流体力学公式总结
流体力学公式 (2)

流体力学公式流体力学是研究流体运动及其力学性质的学科。
它涉及了流体的运动、压强、温度、密度等物理性质,以及液压、气动、船舶、飞行器等领域的应用。
在流体力学中,有许多重要的公式,用于描述和计算流体的性质和行为。
本文将介绍几个流体力学公式,并探讨其应用。
1. 流体静力学公式流体静力学研究的是稳定的静止流体的力学性质。
以下是常见的流体静力学公式:压强公式在静止的流体中,压强(P)定义为单位面积上施加的力(F)与该面积(A)的比值。
压强公式如下:P = F / A其中,P为压强,单位为帕斯卡(Pa),1Pa = 1N / m²;F 为力,单位为牛顿(N);A为压力作用面积,单位为平方米(m²)。
压力的液柱公式当液体静止时,在柱状液体中,液体的压力与液柱的高度和液体密度有关。
液柱公式如下:P = ρgh其中,P为液体的压力,单位为帕斯卡(Pa);ρ为液体的密度,单位为千克/立方米(kg/m³);g为重力加速度,单位为米/秒²(m/s²);h为液柱的高度,单位为米(m)。
2. 流体动力学公式流体动力学研究的是流体在运动过程中的力学性质。
以下是常见的流体动力学公式:连续方程流体在不可压缩条件下的连续方程描述了质量守恒的原理,其表达式为:∇·v = 0其中,∇·v表示速度场的散度,v表示速度矢量。
动量方程流体运动的动量方程描述了流体在外力作用下的运动规律。
对于不可压缩流体,动量方程可表示为:∂v/∂t + (v·∇)v = -1/ρ ∇P + ν∇²v其中,∂v/∂t表示速度场对时间的偏导数;(v·∇)v表示速度场的对流项;-1/ρ∇P表示压力梯度的力学作用;ν∇²v表示速度场的粘性耗散。
能量方程流体运动的能量方程描述了流体在热力学条件下的能量转换规律。
对于不可压缩流体,能量方程可表示为:∂e/∂t + (v·∇)e = -P(∇·v) + κ∇²T其中,∂e/∂t表示能量场对时间的偏导数;(v·∇)e表示能量场的输送项;-P(∇·v)表示压强梯度的功率项;κ∇²T表示温度场的传导项。
压力与流速相关公式整理攻略

压力与流速相关公式整理攻略在流体力学中,压力与流速之间存在一定的关系,并且可以通过相关公式来描述。
对于工程师、物理学家和其他研究流体力学的人来说,掌握这些公式对于解决实际问题和进行流体力学分析至关重要。
本文将整理一些与压力和流速相关的常用公式,并提供一些在实际应用中的注意事项。
一、无压缩流体的流速与压力关系1.伯努利方程伯努利方程是描述无压缩流体在沿流线上的流速与压力之间的关系的重要公式。
它可以用来分析管道、涡轮机械以及空气动力学等领域的问题。
伯努利方程的形式如下:P + 0.5 * ρ * v^2 = constant其中,P表示流体的压力,ρ表示流体的密度,v表示流体的流速。
这个公式表明,当流速增大时,压力将下降,反之亦然。
注意,这个公式是在忽略摩擦力、湍流等因素的基础上推导得出的,所以只适用于理想情况。
2.托利密斯定理托利密斯定理是另一个描述无压缩流体流速与压力关系的重要公式。
它可以用来计算流体通过管道或孔隙的流量。
托利密斯定理的形式如下:Q = A * v其中,Q表示流体通过的流量,A表示流体流动的横截面积,v表示流体的流速。
这个公式表明,流体通过的流量与流速成正比,且与流动的横截面积有关。
在实际应用中,可以利用这个公式来计算液体、气体等的流量。
二、压缩流体的流速与压力关系在处理压缩流体的问题时,需要考虑流体的可压缩性。
以下是一些描述压缩流体流速与压力关系的公式。
1.伊辛方程伊辛方程是描述压缩流体流动的恒定流动公式。
它可以用来分析压缩流体通过收缩管道或喷嘴时的流速与压力分布。
伊辛方程的形式如下:P + 0.5 * ρ * v^2 + ρ * g * h = constant其中,P表示流体的压力,ρ表示流体的密度,v表示流体的流速,g表示重力加速度,h表示流体流动的高度。
这个公式表明,流体流动时,压力、速度以及流动高度综合作用下的总能量保持不变。
2.马赫数马赫数是描述压缩流体流速与声速之比的无量纲数值。
