流体力学公式总结(完整资料).doc
流体力学公式总结

工程流体力学公式总结第二章流体得主要物理性质❖流体得可压缩性计算、牛顿内摩擦定律得计算、粘度得三种表示方法。
1.密度ρ= m/V2.重度γ= G /V3.流体得密度与重度有以下得关系:γ= ρg或ρ= γ/ g4.密度得倒数称为比体积,以υ表示υ= 1/ ρ= V/m5.流体得相对密度:d = γ流/γ水= ρ流/ρ水6.热膨胀性7.压缩性、体积压缩率κ8.体积模量9.流体层接触面上得内摩擦力10.单位面积上得内摩擦力(切应力)(牛顿内摩擦定律)11.、动力粘度μ:12.运动粘度ν:ν=μ/ρ13.恩氏粘度°E:°E = t 1 /t 2第三章流体静力学❖重点:流体静压强特性、欧拉平衡微分方程式、等压面方程及其、流体静力学基本方程意义及其计算、压强关系换算、相对静止状态流体得压强计算、流体静压力得计算(压力体)。
1.常见得质量力:重力ΔW = Δmg、直线运动惯性力ΔFI =Δm·a离心惯性力ΔFR =Δm·rω2、2.质量力为F。
:F= m·am= m(fxi+f yj+fzk)am =F/m = f xi+f yj+fzk为单位质量力,在数值上就等于加速度实例:重力场中得流体只受到地球引力得作用,取z轴铅垂向上,xoy为水平面,则单位质量力在x、y、z轴上得分量为fx= 0,fy=0 , fz=-mg/m= -g式中负号表示重力加速度g与坐标轴z方向相反3流体静压强不就是矢量,而就是标量,仅就是坐标得连续函数。
即:p=p(x,y,z),由此得静压强得全微分为:4.欧拉平衡微分方程式单位质量流体得力平衡方程为:5.压强差公式(欧拉平衡微分方程式综合形式)6.质量力得势函数7.重力场中平衡流体得质量力势函数积分得:U =-gz + c*注:旋势判断:有旋无势流函数就是否满足拉普拉斯方程:8.等压面微分方程式、fx dx+fy d y + fz d z =09.流体静力学基本方程对于不可压缩流体,ρ=常数。
流体力学公式总结.

流体微团运动分析加速度 : 欧拉法的加速度三个分量 z u u yu u xu u tu DtDu a y zy y y x y yy ∂∂+∂∂+∂∂+∂∂==zu u yu u xu u tu DtDu a z zz yz xz z z ∂∂+∂∂+∂∂+∂∂==zu u yu u xu u tu DtDu a x zx yx xx x x ∂∂+∂∂+∂∂+∂∂= =uu tu Dtu D a(∇∙+∂∂==哈密顿算子tk t j t i ∂∂+∂∂+∂∂=∇ 1. 线变形(1线应变率(线变形速度 :(2面积扩张率 : 流体面元的面积在平面内的局部瞬时相对扩张速率(3体积膨胀率 :流体体元的体积在空间的局部瞬时相对膨胀速率xu x xx ∂∂=εyu y yy∂∂=εzu z zz∂∂=εyu x u u y x ∂∂+∂∂=∙∇ zu y u x u u zy x ∂∂+∂∂+∂∂=∙∇⎪⎪⎭⎫⎝⎛∂∂+∂∂=yu x u x yxy21ε⎪⎪⎭⎫⎝⎛∂∂+∂∂=y u z u z y yz 21ε⎪⎭⎫⎝⎛∂∂+∂∂=z u x u x z zx21ε2. 角变形速度:单位时间直角边的偏转角度之半为流体微团的的角变形速度。
3 流体的旋转(旋转运动• 旋转角速度 : 两正交线元在 xy 面内绕一点的旋转角速度平均值⎪⎪⎭⎫⎝⎛∂∂-∂∂=y u xu x yz 21ω(规定逆时针方向为正• 涡量 (三维流场zyxu u u z y x ∂∂∂∂∂∂=⨯∇==Ωk j i uω2⎪⎪⎭⎫⎝⎛∂∂-∂∂=zu y u y z x 21ω⎪⎭⎫⎝⎛∂∂-∂∂=x u z u z x y 21ω• 流体微团运动一般由平动、转动和变形运动(线变形和角变形三部分组成。
