,解得b=34,c=1,故选A.另法:由B(0,1),可排除B、D,根据“左同右异”的规律,可排除C.8.抛物线y=ax2-2ax+c经过点A(2,4),若其顶点在第四象限,则a的取值范围为()A. a>4B. 0<a<4C. a>2D. 0<a<2【答案】A.详解:把A(2,4)代入,得c=4,∴y=ax2-2ax+4=a(x-1)2+4-a,顶点为(1,4-a),∵顶点在第四象限,∴4-a<0,∴a>4.9.飞机着陆后滑行的距离y(m)关于滑行时间t(s)的函数解析式是y=60t-32t2,飞机着陆至停下来共滑行()A. 20米B. 40米C. 400米D. 600米【答案】D.详解:配方得y=-32(t-20)2+600,∴当t=20时,y取得最大值600,即飞机着陆后滑行600米才能停下来.10. 如图,抛物线y=-2x2+mx+n与x轴交于A、B两点. 若线段AB的长度为4,则顶点C到x轴的距离为()A. 6B. 7C. 8D. 9【答案】C.详解:令y=0,得-2x2+mx+n=0,解得x=284m m n ±+.∴AB=|x1-x2|=282m n+=4,∴m2+8n=64.∴244ac ba-=24(2)4(2)n m---=288m n+=8,故答案选C.二、填空题(每小题3分,共18分)11.抛物线y =2x 2-4的顶点坐标是___________. 【答案】(0,-4).详解:a =2,b =0,c =-4,开口向上,对称轴为y 轴,顶点为(0,-4).12. 若方程ax 2+bx +c =0的解为x 1=-2,x 2=4,则二次函数y =ax 2+bx +c 的对称轴为______. 【答案】直线x =1. 详解:x =242-+=1. 13.如图,抛物线y =a (x -2)2+k (a 、k 为常数且a ≠0)与x 轴交于点A 、B 两点, 与y 轴交于点C ,过点C 作CD ∥x 轴与抛物线交于点D . 若点A 坐标为 (-2,0),则OBCD的值为_________. 【答案】32.详解:抛物线的对称轴为x =2,C 在y 轴上,∴CD =4.又∵A (-2,0),∴B (6,0),∴OB =6. ∴6342OB CD ==. 14.如图,Rt △OAB 的顶点A (-2,4)在抛物线y =ax 2上,将Rt △OAB 向右 平移得到△O 1AB 1,平移后的O 1A 1与抛物线交于点P ,若P 为线段A 1O 1 的中点,则点P 的坐标为________. 【答案】P (2,2).详解:把A (-2,4)代入y =ax 2得a =1,∴y =x 2. ∵A (-2,4),∴点A 1的纵坐标为4, ∵P 为O 1A 1的中点,∴点P 的纵坐标为2, 把y =2代入y =x 2,得x =±2. 取x =2,∴P (2,2).15.下列关于二次函数y =x 2-2mx +1(m 为常数)的结论: ①该函数的图象与函数y =-x 2+2mx 的图象的对称轴相同; ②该函数的图象与x 轴有交点时,m >1;③该函数的图象的顶点在函数y =-x 2+1的图象上;④点A (x 1,y 1)与点B (x 2,y 2)在该函数的图象上,若x 1<x 2,x 1+x 2<2m ,则y 1<y 2· 其中正确的结论是________________(填写序号). 【答案】①③.详解:对于①,根据对称轴公式,两抛物线对称轴均为x =m ,故①正确; 对于②,Δ=b 2-4ac =4m 2-4≥0,∴m ≥1或m ≤-1,故②错; 对于③,y =x 2-2mx +1的顶点为(m ,-m 2+1),显然③正确; 对于④,抛物线的开口向上,对称轴为x =m ,∵x 1+x 2<2m ,∴122x x +<m ,P O 1A 1B 1又∵x1<x2,∴点A离对称轴的距离大于点B离对称轴的距离,∴y1>y2,故④错;综上,正确的有①③.16.如图,抛物线y=x2+2x与直线y=2x+1交于A、B两点,与直线x=2交于点D,将抛物线沿着射线AB方向平移25个单位. 在整个平移过程中,点D经过的路程为___________.【答案】738.