流体力学归纳总结

流体⼒学归纳总结流体⼒学⼀、流体的主要物性与流体静⼒学1、静⽌状态下的流体不能承受剪应⼒,不能抵抗剪切变形。
2、粘性:内摩擦⼒的特性就是粘性,也是运动流体抵抗剪切变形的能⼒,是运动流体产⽣机械能损失的根源;主要与流体的种类和温度有关,温度上升粘性减⼩,与压强没关系。
3、⽜顿内摩擦定律:du F Ady µ= F d u A d yτµ== 相关因素:粘性系数、⾯积、速度、距离;与接触⾯的压⼒没有关系。
例1:如图6-1所⽰,平板与固体壁⾯间间距为1mm,流体的动⼒黏滞系数为0.1Pa.S, 以50N 的⼒拖动,速度为1m/s,平板的⾯积是()m 2。
解:F F A du dyδµνµ===0.5 例2:如图6-2所⽰,已知活塞直径d=100mm,长l=100mm ⽓缸直径D=100.4mm,其间充满黏滞系数为0.1Pa·s 的油,活塞以2m/s 的速度运动时,需要的拉⼒F 为()N 。
解:3320.1[(10010)0.1]31.40.210du F AN dy µπ--===? 4、记忆个参数,常温下空⽓的密度31.205/m kg ρ=。
5、表⾯⼒作⽤在流体隔离体表⾯上,起⼤⼩和作⽤⾯积成正⽐,如正压⼒、剪切⼒;质量⼒作⽤在流体隔离体内每个流体微团上,其⼤⼩与流体质量成正⽐,如重⼒、惯性⼒,单位质量⼒的单位与加速度相同,是2/m s 。
6、流体静压强的特征: A 、垂直指向作⽤⾯,即静压强的⽅向与作⽤⾯的内法线⽅向相同; B 、任⼀点的静压强与作⽤⾯的⽅位⽆关,与该点为位置、流体的种类、当地重⼒加速度等因素有关。
7、流体静⼒学基本⽅程 0p p gh ρ=+2198/98at kN m kPa ==⼀个⼯程⼤⽓压相当于735mm 汞柱或者10m ⽔柱对柱底产⽣的压强。
8、绝对压强、相对压强、真空压强、真空值公式1:a p p p =-相对绝对公式2:=a p p p -真空绝对p 真空叫做真空压强,也叫真空值。
流体力学中的流体流量与流速计算

流体力学中的流体流量与流速计算流体力学是研究流体在运动过程中的性质和行为的学科。
其中,流体流量和流速是流体力学中的重要概念,用于描述流体运动的特征和量度。
本文将介绍流体流量与流速的概念及计算方法。
一、流体流量的概念及计算方法流体流量是指单位时间内通过某一截面的流体体积。
按照定义,流体流量的计算公式为:Q = A * v其中,Q表示流体流量,A表示截面面积,v表示流速。
二、流速的概念及计算方法流速是指单位时间内流体通过一个截面的体积。
流速的计算公式可以根据具体情况而定,以下是常见的几种计算方法:1. 定常流的流速计算在定常流动情况下,流体的质量流率和体积流率保持不变。
流速的计算公式为:v = Q / A其中,v表示流速,Q表示流体流量,A表示截面面积。
2. 非定常流的流速计算在非定常流动情况下,流体的流速可能随时间和空间的变化而变化。
针对不同的情况,可以采用不同的方法计算流速,如通过流速图、针对特定位置的流速计算等。
三、流体流量与流速的应用流体流量和流速是流体力学中的基本概念,广泛应用于各个领域,包括但不限于以下几个方面:1. 水泵和液压系统的设计在水泵和液压系统的设计中,流体流量和流速是重要的设计参数。
通过合理计算流体流量和流速,可以确定水泵和液压系统的工作参数,确保其正常运行。
2. 水流和气流的测量与控制在环境监测、水利工程、能源利用等领域,对水流和气流的测量与控制是常见需求。
通过准确计算流体流量和流速,可以帮助实现对水流和气流的精确测量和控制。
3. 管道流量的计算与优化对于管道流动问题,合理计算流体流量和流速有助于分析和优化管道系统的性能。
通过调整管道直径、流速等参数,可以实现管道系统的节能、减压等目标。
四、总结流体流量和流速是流体力学中的重要概念,用于描述流体运动的特征和量度。
在实际应用中,合理计算流体流量和流速,可以帮助我们设计、控制和优化各类流体系统。
因此,对于流体力学中的流体流量与流速的计算方法和应用有深入的了解,对于工程实践具有重要意义。
流体力学公式总结.