4. 无旋运动和有旋运动zyxu u u z y x ∂∂∂∂∂∂=⨯∇==Ωk j i uω2kj i (2z y x ωωω++=Ω21k j i ω=++=z y x ωωω00; 0; 0Ω21k j i ω===⇒⇒==++=z y x z y x ωωωωωω凡是流体微团不存在旋转运动的流动称为无旋运动或有势运动;否则称为有旋运动。
流体力学公式总结资料

流体力学公式总结工程流体力学公式总结第二章 流体的主要物理性质❖ 流体的可压缩性计算、牛顿内摩擦定律的计算、粘度的三种表示方法。
1.密度 ρ = m2.重度 γ = G3.流体的密度和重度有以下的关系:γ = ρ g 或 ρ =γ/ g4.密度的倒数称为比体积,以υ表示υ = 1/ ρ =5.流体的相对密度:d = γ流 /γ水 = ρ流 /ρ水6.热膨胀性7.压缩性. 体积压缩率κ8.体积模量9.流体层接触面上的内摩擦力10.单位面积上的内摩擦力(切应力)(牛顿内摩擦定律)TV V ∆∆=1αpV V ∆∆-=1κVPV K ∆∆-=κ1nA F d d υμ=dnd vμτ±=11..动力粘度μ:12.运动粘度ν :ν = μ/ρ13.恩氏粘度°E :°E = t 1 / t 2第三章 流体静力学❖ 重点:流体静压强特性、欧拉平衡微分方程式、等压面方程及其、流体静力学基本方程意义及其计算、压强关系换算、相对静止状态流体的压强计算、流体静压力的计算(压力体)。
1.常见的质量力:重力ΔW = Δ、直线运动惯性力Δ = Δm ·a离心惯性力Δ = Δm ·rω2 .2.质量力为F 。
:F = m · = m ()= = 为单位质量力,在数值上就等于加速度实例:重力场中的流体只受到地球引力的作用,取z 轴铅垂向上,为水平面,则单位质量力在x 、y 、 z 轴上的分量为0 , 0 , =式中负号表示重力加速度g 与坐标轴z 方向相反3流体静压强不是矢量,而是标量,仅是坐标的连续函数。
即: p (),由此得静压强的全微分为:nv d /d τμ=z z p y y p x x p p d d d d ∂∂∂∂∂∂++=4.欧拉平衡微分方程式单位质量流体的力平衡方程为:5.压强差公式(欧拉平衡微分方程式综合形式)6.质量力的势函数7.重力场中平衡流体的质量力势函数积分得:U = + cd d d d d d 0x p f x y z x y z x∂∂-=ρd d d d d d 0y p f x y z x y z y ∂∂-=ρd d d d d d 0z p f x y z x y z z∂∂-=ρ01=∂∂-x p f x ρ10y p f y ∂∂-=ρ01=∂∂-z p f z ρz z p y y p x x p z f y f x f z y x d d d )d d d (∂∂+∂∂+∂∂=++ρ)d d d (d z f y f x f p z y x ++=ρd (d d d )x y z p f x f y f z dUρ=++=ρd d d d x y z U U U U x y z =f dx f dy f dz x y z gdz ∂∂∂∂∂∂=++++=-*注:旋势判断:有旋无势流函数是否满足拉普拉斯方程:22220x y ψψ∂∂+=∂∂8.等压面微分方程式 + + = 09.流体静力学基本方程对于不可压缩流体,ρ = 常数。
流体力学52个常用公式总结