详解:平移前,D(2,8),∴直线AB的解析式为y=2x +1,∴抛物线沿射线AB方程平移25个单位时,相当于抛物线向右平移了4个单位,向上平移了2个单位. ∵原抛物线顶点为M(-1,-1),平移后的顶点为M′(3,1),平移后的抛物线为y=(x-3)2+1,此时D′(2,2),直线MM′的解析式为y=12x-12,平移过程中,抛物线的顶点始终在y=12x-12上,设顶点为(a,12a-12),-1≤a≤3,抛物线的解析式为y=(x-a)2+12a-12,当x=2时,y=(2-a)2+12a-12=a2-72a+72,即在平移过程中,抛物线与直线x=2的交点的纵坐标为y=a2-72a+72,∵y=a2-72a+72=(a-74)2+716,∴当a=74时,点D到达最低点,此时D(2,716)当a=3时,y=(x-3)2+1,此时D(2,2);观察图形,可知点D的运动路径为D(2,8)→D(2,716)→D(2,2),路径长为(8-716)+(2-716)=738.三、解答题(共8题,共72分)17.(8分)通过配方,写出下列抛物线的开口方向、对称轴和顶点坐标.(1) y=x2-4x+6;(2) y=-4x2+4x.【答案】(1) y=x2-4x+6=x2-4x+4+2=(x-2)2+2,开口向上,对称轴为x=2,顶点坐标为(2,2).(2) y=-4x2+4x=-4(x2-x)=-4(x2-x+14-14)=-4(x-12)2+1,yxM‘MBAD2O开口向下,对称轴为x =12,顶点坐标为(12,1).18.(8分)二次函数的最大值为4,其图象的对称轴为x =2,且过点(1,2),求此函数的解析式. 【答案】∵函数的最大值为4,图象的对称轴为x =2, ∴可设函数的解析式为y =a (x -2)2+4,把(1,2)代入,得:a (1-2)2+4=2,解得a =-2, ∴函数的解析式为y =-2(x -2)2+4.19.(8分)二次函数y =x 2+bx +c 图象上部分点的横坐标x 、纵坐标y 的对应值如下表: (1)求二次函数的表达式;(2)画出二次函数的示意图,结合函数图象, 直接写出y <0时自变量x 的取值范围. 【答案】(1) 把(0,3),(1,0)代入y =x 2+bx +c , 得:310c b c =⎧⎨++=⎩,解得43b c =-⎧⎨=⎩,∴二次函数的表达式为y =x 2-4x +3;(2) 函数的图象如图所示,由图象,可知当1<x <3时,y <0.20.(8分)二次函数的图象与直线y =x +m 交于x 轴上一点A (-1,0), 图象的顶点为C (1,-4). (1)求这个二次函数的解析式;(2)若二次函数的图象与x 轴交于另一点B ,与直线 y =x +m 交于另一点D ,求△ABD 的面积. 【答案】(1)∵图象的顶点为C (1,-4),可设抛物线的解析式为y =a (x -1)2-4, 把(-1,0)代入,得:4a -4=0,∴a =1. ∴抛物线的解析式为y =(x -1)2-4, 即y =x 2-2x -3.(2)令y =0,得x 2-2x -3=0,∴x 1=-1,x 2=3. ∴B (3,0). 把A (-1,0)代入y =x +m ,得m =1,∴y =x +1. 联立2123y x y x x =+⎧⎨=--⎩,解得1110x y =-⎧⎨=⎩,2245x y =⎧⎨=⎩,∴D (4,5). ∵A (-1,0),B (3,0),∴AB =4,x… 0 1 2 3 … y … 3 0 -1 0 …yx123O∴△ABD 的面积S =12×4×5=10.21.(8分)如图,抛物线y =-12x 2+52x -2与x 轴相交于A 、B 两点,与y 轴相交于点C . (1)求△ABC 各顶点的坐标及△ABC 的面积;(2)过点C 作CD ∥x 轴交抛物线于点D . 若点P 在线段AB 上以 每秒1个单位长度的速度由点A 向点B 运动,同时点Q 在线 段CD 上以每秒1.5个单位长度的速度由点D 向点C 运动,问: 经过几秒时,PQ =AC ?【答案】(1)令y =0,得-12x 2+52x -2=0,得x 1=1,x 2=4. ∴A (1,0),B (4,0).令x =0,得y =-2,∴C (0,-2).△ABC 的面积为S =12AB ·OC =12×3×2=3.(2) 设经过t 秒后,PQ =AC . 则AP =t ,P (1+t ,0) 抛物线的对称轴为x =2.5,∵C (0,-2),∴D (5,-2). DQ =1.5t ,∴CQ =5-1.5t ,∴Q (5-1.5t ,-2).