流体微团运动分析加速度 : 欧拉法的加速度三个分量 z u u yu u xu u tu DtDu a y zy y y x y yy ∂∂+∂∂+∂∂+∂∂==zu u yu u xu u tu DtDu a z zz yz xz z z ∂∂+∂∂+∂∂+∂∂==zu u yu u xu u tu DtDu a x zx yx xx x x ∂∂+∂∂+∂∂+∂∂= =uu tu Dtu D a(∇∙+∂∂==哈密顿算子tk t j t i ∂∂+∂∂+∂∂=∇ 1. 线变形(1线应变率(线变形速度 :(2面积扩张率 : 流体面元的面积在平面内的局部瞬时相对扩张速率(3体积膨胀率 :流体体元的体积在空间的局部瞬时相对膨胀速率xu x xx ∂∂=εyu y yy∂∂=εzu z zz∂∂=εyu x u u y x ∂∂+∂∂=∙∇ zu y u x u u zy x ∂∂+∂∂+∂∂=∙∇⎪⎪⎭⎫⎝⎛∂∂+∂∂=yu x u x yxy21ε⎪⎪⎭⎫⎝⎛∂∂+∂∂=y u z u z y yz 21ε⎪⎭⎫⎝⎛∂∂+∂∂=z u x u x z zx21ε2. 角变形速度:单位时间直角边的偏转角度之半为流体微团的的角变形速度。
3 流体的旋转(旋转运动• 旋转角速度 : 两正交线元在 xy 面内绕一点的旋转角速度平均值⎪⎪⎭⎫⎝⎛∂∂-∂∂=y u xu x yz 21ω(规定逆时针方向为正• 涡量 (三维流场zyxu u u z y x ∂∂∂∂∂∂=⨯∇==Ωk j i uω2⎪⎪⎭⎫⎝⎛∂∂-∂∂=zu y u y z x 21ω⎪⎭⎫⎝⎛∂∂-∂∂=x u z u z x y 21ω• 流体微团运动一般由平动、转动和变形运动(线变形和角变形三部分组成。
4. 无旋运动和有旋运动zyxu u u z y x ∂∂∂∂∂∂=⨯∇==Ωk j i uω2kj i (2z y x ωωω++=Ω21k j i ω=++=z y x ωωω00; 0; 0Ω21k j i ω===⇒⇒==++=z y x z y x ωωωωωω凡是流体微团不存在旋转运动的流动称为无旋运动或有势运动;否则称为有旋运动。
流速流量计算

流速流量计算在流体力学中,流速是指流体在单位时间内通过其中一表面的流量,而流量则是指单位时间内通过其中一区域的流体体积。
流速和流量之间的关系可通过以下公式来计算:流量=流速×面积其中,流速通常以米/秒(m/s)为单位,而流量通常以立方米/秒(m³/s)为单位。
在一些情况下,流速也可以以升/秒(L/s)为单位,流量以升/秒(L/s)或升/分钟(L/min)为单位。
在实际应用中,有多种方法可以测量流速和流量,下面将介绍几种常用的方法。
1.测量液体流速和流量:-利用流量计:通过安装在管道上的流量计来测量液体的流速和流量。
常见的流量计包括涡街流量计、电磁流量计、超声波流量计等。
-利用压力差:利用管道中的压力差来计算流速和流量。
通过在管道中安装压力传感器,可以测量管道上下游的压力差,并通过公式进行计算。
这种方法适用于非粘性流体。
-利用浮子式流量计:使用浮子式流量计可以直接读取液体流速和流量。
浮子随着液体流动而上升或下降,通过读取浮子的位置来测量流速和流量。
2.测量气体流速和流量:-利用流量计:类似于液体流量计,在气体管道中安装流量计来测量气体的流速和流量。
常见的气体流量计有翼轮流量计、多孔板流量计等。
-利用差压计:利用差压计原理来测量气体的流速和流量。
通过在管道中安装差压传感器,测量管道上下游的压力差,并通过公式进行计算。
这种方法适用于非粘性气体。
-利用速度头或风速传感器:在气体流道中安装速度头或风速传感器,通过测量气体的速度来计算流速和流量。
在实际应用中,还需考虑到流体的密度、温度和压力等因素对流速和流量的影响,需要进行相应的修正计算。