流体力学常用公式总结1.液体的比重γ=ρg2.液体对水的密度比S=ρρwaterγ=Sγwater3.静水压强差ΔP=ρgh 4.剪应力和速度的关系τ=μdu dy5.三维的流速场的一般表达V=V(x,y,z,t)=u(x,y,z,t)i+v(x,y,z,t)j+w(x,y,z,t)k 6.三维的流线方程的一般形式dx u =dyv=dzw7.三维流场的加速度的一般形式8.三维流场的加速度的三个分量9.三维流场的连续性方程ðu ðx +ðvðy+ðwðz=010.流量的定义式11.流量的另一种表达AU=V→U=V A12.控制体内质量的变化律m=ρAU=ρV 13.控制体出入口进出质量守恒的方程ρ1A1U1=ρ2A2U2 14.雷诺数Re=ρUD μ15.伯努利方程的定义式P γ+v22g+Z=H16.理想条件下伯努利方程的形式P1γ+v122g+Z1=P2γ+v222g+Z217.考虑了损耗的伯努利方程P1γ1+v122g+z1=P2γ2+v222g+z2+H L18.一般情况下的伯努利方程P1γ1+v122g+z1+H p=P2γ2+v222g+z2+H t+H L19.系统动能变化率的一般式Q net+W net=dE sys dt19.系统功率的一般式Power=WΔt=F∙sΔt=F∙v=γQH=m gH20.一般情况下的伯努利方程的H p项H p=E pumpm g=Power pumpm g21.一般情况下的伯努利方程的H L项E loss=m gH L22.系统效率的一般式η=E out E in23.水泵的机械效率ηp=γQHPower→Power=γQHηp=PQηp24.水力发电机的机械效率ηt=Power→Power=γQH∙ηt=PQ∙ηt25.由动量守恒推导出的二向流体压力式F x=P1A1cosθ1−P2A2cosθ2+ρQ(v1cosθ1−v2cosθ2)−F y=P1A1sinθ1−P2A2sinθ2+ρQ(v1sinθ1−v2sinθ2) 26.由动量守恒推导出的流体压力的方向角α=tan−1(F y F x )27.喷气式飞机的理想模型F=ρ2Q2v2−ρ1Q1v1=m2v2−m1v1 28.由角动量定理的流体力矩T=r×ρQ(v2−v1)=ρQ[(r2×v2)−(r1×v1)] 29.力矩大小|T|=ρQ(r2v t2−r1v t1) 30.驱动力矩的功率Power=|T|ω31.斯托克斯方程的一般形式ρg−∇P+μ∇2V=ρDV Dt32.流体的旋度33.x方向的斯托克斯方程ρg x−ðPðx+μ(ð2uðx2+ð2uðy2+ð2uðz2)=ρ(dudt+ududx+vdudy+wdudz)34.二维平面流的连续性方程ðu ðx +ðvðy=035.二维平面的流函数u≡ðΨðy,v≡−ðΨðx36.极坐标下的二维平面流的连续性方程1 r ð(rv r)ðr+1rðvθðθ=037.极坐标下的二维平面的流函数v r=1rðΨðθ,vθ=−ðΨðr38.笛卡尔坐标系的势流方程ð2Φðx2+ð2Φðy2+ð2Φðz2=039.通过势流求极坐标的速度v r=ðΦðr,vθ=1rðΦðθ,v z=ðΦðz40.极坐标系的势流方程1 r ððr(rðΦðr)+1r2ð2Φðθ2+ð2Φðz2=041.通过势流求笛卡尔坐标系的速度u=ðΦðx,v=ðΦðy,w=ðΦðz42.笛卡尔坐标势流方程和流函数之间的互换u=ðΨðy,v=−ðΨðx⇔u=ðΦðx,v=ðΦðy43.极坐标势流方程和流函数之间的互换v r=1rðΨðθ,vθ=−ðψðr⇔v r=ðΦðr,vθ=1rðΦðθ44.马赫数M≡v a45.弗劳德数Fr≡v Lg46.欧拉数Eu≡ΔP ρv247.韦伯数We≡ρLv2σ48.管流在管壁上产生的剪应力τ=ΔPD 4L49.管流在管中的最大速度u max=R2dP 50.管内流量Q=ΔPπD4 51.管流的平均速度v avg=12u max52.管流速度关于半径的函数u(r)=14μ(ΔPL−ρg sinθ)(R2−r2)53.倾斜的管道的流量Q=πD4128μL(ΔP−ρgL sinθ)54.管道内流体的摩擦系数H f=f LDv avg22gf=f(Re)=64 Re。
流体力学计算公式

流体力学计算公式流体力学是研究流体的运动规律和性质的一门学科,广泛应用于工程和科学领域中。