过P 作PH ⊥CQ 于H ,则PH =OC ,∵PQ =AC ,∴HQ =OA =1. 即|(1+t )-(5-1.5t )|=1,化简得|2.5t -4|=1,解得t =2或65.所以,经过2秒或65秒时,PQ =AC .22. (10分)如图,有一面长为a m 的墙,利用墙长和30m 的篱笆,围成中间隔有一道篱笆的长方形 花圃,设花圃的宽AB 为x m ,面积为S m 2. (1)当a =10时;①求S 与x 的关系式,并写出自变量x 的取值范围; ②如果要围成面积为48m 2的花圃,AB 的长是多少m ? (2)求长方形花圃的最大面积.【答案】(1) ①AB =CD =x ,BC =30-3x , ∴S =x (30-3x )=-3x 2+30x , 由0<BC ≤a ,得0<30-3x ≤10,∴203≤x <10. ② 令S =48,得-3x 2+30x =48,即x 2-10x +16=0,H30-3xxxx解得:x =8或2(舍),∴AB 的长为8m . (2) S =-3x 2+30x =-3(x -5)2+75, ∵0<30-3x ≤a ,∴10-3a≤x <10.∵抛物线开口向下,对称轴为x =5,1°当10-3a≤5时,即a ≥15,此时当x =5时,S 取得最大值75;2°当10-3a>5,即0<a <15,此时S 随x 的增大而减小,则当x =10-3a 时,S 的最大值为10a -13a 2.答:当a ≥15时,长方形花圃的最大面积为75m 2;当0<a <15,长方形花圃的最大面积为(10a -13a 2)m 2.23.(10分)某小区内超市在“新冠肺炎”疫情期间,两周内标价为10元/斤的某种水果,经过两次 降价后的价格为8.1元/斤,并且两次降价的百分率相同. (1)求该种水果每次降价的百分率;(2)①从第一次降价的第1天算起,第x 天(x 为整数)的售价、销量及储存和损耗费用的 相关信息如表所示:已知该种水果的进价为4.1元/斤,设销售该水果第x (天)的利润为y (元), 求y 与x (1≤x <15)之间的函数解析式,并求出第几天时销售利润最大.②在①的条件下,问这14天中有多少天的销售利润不低于330元,请直接写出结果. 【答案】(1) 设该种水果每次降价的百分率为x ,依题意,得: 10(1-x )2=8.1,解得x =0.1或1.9(舍去). 答:该种水果每次降价的百分率为10%.(2) ① 当1≤x <9时,第一次降价后的价格为10(1-10%)=9(元), ∴y =(9-4.1)(80-3x )-(40+3x )=-17.7x +352,y 随x 的增大而减小,∴当x =1时,y 取得最大值为334.3(元); 当9≤x <15时,第二次降价后的价格为8.1(元),∴y =(8.1-4.1)(120-x )-(3x 2-64x +400)=-3x 2+60x +80=-3(x -10)2+380, 图象的开口向下,当x =10时,y 取得最大值为380(元)>334.3(元).时间x (天) 1≤x <9 9≤x <15 售价(元/斤) 第1次降价后的价格第2次降价后的价格销量(斤) 80-3x 120-x 储存和损耗费用(元)40+3x3x 2-64x +400综上,第10天时销售利润最大. ②7天.提示:当1≤x <9时,y =-17.7x +352≥330,解得x ≤220177, ∵x 为正整数,∴x =1;当9≤x <15时,y =-3(x -10)2+380≥330,解得10-563≤x ≤10+563, ∵x 为正整数,9≤x <15,∴x =9,10,11,12,13,14,共6天; 1+6=7,故一共有7天.24.(12分)直线y =kx +k +2与抛物线y =12x 2交于A 、B 两点(A 在B 的左侧). (1)直线AB 经过一个定点M ,直接写出M 点的坐标;(2)如图1,点C (-1,m )在抛物线上,若△ABC 的面积为3,求k 的值;(3)如图2,分别过A 、B 且与抛物线只有唯一公共点的两条直线交于点P ,求OP 的最小值. 【答案】(1) M (-1,2);提示:y =k (x +1)+2, 直线AB 过定点,令x +1=0, 得y =2,∴定点为M (-1,2). (2) 过C 作CD ∥y 轴交AB 于D ,把C (-1,m )代入y =12x 2,得C (-1,12).