一般来说,流速和流量的测量精度会受到各种因素的影响,因此在测量过程中需要注意选择合适的方法和仪器,并进行必要的修正和校准。
总结:流速和流量的计算可以通过流量计、差压计、浮子式流量计、速度头等方法来实现。
在实际应用中,需要考虑到流体的特性和测量精度等因素,并进行相应的修正和校准。
流体力学52个常用公式总结

流体力学常用公式总结1.液体的比重γ=ρg2.液体对水的密度比S=ρρwaterγ=Sγwater3.静水压强差ΔP=ρgh 4.剪应力和速度的关系τ=μdu dy5.三维的流速场的一般表达V=V(x,y,z,t)=u(x,y,z,t)i+v(x,y,z,t)j+w(x,y,z,t)k 6.三维的流线方程的一般形式dx u =dyv=dzw7.三维流场的加速度的一般形式8.三维流场的加速度的三个分量9.三维流场的连续性方程ðu ðx +ðvðy+ðwðz=010.流量的定义式11.流量的另一种表达AU=V→U=V A12.控制体内质量的变化律m=ρAU=ρV 13.控制体出入口进出质量守恒的方程ρ1A1U1=ρ2A2U2 14.雷诺数Re=ρUD μ15.伯努利方程的定义式P γ+v22g+Z=H16.理想条件下伯努利方程的形式P1γ+v122g+Z1=P2γ+v222g+Z217.考虑了损耗的伯努利方程P1γ1+v122g+z1=P2γ2+v222g+z2+H L18.一般情况下的伯努利方程P1γ1+v122g+z1+H p=P2γ2+v222g+z2+H t+H L19.系统动能变化率的一般式Q net+W net=dE sys dt19.系统功率的一般式Power=WΔt=F∙sΔt=F∙v=γQH=m gH20.一般情况下的伯努利方程的H p项H p=E pumpm g=Power pumpm g21.一般情况下的伯努利方程的H L项E loss=m gH L22.系统效率的一般式η=E out E in23.水泵的机械效率ηp=γQHPower→Power=γQHηp=PQηp24.水力发电机的机械效率ηt=Power→Power=γQH∙ηt=PQ∙ηt25.由动量守恒推导出的二向流体压力式F x=P1A1cosθ1−P2A2cosθ2+ρQ(v1cosθ1−v2cosθ2)−F y=P1A1sinθ1−P2A2sinθ2+ρQ(v1sinθ1−v2sinθ2) 26.由动量守恒推导出的流体压力的方向角α=tan−1(F y F x )27.喷气式飞机的理想模型F=ρ2Q2v2−ρ1Q1v1=m2v2−m1v1 28.由角动量定理的流体力矩T=r×ρQ(v2−v1)=ρQ[(r2×v2)−(r1×v1)] 29.力矩大小|T|=ρQ(r2v t2−r1v t1) 30.驱动力矩的功率Power=|T|ω31.斯托克斯方程的一般形式ρg−∇P+μ∇2V=ρDV Dt32.流体的旋度33.x方向的斯托克斯方程ρg x−ðPðx+μ(ð2uðx2+ð2uðy2+ð2uðz2)=ρ(dudt+ududx+vdudy+wdudz)34.二维平面流的连续性方程ðu ðx +ðvðy=035.二维平面的流函数u≡ðΨðy,v≡−ðΨðx36.极坐标下的二维平面流的连续性方程1 r ð(rv r)ðr+1rðvθðθ=037.极坐标下的二维平面的流函数v r=1rðΨðθ,vθ=−ðΨðr38.笛卡尔坐标系的势流方程ð2Φðx2+ð2Φðy2+ð2Φðz2=039.通过势流求极坐标的速度v r=ðΦðr,vθ=1rðΦðθ,v z=ðΦðz40.极坐标系的势流方程1 r ððr(rðΦðr)+1r2ð2Φðθ2+ð2Φðz2=041.通过势流求笛卡尔坐标系的速度u=ðΦðx,v=ðΦðy,w=ðΦðz42.笛卡尔坐标势流方程和流函数之间的互换u=ðΨðy,v=−ðΨðx⇔u=ðΦðx,v=ðΦðy43.极坐标势流方程和流函数之间的互换v r=1rðΨðθ,vθ=−ðψðr⇔v r=ðΦðr,vθ=1rðΦðθ44.