在流体力学的研究过程中,有许多重要的计算公式和方程被提出和应用。
下面是一些重要的流体力学计算公式。
1.压力力学方程:压力力学方程是描述流体力学中流体静压力分布和变化的方程。
对于稳定的欧拉流体,方程为:∇P=-ρ∇φ其中,P是压力,ρ是流体的密度,φ是流体的势函数。
2.欧拉方程:欧拉方程用于描述流体的运动,它是流体运动的基本方程之一:∂v/∂t+v·∇v=-1/ρ∇P+g其中,v是流体的速度,P是压力,ρ是流体的密度,g是重力加速度。
3.奇异体流动方程:奇异体流动是流体与孤立涡流动的一种类型,其方程为:D(D/u)/Dt=0其中,D/Dt是对时间的全导数,u是速度向量。
4.麦克斯韦方程:5.纳维-斯托克斯方程:纳维-斯托克斯方程是描述流体的动力学行为的方程,它是流体力学中最重要的方程之一:∂v/∂t+v·∇v=-1/ρ∇P+μ∇²v其中,v是速度矢量,P是压力,ρ是密度,μ是动力黏度。
6.贝努利方程:贝努利方程描述了在不可压缩流体中流体静力学的变化。
贝努利方程给出了伯努利定律,即沿着一条流线上的速度增加,压力将降低,反之亦然。
贝努利方程的公式为:P + 1/2ρv^2 + ρgh = const.其中,P是压力,ρ是密度,v是流体速度,g是重力加速度,h是流体高度。
7.流量方程:流量方程用于描述流体在管道或通道中的流动。
Q=A·v其中,Q是流量,A是截面积,v是流速。
8.弗朗脱方程:弗朗脱方程是描述管道中流体流动的方程,其中考虑了摩擦阻力的影响:hL=f(L/D)(v^2/2g)其中,hL是管道摩擦阻力头损失,f是阻力系数,L是管道长度,D 是管道直径,v是流速,g是重力加速度。
以上是一些重要的流体力学计算公式。
这些公式和方程在流体力学中具有广泛的应用,是工程和科学领域中进行流体流动分析和计算的基础。
(完整word版)流体力学计算公式(word文档良心出品)

1、单位质量力:mF f B B = 2、流体的运动粘度:ρμ=v (μ[动力]粘度,ρ密度) 3、压缩系数:dpd dp dV V ρρκ∙=∙-=11(κ的单位是N m 2)体积模量为压缩系数的倒数 4、体积膨胀系数:dTd dT dV V v ρρα∙-=∙=11(v α的单位是C K ︒1,1) 5、牛顿内摩擦定律:为液体厚)为运动速度,以应力表示为y u dy du dy du AT (,μτμ== 6、静止液体某点压强:为该点到液面的距离)h gh p z z g p p ()(000ρρ+=-+=7、静水总压力:)h (为受压面积,为受压面形心淹没深度为静水总压力,A p ghA A p p c ρ==8、元流伯努利方程;'2221112w h gp z g u g p z ++=++ρρ('w h 为粘性流体元流单位重量流体由过流断面1-1运动至过流断面2-2的机械能损失,z 为某点的位置高度或位置水头,gp ρ为测压管高度或压强水头,gu ρ2是单位流体具有的动能,u gh g p p g u 22'=-=ρ,u gh C gp p g C u 22'=-=ρC 是修正系数,数值接近于1) 9、总流伯努利方程:w h gv g p z g v g p z +++=++222221221111αραρ(α为修正系数通常取1) 10、文丘里流量计测管道流量:)21)(41()()(42122211g d d d k h k g p z g p z k Q -=∆=+-+=πμρρμ 11、沿程水头损失一般表达式:gv d l h f 22λ=(l 为管长,d 为管径,v 为断面平均流速,g 为重力加速度,λ为沿程阻力系数)12、局部水头损失一般表达式:对应的断面平均流速)为为局部水头损失系数,ςςςv gv h j (22= 13、圆管流雷诺数:为圆管直径)为运动粘度,为流速,d