把x =-1代入y =kx +k +2,得D (-1,2), ∴CD =2-12=32.联立2212y kx k y x =++⎧⎪⎨=⎪⎩,得x 2-2kx -(2k +4)=0, 设点A 、B 的横坐标分别为a 、b ,则a 、b 为上述方程的根, ∴a +b =2k ,ab =-(2k +4).∵△ABC 的面积为3,由铅垂法,得12CD (b -a )=3,即12×32(b -a )=3,∴b -a =4. 两边平方,得(a +b )2-4ab =16,∴(2k )2+4(2k +4)=16, 整理,得:k 2+2k =0,解得k =0或-2. (3) 设点A 、B 的横坐标分别为a 、b ,则a ≠b . 由(2),a +b =2k ,ab =-(2k +4),∴设直线P A 的解析式为y =px +q ,联立212y px qy x =+⎧⎪⎨=⎪⎩,得 x 2-2px -2q =0,D∵P A 与抛物线只有唯一公共点,∴上述方程有两个相等的实数根(x 1=x 2=a ), 由根与系数的关系,得a +a =2p ,a ·a =-2q ,∴p =a ,q =-12a 2.∴直线P A 的解析式为y =ax -12a 2.同理,直线PB 的解析式为y =bx -12b 2.联立221212y ax a y bx b ⎧=-⎪⎪⎨⎪=-⎪⎩,解得x =2a b +=k ,y =2ab =-(k +2). ∴P (k ,-k -2).∴OP 2=k 2+(-k -2)2=2k 2+4k +4=2(k +1)2+2, 当k =-1时,OP 2.。
人教版 九年级数学上册 第22章 二次函数 综合复习题(含答案)
人教版九年级数学上册第22章二次函数综合复习题一、选择题1. 如图,抛物线的函数解析式是()A.y=x2-x+2B.y=x2+x+2C.y=-x2-x+2D.y=-x2+x+22. 如图所示,根据图象提供的信息,下列结论正确的是()A.a1>a2>a3>a4B.a1<a2<a3<a4C.a4>a1>a2>a3D.a2>a3>a1>a43. 点P1(-1,y1),P2(3,y2),P3(5,y3)均在二次函数y=-x2+2x+c的图象上,则y1,y2,y3的大小关系是()A. y3>y2>y1B. y3>y1=y2C. y1>y2>y3D. y1=y2>y34. 二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b<0;②c>0;③a+c<b;④b2-4ac>0,其中正确的个数是()A. 1B. 2C. 3D. 45. 如图,△ABC是直角三角形,∠A=90°,AB=8 cm,AC=6 cm,点P从点A 出发,沿AB方向以2 cm/s的速度向点B运动;同时点Q从点A出发,沿AC 方向以1 cm/s的速度向点C运动,当其中一个动点到达终点时,另一个动点也停止运动,则四边形BCQP面积的最小值是()A.8 cm2B.16 cm2C.24 cm2D.32 cm2 6. 如图,已知二次函数y=ax2+bx+c(a>0)的图象经过A(-1,2),B(2,5),顶点坐标为(m,n),则下列说法中错误的是()A. c<3B. m≤1 2C. n≤2D. b<17. 已知二次函数y=ax2-bx-2(a≠0)的图象的顶点在第四象限,且过点(-1,0),当a-b为整数时,ab的值为()A. 34或1 B.14或1 C.34或12 D.14或348. 已知抛物线y=ax2+bx+c(b>a>0)与x轴最多有一个交点.现有以下四个结论:①该抛物线的对称轴在y轴左侧;②关于x的方程ax2+bx+c+2=0无实数根;③a-b+c≥0;④a+b+cb-a的最小值为3.其中,正确结论的个数为()A. 1个B. 2个C. 3个D. 4个9. 二次函数y=ax2与一次函数y=ax+a在同一坐标系中的大致图象可能是()10. 如图,将函数y=12(x-2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A′,B′.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数解析式是()A.y=12(x-2)2-2 B.y=12(x-2)2+7C.y=12(x-2)2-5 D.y=12(x-2)2+4二、填空题11. 