马赫数M≡v a45.弗劳德数Fr≡v Lg46.欧拉数Eu≡ΔP ρv247.韦伯数We≡ρLv2σ48.管流在管壁上产生的剪应力τ=ΔPD 4L49.管流在管中的最大速度u max=R2dP 50.管内流量Q=ΔPπD4 51.管流的平均速度v avg=12u max52.管流速度关于半径的函数u(r)=14μ(ΔPL−ρg sinθ)(R2−r2)53.倾斜的管道的流量Q=πD4128μL(ΔP−ρgL sinθ)54.管道内流体的摩擦系数H f=f LDv avg22gf=f(Re)=64 Re。
流体力学最基本的三个方程

流体力学最基本的三个方程流体力学是研究流体运动及其相关物理现象的学科。
它的基础有三个最基本的方程,即连续性方程、动量守恒方程和能量守恒方程。
本文将详细介绍这三个方程的含义和应用。
一、连续性方程:连续性方程,也称为质量守恒方程,描述了流体运动中质量守恒的原理。
它的数学表达式为:∂ρ/∂t+∇·(ρv)=0其中,ρ是流体的密度,v是流体的速度矢量,∂/∂t表示对时间的偏导数,∇·表示向量的散度。
连续性方程的物理意义是说,质量在流体中是守恒的,即单位体积内的质量永远不会改变。
这是由于流体是连续的,无法出现质量的增减。
这个方程告诉我们,流体在流动过程中的速度变化与流体密度变化是相关的。
当流体流动速度较大时,密度通常会变小,反之亦然。
连续性方程的应用十分广泛。
在管道流动中,我们可以利用连续性方程来推导流速和截面积之间的关系。
在天气预报中,连续性方程被用来描述气象现象,如大气的上升和下沉运动,以及风的生成和消散等。
二、动量守恒方程:动量守恒方程描述了流体运动中动量守恒的原理。
它的数学表达式为:∂(ρv)/∂t + ∇·(ρvv) = -∇p + ∇·(μ∇v) + ρg其中,p是流体的压强,μ是流体的黏度,g是重力加速度。
动量守恒方程可以理解为牛顿第二定律在流体力学中的推广。
它表示流体在外力作用下的加速度与压力梯度、黏性力、重力的平衡关系。
动量守恒方程的物理意义是说,流体的运动与施加在流体上的各种力密切相关。
当外力作用于流体时,会引起流体的加速度,也即速度的变化。
这个方程告诉我们,流体的加速度是与外力、黏性力和重力共同作用而产生的。
动量守恒方程的应用十分广泛。
在飞行器设计中,我们可以利用动量守恒方程来研究气动力的产生和改变。
在水力学中,动量守恒方程可以用来分析水流的运动、喷流和冲击等。
三、能量守恒方程:能量守恒方程描述了流体运动中能量守恒的原理。
它的数学表达式为:∂(ρE)/∂t + ∇·(ρEv) = -∇·(pv) + ∇·(κ∇T) + ρg·v +q其中,E是单位质量流体的比总能量(包括内能、动能和位能),T是流体的温度,κ是流体的热传导系数,q是单位质量流体的热源项。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工程流体力学公式总结
第二章流体得主要物理性质
❖流体得可压缩性计算、牛顿内摩擦定律得计算、粘度得三种表示方法。
1.密度ρ= m/V
2.重度γ= G /V
3.流体得密度与重度有以下得关系:γ= ρg或ρ= γ/ g
4.密度得倒数称为比体积,以υ表示υ= 1/ ρ= V/m
5.流体得相对密度:d = γ流/γ水= ρ流/ρ水
6.热膨胀性
7.压缩性、体积压缩率κ
8.体积模量
9.流体层接触面上得内摩擦力
10.单位面积上得内摩擦力(切应力)(牛顿内摩擦定律)
11.、动力粘度μ:
12.运动粘度ν:ν=μ/ρ
13.恩氏粘度°E:°E = t 1 /t 2
第三章流体静力学
❖重点:流体静压强特性、欧拉平衡微分方程式、等压面方程及其、流体静力学基本方程意义及其计算、压强关系换算、相对静止状态流体得压强计算、流体静压力得计算(压力体)。
1.常见得质量力:
重力ΔW = Δmg、