v (u vud R e = 14、非圆管道流雷诺数:χA R R v uR R e ==水力半径为水力半径,(A 为过流断面面积,x 为过流断面上流体与固体接触的周界,矩形断面明渠流的水力半径:hb bh R 2+=,b 为明渠宽度,h 为明渠水深) 15、均匀流动方程式:gRJ lh gR gR l gA l h f f ρρςρςρχς====000或(R 为水力半径,J 为水力坡度,l h J f=)16、流束的均匀流动方程:''J gR ρτ=(τ为所取流束表面的剪应力,'R 为所取流束的水力半径,'J 为所取流束的水力坡度,与总水流坡度相等)17、过流断面上的流速分布的解析式:)(4220r r gJ u -=μρ 18、平均流速:20208r gJ r Q A Q v μρπ===,断面平均流速与最大流速的关系:max 21u v = 19、沿程水头损失:为沿程摩阻系数其中λλ,22Re 6422gv d l g v d l h f ==,沿程摩阻系数:Re64=λ 20、谢才公式:RJ C RJ g v ==λ8(v 为断面平均流速,R 为水力半径,J 为水力坡度,C 为谢才系数) 21、曼宁公式:)(15.061s m R nC =(n 为综合反映壁面对水流阻滞作用的系数,称为粗糙系数,R 为水力半径)22、局部水头损失:22122211)1(,)1(-=-=A A A A ξξ,21,A A 分别为扩大前断面1-1和正常状态断面2-2的面积,21,ξξ分别为突然扩大前、后两个断面的平均流速对应的两个局部水头损失系数。
流体力学公式总结.

流体微团运动分析加速度 : 欧拉法的加速度三个分量 z u u yu u xu u tu DtDu a y zy y y x y yy ∂∂+∂∂+∂∂+∂∂==zu u yu u xu u tu DtDu a z zz yz xz z z ∂∂+∂∂+∂∂+∂∂==zu u yu u xu u tu DtDu a x zx yx xx x x ∂∂+∂∂+∂∂+∂∂= =uu tu Dtu D a(∇∙+∂∂==哈密顿算子tk t j t i ∂∂+∂∂+∂∂=∇ 1. 线变形(1线应变率(线变形速度 :(2面积扩张率 : 流体面元的面积在平面内的局部瞬时相对扩张速率(3体积膨胀率 :流体体元的体积在空间的局部瞬时相对膨胀速率xu x xx ∂∂=εyu y yy∂∂=εzu z zz∂∂=εyu x u u y x ∂∂+∂∂=∙∇ zu y u x u u zy x ∂∂+∂∂+∂∂=∙∇⎪⎪⎭⎫⎝⎛∂∂+∂∂=yu x u x yxy21ε⎪⎪⎭⎫⎝⎛∂∂+∂∂=y u z u z y yz 21ε⎪⎭⎫⎝⎛∂∂+∂∂=z u x u x z zx21ε2. 角变形速度:单位时间直角边的偏转角度之半为流体微团的的角变形速度。
3 流体的旋转(旋转运动• 旋转角速度 : 两正交线元在 xy 面内绕一点的旋转角速度平均值⎪⎪⎭⎫⎝⎛∂∂-∂∂=y u xu x yz 21ω(规定逆时针方向为正• 涡量 (三维流场zyxu u u z y x ∂∂∂∂∂∂=⨯∇==Ωk j i uω2⎪⎪⎭⎫⎝⎛∂∂-∂∂=zu y u y z x 21ω⎪⎭⎫⎝⎛∂∂-∂∂=x u z u z x y 21ω• 流体微团运动一般由平动、转动和变形运动(线变形和角变形三部分组成。
4. 无旋运动和有旋运动zyxu u u z y x ∂∂∂∂∂∂=⨯∇==Ωk j i uω2kj i (2z y x ωωω++=Ω21k j i ω=++=z y x ωωω00; 0; 0Ω21k j i ω===⇒⇒==++=z y x z y x ωωωωωω凡是流体微团不存在旋转运动的流动称为无旋运动或有势运动;否则称为有旋运动。
流体力学常用公式