已知函数y=-x2-2x,当________时,函数值y随x的增大而增大.12. 若函数y=x2+2x-m的图象与x轴有且只有一个交点,则m的值为________.13. 抛物线y=3x2-8x+4与x轴的两个交点坐标分别为______________.14. 已知二次函数y=(x-m)2-1,当x<1时,y随x的增大而减小,则m的取值范围是________.15. 飞机着落后滑行的距离s(单位:米)关于滑行时间t(单位:秒)的函数解析式是s=60t-32t2,则飞机着落后滑行的最长时间为________秒.16. 已知二次函数y=3x2+c与正比例函数y=4x的图象只有一个交点,则c的值为________.17. 某大学生利用业余时间销售一种进价为60元/件的文化衫,前期了解并整理了销售这种文化衫的相关信息如下:(1)月销量y(件)与售价x(元/件)的关系满足y=-2x+400;(2)工商部门限制售价x满足70≤x≤150(计算月利润时不考虑其他成本).给出下列结论:①这种文化衫的月销量最小为100件;②这种文化衫的月销量最大为260件;③销售这种文化衫的月利润最小为2600元;④销售这种文化衫的月利润最大为9000元.其中正确的是________.(把所有正确结论的序号都填上)18. 如图,在平面直角坐标系中,抛物线y=ax2(a>0)与y=a(x-2)2交于点B,抛物线y=a(x-2)2交y轴于点E,过点B作x轴的平行线与两条抛物线分别交于D,C两点.若A是x轴上两条抛物线顶点之间的一点,连接AD,AC,EC,ED,则四边形ACED的面积为________.(用含a的代数式表示)三、解答题19. 如图所示,有一座抛物线形拱桥,桥下面在正常水位时,水面AB宽20 m,水位上升到警戒线CD时,拱桥顶O到CD的距离仅为1 m,这时水面宽度为10 m.(1)在如图所示的坐标系中求抛物线的解析式;(2)若洪水到来时,水位以每小时0.3 m的速度上升,则从正常水位开始,持续多少小时水位到达警戒线?20. 已知二次函数y=x2+x的图象如图所示.(1)根据方程的根与函数图象之间的关系,将方程x2+x=1的根在图上近似地表示出来(描点),并观察图象,写出方程x2+x=1的根(精确到0.1).(2)在同一平面直角坐标系中画出一次函数y=12x+32的图象,观察图象,写出自变量x的取值在什么范围内时,一次函数的值小于二次函数的值.(3)如图,P是坐标平面上的一点,并在网格的格点上,请选择一种适当的平移方法,使平移后二次函数图象的顶点落在点P处,写出平移后二次函数图象的函数解析式,判断点P是否在函数y=12x+32的图象上,并说明理由.21. 正方形OABC的边长为4,对角线相交于点P,抛物线L经过O、P、A三点,点E是正方形内的抛物线上的动点.(1)建立适当的平面直角坐标系,①直接写出O,P,A三点坐标;②求抛物线L 的解析式;(2)求△OAE与△OCE面积之和的最大值.22. 已知:如图,抛物线y=ax2+3ax+c(a>0)与y轴负半轴交于点C,与x轴交于A,B两点,点A在点B的左侧,点B的坐标为(1,0),OC=3OB.(1)求抛物线的解析式.(2)若D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值.(3)若点E在x轴上,点P在抛物线上.是否存在以A,C,E,P为顶点且以AC 为一边的平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.。
人教版九年级上册数学 第22章 二次函数 单元复习练习题(含答案)
人教版九年级上册数学 第22章 二次函数 单元复习练习题一、选择题1.如图是抛物线y 1=ax 2+bx +c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x 轴的一个交点B(4,0),直线y 2=mx +n(m≠0)与抛物线交于A ,B 两点,下列结论:①2a +b =0;②abc>0;③方程ax 2+bx +c =3有两个相等的实数根;②抛物线与x 轴的另一个交点是(-1,0);②当1<x<4时,有y 2<y 1,其中正确的是( )A .①④⑤B .①③④⑤C .①③⑤D .①②③2.