直线运动惯性力ΔFI =Δm·a
离心惯性力ΔFR =Δm·rω2、
2.质量力为F。
:F= m·am= m(fxi+f yj+fzk)
am =F/m = f xi+f yj+fzk为单位质量力,在数值上就等于加速度
实例:重力场中得流体只受到地球引力得作用,取z轴铅垂向上,xoy为水平面,则单位质量力在x、y、z轴上得分量为
fx= 0,fy=0 , fz=-mg/m= -g式中负号表示重力加速度g与坐标轴z方向相反
3流体静压强不就是矢量,而就是标量,仅就是坐标得连续函数。
即:p=p(x,y,z),由此得静压强得全微分为:
4.欧拉平衡微分方程式
单位质量流体得力平衡方程为:
5.压强差公式(欧拉平衡微分方程式综合形式)
6.质量力得势函数
7.重力场中平衡流体得质量力势函数
积分得:U =-gz + c
*注:旋势判断:有旋无势
流函数就是否满足拉普拉斯方程:
8.等压面微分方程式、fx dx+fy d y + fz d z =0
9.流体静力学基本方程
对于不可压缩流体,ρ=常数。
积分得:
形式一p+ ρgz= c
形式二
形式三
10.压强基本公式p = p0+ρgh
11.、静压强得计量单位
❖应力单位:Pa、N/m2、bar
❖液柱高单位:mH2O、mmHg
❖标准大气压:1 atm = 760mmHg =10、33mH2O=101325Pa≈1bar
第四章流体运动学基础
1拉格朗日法:流体质点得运动速度得拉格朗日描述为
压强p得拉格朗日描述就是:p=p(a,b,c,t)
2.欧拉法
流速场
压强场:p=p(x,y,z,t)
加速度场
简写为
时变加速度: 位变加速度
3.流线微分方程:、在流线任意一点处取微小线段dl= dxi+ dyj+dzk,该点速度为:v =ui+ v j+ w k,由于v与dl方向一致,所以有: d l×v= 0
4.流量计算:
单位时间内通过dA得微小流量为dq v=u dA
通过整个过流断面流量
相应得质量流量为
5.平均流速
6.连续性方程得基本形式
对于定常流动有即ρ1A1υ1= ρ2A 2u2
对于不可压缩流体,ρ1 =ρ2 =c,有即A1υ1=A2υ2=qv
7.三元流动连续性方程式
定常流动
不可压缩流体定常或非定常流:ρ = c
8.雷诺数
对于圆管内得流动:
Re<2000 时,流动总就是层流型态,称为层流区;
Re>4000时,一般出现湍流型态,称为湍流区;
2000<Re<4000时,有时层流,有时湍流,处于不稳定状态,称为过渡区;取决于外界干扰条件。
9.牛顿黏性定律
10.剪切应力,或称内摩擦力,N/m2
11.动力黏性系数
12.运动黏度m2/s
13.、临界雷诺数
14.进口段长度
第五章流体动力学基础
1、欧拉运动微分方程式
2、欧拉平衡微分方程式
3、理想流体得运动微分方程式
*N—S方程
写成分量形式
4、理想不可压缩流体重力作用下沿流线得伯努利方程式:三个式子,四个条件
5.理想流体总流得伯努利方程式
6.总流得伯努利方程
7.实际流体总流得伯努利方程式
8.粘性流体得伯努利方程
9.总流得动量方程
10.总流得动量矩方程
11.叶轮机械得欧拉方程
第七章流体在管路中得流动
1.临界雷诺数
临界雷诺数=2000,小于2000,流动为层流
大于2000,流动为湍流
2.沿程水头损失
当流动为层流时沿程水头损失hf为, V(1、0) ;
当流动为湍流时沿程水头损失hf为,V(1、75~2、0)
3.水力半径
相当直径
4.圆管断面上得流量
5.平均流速
6.局部阻力因数为
7.管道沿程摩阻因数
8.沿程水头损失得计算
第九章
1.、薄壁孔口特征:L/d≤2
厚壁孔口特征:2<L/d≤4
2.流速系数
、3。
流量系数Cd =CcCv
课堂小测
1,已知流体流动与一下一些常用量有关:
试用定理推出:。
2,
注:5°C时粘度系数为,25°C粘度系数为。