Re>4000 时,一般出现湍流型态,称为湍流区;
2000<Re<4000 时,有时层流,有时湍流,处于不稳定状态,称为过渡区;
6
取决于外界干扰条件。
9.牛顿黏性定律 F = µ U Ay
10.剪切应力,或称内摩擦力, N/m2 11.动力黏性系数 µ = − τ
dux dy
τ = −µ dux dy
7.重力场中平衡流体的质量力势函数
dU=
∂U ∂x
d x + ∂U ∂y
d
y
+ ∂U ∂z
dz=
f xdx +
f ydy +
f z dz
= −gdz
积分得:U = -gz + c 8.等压 .面微分方程式 .fxdx + fydy + fzdz = 0 9.流体静力学基本方程
3
对于不可压缩流体,ρ = 常数。积分得 形式一:p + ρgz = c
A1
ρ1u1
d
A
= ∂ρ dV V ∂t
∫ ∫ 对于定常流动 ∂ρ = 0 有 ρ1
∂t
A1 u1 d A = ρ2
A2 u2 d A
即 ρ1A1υ1= ρ2A2υ2
∫ ∫ 对于不可压缩流体,ρ1 = ρ2 =c,有 A1 u1 d A = A2 u2 d A
即
A1υ1=A2υ2= qv
7.三元流动连续性方程式
u = u(a, b, c, t)
υ = υ(a, b, c, t)
w = w(a, b, c, t)
压强 p 的拉格朗日描述是:p=p(a,b,c,t)
2.欧拉法流速场
u = u(x, y, z,t)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【最新整理,下载后即可编辑】工程流体力学公式总结第二章 流体的主要物理性质❖ 流体的可压缩性计算、牛顿内摩擦定律的计算、粘度的三种表示方法。
1.密度 ρ = m /V2.重度 γ = G /V3.流体的密度和重度有以下的关系:γ = ρ g 或 ρ = γ/ g4.密度的倒数称为比体积,以υ表示υ = 1/ ρ = V/m5.流体的相对密度:d = γ流 /γ水 = ρ流 /ρ水6.热膨胀性7.压缩性. 体积压缩率κ8.体积模量9.流体层接触面上的内摩擦力10.单位面积上的内摩擦力(切应力)(牛顿内摩擦定律)11..动力粘度μ:T V V ∆∆=1αp V V ∆∆-=1κV P V K ∆∆-=κ1n A F d d υμ=dn d vμτ±=n v d /d τμ=12.运动粘度ν :ν = μ/ρ13.恩氏粘度°E :°E = t 1 / t 2第三章 流体静力学❖ 重点:流体静压强特性、欧拉平衡微分方程式、等压面方程及其、流体静力学基本方程意义及其计算、压强关系换算、相对静止状态流体的压强计算、流体静压力的计算(压力体)。
1.常见的质量力:重力ΔW = Δmg 、直线运动惯性力ΔFI = Δm ·a离心惯性力ΔFR = Δm ·rω2 .2.质量力为F 。
:F = m ·am = m (f xi+f yj+f zk)am = F /m = f xi+f yj+f zk 为单位质量力,在数值上就等于加速度 实例:重力场中的流体只受到地球引力的作用,取z 轴铅垂向上,xoy 为水平面,则单位质量力在x 、y 、 z 轴上的分量为 fx = 0 , fy = 0 , fz = -mg /m = -g式中负号表示重力加速度g 与坐标轴z 方向相反3流体静压强不是矢量,而是标量,仅是坐标的连续函数。