如图,抛物线21043y ax x =-+与直线43=+y x b 经过点()2,0A ,且相交于另一点B ,抛物线与y 轴交于点C ,与x 轴交于另一点E ,过点N 的直线交抛物线于点M ,且MN y 轴,连接,,,AM BM BC AC ,当点N 在线段AB 上移动时(不与A 、B 重合),下列结论正确的是( )A .MN BN AB +<B .BAC BAE ∠=∠ C .12ACB ANM ABC ∠-∠=∠D .四边形ACBM 的最大面积为133.如图,已知在矩形 ABCD 中,AB =4,AD =3,连接 AC ,动点 Q 以每秒 1 个单位的速度沿 A→B→C 向点 C 匀速运动,同时点 P 以每秒 2 个单位的速度沿 A→C→D 向点 D 匀速运动,连接 PQ ,当点 P 到达终点 D 时,停止运 动,设△APQ 的面积为 S ,运动时间为 t 秒,则 S 与 t 函数关系的图象大致为( )A .B .C .D .4.二次函数()20y ax bx c a =++≠图象的一部分如图所示,顶点坐标为()1,m -,与x 轴的一个交点的坐标为(-3,0),给出以下结论:①0abc >;②420a b c -+>;③若15,2B y ⎛⎫- ⎪⎝⎭、21,2C y ⎛⎫- ⎪⎝⎭为函数图象上的两点,则12y y <;④当30x -<<时方程2ax bx c t ++=有实数根,则t 的取值范围是0t m <≤.其中正确的结论的个数为( )A .1个B .2个C .3个D .4个5.如图所示,抛物线2(0)y ax bx c a =++≠的对称轴为直线1x =,与y 轴的一个交点坐标为()0,3,其部分图象如图所示,下列结论:①0abc <;②40a c +>;③方程23ax bx c ++=的两个根是120,2x x ==;④方程20ax bx c ++=有一个实根大于2; ⑤当0x <时,y 随x 增大而增大.其中结论正确的个数是( )A .4个B .3个C .2个D .1个6.抛物线y =ax 2+bx +c (a ≠0)与x 轴的一个交点坐标为(2,0),对称轴是直线x =1,其图象的一部分如图所示,对于下列说法:其中正确的是( )①抛物线过原点:②a ﹣b +c <0:③2a +b +c =0;④抛物线顶点为(1,2b ):⑤当x <1时,y 随x 的增大而增大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题1. 抛物线221y x x =-+的顶点坐标是A .(1,0)B .(-1,0)C .(-2,1)D .(2,-1)2. 将抛物线2y x =-向左平移2个单位后,得到的抛物线的解析式是A .2(2)y x =-+B 22y x =-+C .2(2)y x =--D .22y x =--3. 由二次函数1)3(22+-=x y ,可知( )A .其图象的开口向下B .其图象的对称轴为直线3-=xC .其最小值为1D .当3<x 时,y 随x 的增大而增大 4. 若二次函数y=ax 2+bx+c 的x 与y 的部分对应值如下表:X -7 -6 -5 -4 -3 -2 y-27-13-3353则当x =1时,y 的值为B.-3C.-135.若二次函数2()1y x m =--.当x ≤l 时,y 随x 的增大而减小,则m 的取值范围是( )A .m =lB .m >lC .m ≥lD .m ≤l6. 如图所示的二次函数2y ax bx c =++的图象中,刘星同学观察得出了下面四条信息:(1)240b ac ->;(2)c >1;(3)2a -b <0;(4)a +b +c <0。
你认为其中错误..的有 A .2个B .3个C .4个D .1个7. 已知二次函数y =x 2﹣4x +2,关于该函数在﹣1≤x ≤3的取值范围内,下列说法正确的是( )DA .有最大值﹣1,有最小值﹣2B .有最大值0,有最小值﹣1C .有最大值7,有最小值﹣1D .有最大值7,有最小值﹣28.在同一平面直角坐标系中,若抛物线y =x 2+(2m ﹣1)x +2m ﹣4与y =x 2﹣(3m +n )x +n 关于y 轴对称,则符合条件的m ,n 的值为( )DA .m =,n =﹣B .m =5,n =﹣6C .m =﹣1,n =6D .m =1,n =﹣2 9.将二次函数y =x 2﹣5x ﹣6在x 轴上方的图象沿x 轴翻折到x 轴下方,图象的其余部分不变,得到一个新图象,若直线y =2x +b 与这个新图象有3个公共点,则b 的值为( )A A .﹣或﹣12B .﹣或2C .﹣12或2D .﹣或﹣1210.如图,利用一个直角墙角修建一个梯形储料场ABCD ,其中∠C =120°.若新建墙BC 与CD 总长为12m ,则该梯形储料场ABCD 的最大面积是( )CA .18m 2B .18m 2C .24m 2D .m 2二、填空题11. 抛物线y=x 2-2x -3的顶点坐标是12.将二次函数245y x x =-+化为2()y x h k =-+的形式,则y = . 13. 将抛物线y =x 的图象向上平移1个单位,则平移后的抛物线的解析式为14.一个y 关于x 的函数同时满足两个条件:①图象过(2,1)点;②当x >0时,y 随x 的增大而减小,这个函数解析式为____________________(写出一个即可) 15. 如图,是二次函数 y =ax 2+bx +c (a ≠0)的图象的一部分, 给出下列命题 :①a+b+c=0;②b >2a ;③ax 2+bx +c =0的两根分别为-3和1;④a -2b +c >0.其中正确的命题是 .(只要求填写正确命题的序号)16.抛物线2y ax bx c =++上部分点的横坐标x ,纵坐标y 的对应值如下表:x … -2 -1 0 1 2 … y…4664…从上表可知,下列说法中正确的是 .①抛物线与x 轴的一个交点为(3,0); ②函数2y ax bx c =++的最大值为6;③抛物线的对称轴是12x =; ④在对称轴左侧,y 随x 增大而增大. 17. 已知二次函数的图象经过点P (2,2),顶点为O (0,0)将该图象向右平移,当它再次经过点P 时,所得抛物线的函数表达式为 .18. 如图,若被击打的小球飞行高度h (单位:m )与飞行时间t (单位:s )之间具有的关系为h =20t ﹣5t 2,则小球从飞出到落地所用的时间为 s .三、解答题19.(2019年四川省凉山州)已知二次函数y =x 2+x +a 的图象与x 轴交于A (x 1,0)、B (x 2,0)两点,且1112221=+x x ,求a 的值. 20.已知抛物线212y x x c =++与x 轴有交点. (1)求c 的取值范围;(2)试确定直线y =cx +l 经过的象限,并说明理由. 21. 已知函数y=mx 2-6x +1(m 是常数).⑴求证:不论m 为何值,该函数的图象都经过y 轴上的一个定点; ⑵若该函数的图象与x 轴只有一个交点,求m 的值.22.设函数1x )1k 2(kx y 2+++=(k 为实数)。
(1)写出其中的两个特殊函数,使他们的图像不全是抛物线,并在同一直角坐标系中,用描点法画出这两个特殊函数的图像;(2)根据所画图像,猜想出:对于任意实数k ,函数的图像都具有的特征,并给予证明; (3)对于任意负实数k ,当x<m 时,y 随x 的增大而增大,试求出m 的一个值。
23.在“我为祖国点赞“征文活动中,学校计划对获得一,二等奖的学生分别奖励一支钢笔,一本笔记本.已知购买2支钢笔和3个笔记本共38元,购买4支钢笔和5个笔记本共70元.(1)钢笔、笔记本的单价分别为多少元(2)经与商家协商,购买钢笔超过30支时,每增加1支,单价降低元;超过50支,均按购买50支的单价售,笔记本一律按原价销售.学校计划奖励一、二等奖学生共计100人,其中一等奖的人数不少于30人,且不超过60人,这次奖励一等奖学生多少人时,购买奖品总金额最少,最少为多少元24. 在画二次函数y =ax 2+bx +c (a ≠0)的图象时,甲写错了一次项的系数,列表如下x …… ﹣1 0 1 2 3 …… y 甲……63236……乙写错了常数项,列表如下:x …… ﹣1 0 1 2 3 …… y 乙……﹣2﹣12714……通过上述信息,解决以下问题:(1)求原二次函数y =ax 2+bx +c (a ≠0)的表达式; (2)对于二次函数y =ax 2+bx +c (a ≠0),当x 时,y 的值随x 的值增大而增大; (3)若关于x 的方程ax 2+bx +c =k (a ≠0)有两个不相等的实数根,求k 的取值范围.参考答案:一、1.A ;2.A ;3.C ;4.D ;5.C ;6.D ; 二、11.