即:p = p (x ,y ,z ),由此得静压强的全微分为:4.欧拉平衡微分方程式z z p y y p x xp p d d d d ∂∂∂∂∂∂++=d d d d d d 0x p f x y z x y z x ∂∂-=ρd d d d d d 0y p f x y z x y z y ∂∂-=ρd d d d d d 0z p f x y z x y z z∂∂-=ρ单位质量流体的力平衡方程为:5.压强差公式(欧拉平衡微分方程式综合形式)6.质量力的势函数7.重力场中平衡流体的质量力势函数积分得:U = -gz + c*注:旋势判断:有旋无势流函数是否满足拉普拉斯方程:22220x y ψψ∂∂+=∂∂01=∂∂-x p f x ρ10y p f y ∂∂-=ρ01=∂∂-z p f z ρz z p y y p x x p z f y f x f z y x d d d )d d d (∂∂+∂∂+∂∂=++ρ)d d d (d z f y f x f p z y x ++=ρd (d d d )x y z p f x f y f z dUρ=++=ρd d d d x y z U U U U x y z =f dx f dy f dz x y z gdz ∂∂∂∂∂∂=++++=-8.等压面微分方程式 .fx d x + fy d y + fz d z = 09.流体静力学基本方程对于不可压缩流体,ρ = 常数。
积分得:形式一 p + ρgz = c形式二形式三10.压强基本公式p = p 0+ρ g h11..静压强的计量单位❖ 应力单位:Pa 、N/m2、bar❖ 液柱高单位:mH2O 、mmHg❖ 标准大气压:1 atm = 760 mmHg =10.33 mH2O = 101325 Pa ≈ 1bar第四章 流体运动学基础1拉格朗日法:流体质点的运动速度的拉格朗日描述为压强 p 的拉格朗日描述是:p =p (a ,b ,c ,t )2.欧拉法流速场 1212p p c +=+=gz gz ρρ1212p p c g g +=+=z z ρρ⎪⎩⎪⎨⎧===),,,(),,,(),,,(t c b a w w t c b a t c b a u u υυ⎪⎩⎪⎨⎧===),,,(),,,(),,,(t z y x w w t z y x t z y x u u υυv ui v j wk =++压强场:p =p (x,y,z ,t)加速度场简写为时变加速度: 位变加速度3.流线微分方程:.在流线任意一点处取微小线段d l = d x i + d y j + d z k ,该点速度为:v = u i + v j + w k ,由于v 与d l 方向一致,所以有: d l × v = 0(,,,)(,,,)(,,,)dx dy dz u x y z t v x y z t w x y z t ==4.流量计算:单位时间内通过d A 的微小流量为 d q v=u d A 通过整个过流断面流量相应的质量流量为5.平均流速 (,,,)x y z a a x y z t a i a j a k ==++d d (,,)d d d d (,,)d d d d (,,)d d x y z u u x y z,t u u u u a u w t t t x y z x y z,t a u w t t t x y z w w x y z,t w w w w a u w t t t x y z ∂∂∂∂∂∂∂∂υυ∂υ∂υ∂υ∂υυ∂∂∂∂∂∂∂∂υ∂∂∂∂⎧===+++⎪⎪⎪===+++⎨⎪⎪===+++⎪⎩υυυυ)(∇⋅+∂∂=t a t ∂∂υυυ)(∇⋅⎰⎰==A A u q q d d v v ⎰==A m A u q q d v ρρv d A v u A q A A q vAυ===⎰6.连续性方程的基本形式对于定常流动 有 即ρ1A 1υ1= ρ2A 2υ2对于不可压缩流体,ρ1 = ρ2 =c,有即A 1υ1=A 2υ2= q v7.三元流动连续性方程式定常流动不可压缩流体定常或非定常流:ρ = c8.雷诺数对于圆管内的流动:Re <2000 时,流动总是层流型态,称为层流区;212211d d d A A V u A u A Vt ∂ρρ∂-=⎰⎰⎰ρ0t ∂∂=ρA u A u A A d d 212211⎰⎰ρ=ρA u A u A A d d 2121⎰⎰=()()()u w t x y z ρρρυρ∂∂∂∂+++=∂∂∂∂()()()u w x y z ρρυρ∂∂∂++=∂∂∂0uwx y z υ∂∂∂++=∂∂∂udRe ρμ=Re >4000时,一般出现湍流型态,称为湍流区;2000<Re <4000 时,有时层流,有时湍流,处于不稳定状态,称为过渡区;取决于外界干扰条件。