(1,-4);12.2(2)1y x =-+;13.y =x 2+1;14.如:22,3,5y y x y x x==-+=-+等,写出一个即可; 15.①③;16.①③④ 17. y =(x ﹣4)218. 4三、19. 解:y =x 2+x +a 的图象与x 轴交于A (x 1,0)、B (x 2,0)两点, ∴x 1+x 2=﹣1,x 1•x 2=a ,∵=+222111x x 22212221x x x x •+=121)(2)(222121221=-=-+a a x x x x x x , ∴a =﹣1+或a =﹣1﹣;20.(1)∵抛物线与x 轴没有交点,∴⊿<0,即1-2c <0,解得c >12(2)∵c >12,∴直线y=12x +1随x 的增大而增大,∵b=1,∴直线y=12x +1经过第一、二、三象限21.解:⑴当x=0时,1y =.所以不论m 为何值,函数261y mx x =-+的图象经过y 轴上的一个定点(0,1).⑵①当0m =时,函数61y x =-+的图象与x 轴只有一个交点;②当0m ≠时,若函数261y mx x =-+的图象与x 轴只有一个交点,则方程2610mx x -+=有两个相等的实数根,所以2(6)40m --=,9m =.综上,若函数261y mx x =-+的图象与x 轴只有一个交点,则m 的值为0或9. 22.解:(1)如两个函数为21,31y x y x x =+=++,函数图形略;(2)不论k 取何值,函数2(21)1y kx k x =+++的图象必过定点(0,1),(2,1)--,且与x 轴至少有1个交点.证明如下:由2(21)1y kx k x =+++,得2(2)(1)0k x x x y ++-+=,当220,10x x x y +=-+=且,即0,12,1x y x y ===-=-,或时,上式对任意实数k 都成立,所以函数的图像必过定点(0,1),(2,1)--.又因为当0k =时,函数1y x =+的图像与x 轴有一个交点;当0k ≠时,22(21)4410k k k ∆=+-=+>,所以函数图像与x 轴有两个交点.所以函数2(21)1y kx k x =+++的图象与x 轴至少有1个交点. (3)只要写出1m ≤-的数都可以.0k <,∴函数2(21)1y kx k x =+++的图像在对称轴直线212k x k +=-的左侧,y 随x 的增大而增大.根据题意,得212k m k+≤-,而当0k <时,2111122k k k+-=-->-,所以1m ≤-.23. 解:(1)钢笔、笔记本的单价分别为x 、y 元,根据题意得,⎩⎨⎧=+=+70543832y x y x ,解得:⎩⎨⎧==610y x ,答:钢笔、笔记本的单价分别为10元,6元;(2)设钢笔的单价为a 元,购买数量为b 元,支付钢笔和笔记本的总金额w 元,①当30≤b ≤50时,a =10﹣(b ﹣30)=﹣+13,w =b (﹣+13)+6(100﹣b )=﹣+7b +600=﹣(b ﹣35)2+,∵当b =30时,w =720,当b =50时,w =700,∴当30≤b ≤50时,700≤w ≤;②当50<b ≤60时,a =8,w =8b +6(100﹣b )=2b +600,700<w ≤720,∴当30≤b ≤60时,w 的最小值为700元,∴这次奖励一等奖学生50人时,购买奖品总金额最少,最少为700元. 24. 解:(1)由甲同学的错误可知c =3,由甲同学提供的数据选x =﹣1,y =6;x =1,y =2,有⎩⎨⎧++=+-=3236b a b a ,∴⎩⎨⎧-==21b a ,∴a =1,由甲同学给的数据a =1,c =3是正确的; 由乙同学提供的数据,可知c =﹣1, 选x =﹣1,y =﹣2;x =1,y =2,有⎩⎨⎧++=+-=-c b a c b a 22,∴⎩⎨⎧==21b a ,∴a =1,b =2,∴y =x 2+2x +3;(2)y =x 2+2x +3的对称轴为直线x =﹣1,∴抛物线开口向上, ∴当x ≥﹣1时,y 的值随x 的值增大而增大;故答案为≥﹣1; (3)方程ax 2+bx +c =k (a ≠0)有两个不相等的实数根, 即x 2+2x +3﹣k =0有两个不相等的实数根, ∴△=4﹣4(3﹣k )>0,∴k >2;:。