9.牛顿黏性定律10.剪切应力,或称内摩擦力,N/m21112.运动黏度m2/s13..临界雷诺数14.进口段长度第五章 流体动力学基础1.欧拉运动微分方程式xd d uy τμ=-,μνρ=el d 1x pduf x dtρ∂-=∂2.欧拉平衡微分方程式3.理想流体的运动微分方程式*N—S方程写成分量形式4. 理想不可压缩流体重力作用下沿流线的伯努利方程式:三个式子,四个条件1yp dvfy dtρ∂-=∂1zp dwfz dtρ∂-=∂1ypfyρ∂-=∂1xpfxρ∂-=∂1zpfzρ∂-=∂1xp u u u uf u wx t x y zυρ∂∂∂∂∂-=+++∂∂∂∂∂1ypf u wy t x y zυυυυυρ∂∂∂∂∂-=+++∂∂∂∂∂1zp w w w wf u wz t x y zυρ∂∂∂∂∂-=+++∂∂∂∂∂dup F udtρρμ=-∇++∆5.理想流体总流的伯努利方程式6.总流的伯努利方程7.实际流体总流的伯努利方程式8.粘性流体的伯努利方程9.总流的动量方程10.总流的动量矩方程 22p v gz c ρ++=22p v z c g g ρ++=2211221222p v p v z z c g g g g ρρ++=++=221112221222p v p v z z g g g g ααρρ++=++g V g p z g V g p z 222222221111αραρ++=++221112221222f p v p v z z h g g g g ααρρ++=+++22112212L 22p v p v z z h g g γγ++=+++∑=-F V Q V Q 111222ρβρβ∑⨯=⨯-⨯F r V r Q V r Q 11112222ρβρβ)cos cos (111222ααρr V r V Q M -=11.叶轮机械的欧拉方程第七章 流体在管路中的流动1.临界雷诺数 临界雷诺数=2000,小于2000,流动为层流大于2000,流动为湍流2.沿程水头损失当流动为层流时沿程水头损失hf 为, V(1.0) ; 当流动为湍流时沿程水头损失hf 为, V(1.75~2.0)3.水力半径相当直径4.圆管断面上的流量5.平均流速6.局部阻力因数为 0dW d P=dt dtW Md M M M θθθθω====⎰功 功率 V d VdRe ρμυ==12f p p ph γγ-∆==h Ar P=h h4d r =4π8Q GR μ=2max 2max21π12π82R v QG V R v A R μ====0f 212c V τρ=7.管道沿程摩阻因数8.沿程水头损失的计算第九章1..薄壁孔口特征:L /d ≤2厚壁孔口特征:2<L /d ≤4 2.流速系数.3。
流量系数 Cd = CcCv课堂小测1,已知流体流动和一下一些常用量有关: ,,,,,F g u l μρ试用π定理推出:(,Re,)0f Eu Fr =。
2,f 644c Re λ==f 28p Gl l h V R μγγγ∆===226422l V l V Vd d g d gλρμ=⋅⋅=⋅⋅cv 11ζ+=C注:5°C 时粘度系数为617.410/(.)kg m s ⨯,25°C 粘度系数为618.3510/(.)kg m s -⨯。